Structural stability of p(x)-Laplace problems
K. Kansie
LAboratoire de Mathématiques et Informatique (LA.M.I), UFR. Sciences et Techniques, Université Nazi Boni, 01 BP 1091 Bobo 01, Bobo-Dioulasso, Burkina Faso
S. Ouaro
LAboratoire de Mathématiques et Informatique (LA.M.I), UFR. Sciences Exactes et Appliquées, Université Ouaga I Pr Joseph KI ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Received on May 20, 2018
Accepted on January 30, 2020
Communicated by Khalil Ezzinbi
Abstract. In this paper, we study the structural stability (i.e., the continuous dependence on coefficients) of solutions of the nonlinear homogeneous Neumann boundary value problems involving the p(x)-Laplace of the form
|
|||
Keywords: | Generalized Lebesgue-Sobolev spaces, Leray-Lions operator, Weak solution, Renormalized solution, Thermorheological fluids, Continuous dependence, Young measures.. | ||
2010 Mathematics Subject Classification: n/a. |