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1 Introduction

Let Q ¢ RN ,IN > 2, be a bounded smooth domain. In this article, we would like to establish the
existence and uniqueness of the renormalized solution to the following problem involving variable-
order fractional Laplacian

w+ (A Dyt [t 2u=f  in Qpi=Qx (0,T),
(Pr) u=0 in (RV\Q)x(0,7),
u(.,0) = ug(.) in RV,
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on the assumptions:
i) f € LYQr) and ug € L' ()

i) 0 <87 =ming gernry 5(2,€) < 8(2,6) < 5T =max(, gervyry 5(2,6) < 1
) Np
i41) N >ps(-)and1 < g < Neps()"

The operator (—A)Z(') is a variable-order fractional p-Laplacian defined by:

w(2) — w(E)|P2(u(z) —u
(—A):Vu(z) = 2P.V/RN [u(2) ‘Z(_%Néf(z,)@ €) d¢, z e RV,

where P.V denotes the Cauchy principle value. When s(-) = s(constant) € (0,1), the operator

(—A)f,(') reduces to the usual fractional p-Laplacian.

The fractional variable order derivatives suggested by Lorenzo and Hartley in [[10] appeared in non-
linear diffusion processes. In particular, some diffusion processes reacting to temperature changes
may be better described by using variable order derivatives in a nonlocal integro-differential opera-
tor, see for example [[L1]. There is growing interest in partial differential equations involving non-
local operators [6} (7} 18, 9} [20, 22]] due to their various applications in various scientific and technical
fields for modeling complex phenomena. Here are some areas of application where these partial
differential equations can be used: finance, biology, physics, geophysics, materials science, image
processing, etc, see [1, 2, 5. More specifically, partial differential equations involving variable-
order fractional Laplacian are useful for modeling phenomena where non-local behaviors and com-
plex spatial dependencies play a crucial role. They allow for the consideration of more realistic and
complex phenomena than traditional partial differential equations.

Very interesting works addressing the variable-order fractional Laplacian exist in the literature. In-
jection results have been established by M. Xiang et al. [20] with the aim of demonstrating the
existence of multiple solutions distinct from the problem (P ) using the mountain pass theorem and
Ekeland’s variational principle.

) { (~AY0 + AV (@)u = alu 20 + Blul?O~2u in 0,

u=20 in 0f). a.h

The works of Sabri [16] and Sabri et al. [[15] present very interesting results. In [16], the study
considers a more general operator; it is the variable-order fractional p(-)-Laplacian, as indicated by
the following problem:

w+ (A u=f  in Qr:=0x(0,7),
=0 in Xp:=Qx(0,7T),

(P2) U
u(.,0) = ug(.) in RV,

With L°°-data, Sabri demonstrated the existence and uniqueness of a weak solution using the
Rothe’s time-discretization method.

However, it should be noted that the case of problems involving the variable-order fractional Lapla-
cian with L'—data seems to be less addressed in the literature. Most of the works we have encoun-
tered that deal with problems involving the fractional Laplacian (—A) ; () with a constant-order s.
Problem (Pr) can be viewed as generalization of the following equation studied in [8]:

ug + (—A)f,(')u +[ul?2u =A% in Qr :=Q x (0,7),
(P3) u=0 in (RV\ Q) x(0,7),
u(.,0) = up(.) in RV,
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where ' € C'(Q x R,R) is locally Lipschitz uniformly in second variable and X is a positive
parameter. The authors established the existence and uniqueness of the weak solution of problem
(Ps), for regular data. As it has been shown in [14} [17]], the distributional solution is in general not
unique. In order to get well-posedness for L'-data, the notion of a renormalized solution was intro-
duced by DiPerna and Lions in [3]. Thus, the present paper represents a significant advancement in
the study of fractional parabolic problems of variable order due to the right-hand side belonging to
L.

The rest of the paper is organized as follows: In section 2 we recall some basic proprieties of
Lebesgue and Sobolev spaces with variable exponent and in section 3 we state and prove our main
result.

2 Preliminary

Let’s define the function space as

W =WwOP(Q) := {h: RY — R is measurable, h € LP(Q2) and [h],()q < 0o},

1/p

W) (Q) is a Banach space equlpped with the norm || - [|5(.)  defined as follows:

where

RS

llsira = (110 + 7% 0)

Let us recall the following functional space,
Wo = WOP(Q) = {h e WOP(Q): h=0ae in RV Q} .
Equi WS('):p o) :
quip W 7" (£2) with the norm
Let consider a measurable function s(-) and two constants s; and sy such that 0 < s; < s(z,§) <

sy < 1, forall (z,£) € RY x RY. The following lemma shows that []s(),() is an equivalent norm
of WP (q).

Lemma 2.1 [20] The embedding W;>" () < Wg(')’p(ﬂ) <—> Wy tP () are continuous.
Moreover;, if N > ps1, for any fixed constant o € (1, ~L—], W"P(Q) can be continuously

) N—ps1 psl
embedded into L*(X2).

Lemma 2.2 /8] Ler Q@ C RY be a smooth bounded domain. Assume that s : RY x RN —
(0,1) is continuous and p satisfies 1 < q < «— Np Neps()" Then, there exists a positive constant Cy =

C(N,q,st,s™) such that for any h € W*)2(Q ) 7]l Lac) < Cyllhlls),0- That is, the embedding
WsOP(Q) — L(Q) is continuous. Furthermore, this embedding is compact.
Ifh € Wg(')’p(ﬂ), then there exists Cy = C(N, q, s, s7) such that

IRl ey < Cqlhlsey.0-
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Lemma 2.3 [4] Let ™ = max(l,0). Ifh € Wg(')’p(Q), then

|h(2) = h(E)P2(RF(2) — KT (€))(h(2) — h(&)) > W (2) = hT(€)].

Lemma 2.4 /4] Let T be a positive constant. For all ¢,v € RY,

Tlg —vlP if p>2,
(Is]P~26 = [vP?v,6 —v) > c—o2 2.2)
T———— if p<2.
(Is] + [v])2=P

Remark 2.5 Given real numbers a, b, ¢, and d, we have:

a—c)(b+d) (a+c)(b—d)
2 + 2 '

ab—cd:(

Let us define the truncating function T} (u), for any u € R, as

koif u>k,
Ti(u) = max{—k, min{k,u}} = u if |ul <k, (2.3)
—k if u<—k.

and denote %S(')’p(QT) = {u(measurable) :Qr — R, Ty (u) € LP(0, T VVOS(')’p(Q))7 k> O}.

We denote by O (u) : R — R the primitive of Ty (u) defined by

u2

u o it |ul < k,
Op(u) = [ Ti(s)ds = 2 (24)
0 Wul =5 [ul > k.

Note that
0 < O(u) < klul.

T;
Moreover, let us note that: lim k]iu) = signg(u), with

k—0

1 if u>0,
signg(u) = ¢ 0 if u=0, (2.5)
-1 if wu<O.

Lemma 2.6 [2]l] Let a,b € Rand p > 1, then

ja = b[P~*(a — b)(Ti(a) — Tj(b)) = |Ti(a) — Ti(b)[7. (2.6)

Let define, for all € > 0, the function S, which is useful in the proof of uniqueness.
h if |h] <k,
Se(h) =< (e+3)xti(ht(e+1))? if e<*h<e+1 2.7
+(e+3) if +h>e+1,



ON A VARIABLE-ORDER FRACTIONAL PARABOLIC PROBLEM WITH L' DATA 43

which gives

1 if |h| <e,
Si(h) =< e+1+|h| if e<+th<e+1, (2.8)
0 if |h|>e+1.

3 Mains results

Definition 3.1 A function v € C (O T, LI(Q)) is said to be a renormalized solution to problem
(Pr)ifue '76 )» (Qr) and the following conditions are satisfied:

u(z,t) —u(€, )P~

i) lim dzdédt =0 (3.1
0= J(46(0,T),(2.£)€0x 2 (u(zt) u(E ) eRa) 12 — E[NFIEOP
where
R, = {(v,w) € R* : max{|v|, |w|} > a + 1 and min{|v]|, |w|} < a or vw < 0}. (3.2)

(ii) For any ¢ € C§°(Qr) and S € W1(R) piecewise C1(R) satisfying that S’ has a com-
pact support,

/ / (2,8) — u(§, P> (ulz,t) — u(€ ) (S (u)e(z,t) — 8" (W&, t)) dz d¢ dt
QXQ

|Z _ E‘N—l—s(z,&)p

+ / Su )cp(z t) dzdt+/ [u|T2uS’ (u)p(z, t) dzdt = S (u)p(z,t) dzdt.(3.3)
Ot Qr Qr

Theorem 3. 2 Assume that (1) — (iii) hold, then problem (Pr) admits a unique renormalized solu-

(i
tion u € 'T ’p(QT) N LY Q7).

We give the proof of Theorem [3.2]in two subsections.

3.1 Ecxistence of a renormalized solution

For the proof of the existence, we proceed in three steps as follows.
Step 1. The semi-discrete problem

T
Let M e N*, T >0and d = JYi and define ¢,, = nd, u" = u(ty,.).

Let us introduce the approximate problem

un+5(_A)5() n_‘_(ﬂu ‘q 2 u =y 1+5fn in Q

(Py) u" =0 in RN\Q,
u® = ug in RV,
where f"(2) = = ft" J)dsin Q, ug € L*(Q) and f™ € L=(Q).

Due to the den51ty of LOO(Q) in L1(9), we have:
f™ — f strongly in L' (Q).
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Lemma 3.3 Let’s assume that the discretized problem (P,,) has a weak solution (u")o<n<nr. Then
u™ € L>®(Q) forall0 < n < M.

Proof. For n = 1, problem (P)) is given as follows

ul +(5(—A)S() 1 +5’u1’q 2u1 —g in Q,
(P1) u' =0 in RV\Q,
u =wug in RV,

We will demonstrate that if problem (Py) has a solution u!, then u! belongs to set L>(€2).
Letp € W] 0)p (), if ut is a solution of (Py), then the following equation is satisfied

/Qulnpdz—F(S((—A);(')ul,@+5<\u1]‘72u1,cp> :/lenpdz, (3.4)

with g! = u® + 6 f1 € L>(Q).
Lete € RT. Thenu! — € € Wg(')’p(ﬂ) and (u! —€)T € WS(')’p(Q). We can take ¢ = (u! — €)1
in (3.4)) to get

/ul(ul—e)+dz+5<(—A) SOul (ut — )ty + 8t 172t (ut — ) F) :/gl(u1 — )T dz.
Q Q

(3.5)
Let us define = by
E={zeQul >€}. (3.6)
We obtain
(Jur|972ut, (u! — )" /|u 1972yt (u! — €)dz > 0, (3.7)
1 a1 P
CANs(), L 1 [u'(2) —u (8|
(A ut, (u —€e)) > = |7 — €O dzd¢ > 0. (3.8)
It follows that
/ ut(u! —e)Tdz < / gt (u' — )t dz. 3.9
Q Q
That to say
0< /[(u1 — oM dz < /(g1 —e)(ut — )T dz. (3.10)
Q Q

By setting € = ||g'||oo, We have g! — € < 0 a.e in €.

Consequently (u* — €)* = 0 a.e in Q for all € = ||g"||o, which amounts to u* < ||g'||o a.e in Q.
In the same way, by taking (u! 4 €)™ as a test function in (3.4), we demonstrate that —||g'||oc < u'.
From all that precedes, we have u! € L*°(Q).

By induction, we deduce that u™ € L () foralln = 1, M. O

Lemma 3.4 Let ug € L>*(2) and f* € L*(Q). For n = 1, M, the problem (P,,) has a unique
weak solution u™ € L>®(2) N W()S(')’p(ﬂ), that is, for any ¢ € Wg(')’p(ﬂ), one has

/Qu pdz + 5((—A)SDu", @) + (|ju" |92, @) = /Qg”sodz, (.11)

with ¢g" = u" 1 + 6 f™
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Proof. Forn = 1, the problem is given as follows:

ul +(5(—A)S() e 2u1 =g in Q,

(P1) u' =0 in RV\Q,

ud =wy in RV,

For simplicity, we write . = u!. Define the functional

1/1(u)z2/9u2(z)dz—i—5 L Ju(z )|N+s(z§ dz d§+6/ |qdz—/Qg1(z)u(z)dz.

axaPlz—¢

Note that 1) is well-defined and Gateaux differentiable on WS O)p (€2). Standard arguments allow
us to establish an equivalence between the minimizer of 1) and the weak solution of problem (P).

Indeed, let u € W O)p (€2) be a minimizer of 1. We will show that u satisfies problem (P;). We
have:

0 = %w(u—i-tv)‘t:o
1 d d |u(z §) +t(v v(§)) P
= lg f e e [ [ RO s O e

- [ Gt + s
[u(z) = w(©P2(u(=) — (@) (v(z) — (&)
= / dz+5// dzd¢

|2 — ¢|N+ps(=)

—/gl(Z)v(Z) : (3.12)
Q

Thus, u is a weak solution of (P;), with v being a test function. Conversely, let us consider a
weak solution u of problem (P;) and show that it minimizes . Let v € C§°(), then we have the
following weak formulation:

[tz + 8 [ [ ML= HOP ) —uO)0() = 0(0) o, o

_ / H(2)o(z) dz = 0, (3.13)
Q

which is nothing other than ¢'(u) = 0, thus v minimizes ).
To achieve this and demonstrate the existence of a weak solution, we will show that 1) possesses a
global minimizer u € W O)p (©) N L>(2). Indeed,

1 Ju(z) = u(§)

1
= dzd
axa Pz — EVHED ¢

P(u) = 2/§2U2(2)d2+5
1 0. p
+5/Qq]u(z)|qdz—/ggl(z)u(2) de > ];[“]5(.)79_0[“}5(')»9’

that is to say,
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Since p > 1, it follows that ¢ is coercive. Furthermore, v is lower bounded and weakly lower
semicontinuous. Therefore, 1) has a global minimizer u € I/VOS O)p ().

We will now prove that the minimizer of 4 is unique. Suppose that ¢) has two minimizers » and v.
By using the test functions v — v and v — u for u and v respectively, we have

B Ju(z) — u(@P*(u(z) — u(§)) (u(z) — u(§) — (v(2) —v(¢)))
/Qu(u v)dz + 0 o e O dzd¢
+ 5/9 lu|"2u(u —v)dz = /le(u —v)dz (3.14)
and
[v(2) = v() P2 (v(2) —v(E)) (v(z) — v(E) — (u(z) —u(§)))
/Qv(v—u) dz 49§ - o= EN O dz d¢
—1—(5/(2 |9 20(v — u)dz = /le(v —u)dz. (3.15)

By summing the two equations, we obtain:

/ (u—v)?dz + (5((—A);(')u — (—A)Z(')v, u—v)+0 / (Ju|"2u —[v]7"%0) (u—v) dz = 0.
Q Q

(3.16)
Since (—A)Z(') and h — |h|9~2h are monotone. Then, we deduce from (3.16)) that v = v. Hence
(P1) has a unique weak solution u' € L>(Q) N WOS(')’p(Q).

Using the same manner as the case n = 1, we deduce that the problem (P,) has a unique weak
solution u™ € L®(Q) N WP (Q) forallm = 1,--- , M. O

The following result establishes the renormalization condition for further work.

Proposition 3.5 Let (u™)o<n<n be a weak solution of (P,,), then we have:

. ju" (2) = u (©) P~

a0 JL(2,6)eQxQ:(un(2),u™(€))ERy} |Z — §|N+3(27§)p

dzdé =0 (3.17)

where

R, = {(v,w) € R* : max{|v|, |w|} > a + 1 and min{|v|, |w|} < a or vw < 0}. (3.18)

Proof. In order to prove (3.17), we take ¢ = T (G, (u™)) as test function in (3.11)), where G4 (u™)

u+a if U >a,
is given by G (u™) = u"™ — Ty (u™) =
0 if [ul<a.

‘We have

/Q W (Ga(u™)) dz + 6((=A)3Eu™, Ty (Gy(u™)))

—1-5/ |u"|q_2u"T1(Ga(u"))dz:/gnTl(Ga(u"))dz. (3.19)
Q Q
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Equation (3.19) becomes

/ u"Ty (up, £ a)dz + 5((—A)Z(Z’5)u”, Ty (up £ a))
{lun[>a}

+0 [u™ 72Ty (uy, & a) dz = / 9" T (up, £ a)dz. (3.20)
{lun|>a} {lun|>a}

It is evident that the first term on the left-hand side is positive. Note that the third term of left hand
side of (3.20) is also positive. Indeed,

/ |u™ 972" T (uy, £ a) dz
{lun|>a}

= / [u™ |92 Ty (u” — a) dz + / [u™ 920" T (U™ + a) dz
{um>a} {un<—a}

= / |u™ |9 2u™ dz + / [u™ |9 20" (u" — a) dz
{um>a+1} {a<umn<a+1}

+ / w920 (u" + a) dz + / w972 (—u") dz. (3.21)
{—a—1l<un<—a} {un<—a—-1}
This gives [, [u™|92u"T (G4 (u™)) > 0, and (3:20) becomes

5((— AU, Ty (Ga(u))) < /Q G"T1(Ga(u™)) dz. (3.22)

since for all (u"(2),u"(§)) € Rq,

[u™(2) = u" ()P (u" (2) — u" () (T1(Ga(u")(2) = T (Ga(u™)(€)) = [u"(2) — u™ ()P
Substituting g™ with its expression, we get

u"(2) —u" ()P

lim dzdé¢
@00 J{(; £)eQxQ:(un(2)un(€))eRa} |7 — E|N+s(z8)p
< lim (6 |fn| + / |u”_1|). (3.23)
a—0o0 {|un|2a} {|u"|2a}

Given that lim meas{|u"| > a} = 0 uniformly in n, it follows that
a—0o0

. ju" (2) = u (©)P~*

dzd& = 0. (3.24)
a0 /(2 ) exQuun (=) un(€)eRa) |2 — EINTSEOP

Step 2. Stability results
The following result is essentials for the study of the convergence of the Euler forward scheme.

Lemma 3.6 Let (u")o<n<n be a renormalized solution of (P,,), then there exists a positive con-
stant C(u, f) independent on M, such that for alln. = 1,--- | M, we have

(i) [l < C, f);
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(ii) 3yl = u' =Ml < O, f);
(i) 33y Tl 0 ) < O ).

)
Proof. To prove (i), we choose ¢ = Ty (u') as test function in (3.11)) to obtain
/ u'Ty(u') dz + (5((—A)§(')ui, Tr(u')) + 5/ a9 2t T, (u?) = / g'Ti(u')dz.  (3.25)
Q Q Q

Since u’ and Ty (u’) have the same sign, so |u’|9~2u T} (u’) > 0. Therefore, it follows that

/uiTk(ui)dzga/ k|fi|+/ Elut™1. (3.26)
Q Q Q
Dividing (3.26) by k£ > 0 leads to
T (Ut ) .
/u’k(u)dzgé/ |fl|+/ lui L. (3.27)
Q k Q Q

= signo(u'). Then, passing to limit in (3:27) and using Fatou’s lemma, we

/mdzga/ |fiy+/ lu'1. (3.28)
Q Q Q

This gives |[u’|1 < §||f||1 + ||u*~!||; and summing from i = 1 to n yields

T 7
Note that lim M
k—0 k

obtain:

[l < N1 £llx + [uolls-

Next, testing (P,) by ¢ = Ts(u* — T (u'~1)) leads to
/ (u' — )Ty’ — Ty(w ™)) dz + 6((—A)Su, Ty (u' — Tp(u'™)))
Q
+ / S|t |9 2wt Ty (v — Ty (u'™1)) dz = / SfiTs(u' — Th(u'™1)) dz. (3.29)
Q Q

For the sequel, let’s divide (3.29) by § > 0. We have
/(ui B ui—l)T(;(ui — T (u'1))
Q

5 dz + /Q«—A)fa(z’g)ui, Ts(u' — Ti(u'™1)))

+ [ W T - T ) ds < 5o (3.30)
Q
Let’s consider the subdivision of €} as follows:
O = {ju' TN < 8 T < k)
Q= {u’ - ksigno(u' V)| < & [u'| > k).

Let Y@ and Z(® denote the second and third terms of the left-hand side of equation li
Then Y () is written as follows:

vy :/‘ | [’ (2) — u' (P2 (w' (2) — u'(§))
Q7 xQ

‘Z _ €|N+s(z,£)p

X (' —u' "N (2) = (u' — w1 (€)] dzdg
|u' (2) = u' ()P
+ /Q A Sz de.

ix0y |2 — EN TSP



ON A VARIABLE-ORDER FRACTIONAL PARABOLIC PROBLEM WITH L' DATA 49

Using the convexity property, we have :

*H il *H i Yo

<
‘5()1)(92) 5()1’(91) -

We have Z() = Jo 0u' 172U Ty (u" — Ti(u'~1)) dz. In Q\ Q, by using the same manner as in

(3.21) leads to Z(® > 0.

In €2f, using the convexity property, we obtain

< 70,

- 6”“1 1HLq Qi) =

7” ZHLq Q)

Now, summing to ¢ = 1,...n in (@]) we obtain:

. T — 1T
Z/ ya 5 (u? 5k( ) dz < Z <||f||L1(QT + [Ju?] WOty T ||UO||Lq Qi )
3.31)

We have (ii) by passing to the limit for & — oo and § — 0 in (3.31).
To end with (iii), we take ¢ = T}, (u’) as test function in (P,) to have

S~ ARl (Tu(u))) + 6 / 2 Ty (T (u)) =

= 5/]” Tie (u dz+/( ) (Th(u?))dz. (3.32)

Since T} (u') has the same sign as u’, the second term on the left-hand side is positive. Adding for
i = 1 to n and using the Lemma@ inequality (3.32) yields

|73 (u Tio(u' (§) P i i
2 [ O st < Uiy + o e

and we deduce (iii). O

Step 3. Renormalized solution
Let define Rothe’s functions us and s forn = 1,..., M and t € [t,_1, t,] by:

t—tn— _ —
us(t) = u” and Gs(t) = — L — ) (3.33)
. N ots u”—un !
with us5(0) = 45(0) = ug. We also define f5(¢, z) = f™(z). Note that T

The discretized problem (P,,) can thus be rewritten as follows:

o, (- .
T (=) s + |uglt™us = f5;  in Qr,

ot
(F5) us=us= 0 in (RV\ Q) x (0,7), (3.34)
us(.,0) = a5(.,0) = ups in RY.

Taking S’ (us)¢p as test function with ¢ € C§°(Q7) and S € WL(R) piecewise C? satisfying
that S” has a compact support, the solution of (Pj) satisfy the following equation:

T
/ /‘9“5 (2 t)dZdt+/0 (=A)2=Sug, S (us)p(z,1))) dt

t
+ /0 (usl™2us, S/ (us)p (2, ) dt = /0 /Q 155/ (us)p (2, ) dz dt. (3.35)

According to the stability results, we deduce the following a priori estimates.
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Lemma 3.7 Letn =1,...,.M,t € [tp_1,t,) and 6 = % Then, the function us and g satisfy the
following estimations:

(i) |lis — uslr1(py) < 3 C(T,u°, f);
95 < O(T 0, f);
LY(Qr)

(iii) ||lusl|zr(p < C(T,u0, f);
(iv) HaéuLl(QT) < C(T7 uO’ f)’

0
(V) HTk(u(S)HLP(O,T;WDS(')’p(Q)) S C(T,U 7f7 k);

(ii) ‘

where C(T,u°, f) and C(T,u", f, k) are positive constants independents of M.
Proof. See [15, Lemma 5] ]
Lemma 3.8 The sequence (iis) converges to u in C([0, T]; L' (12)).

Proof.  We consider two integer 1 and p, then the weak form of (Fy) is written as follows:

T T
A W%—ﬂﬂu@dﬁ+li«—AE“Q%—%—ABM%wﬂﬁ
T
+/ (Juo| " up — |uy?2uy, ) dt:/ (fo— fy)odzdt (3.36)
0 T

forall ¢ € LP(0,T; Wp) N L>(Q7).
Lett < T and considering ¢ = T1(u, — up)y(0,4)- then

/ ((Gg = p)t, Ta(up — up)) dr + / <(_A);J(.)u9 - (—A)Z(')un, T (up — uy)) dr
0 0
[l = g2, T = ) dr

// = fa)Ti(ug = )y 0.0y A2 dT. (3.37)

Since u — (—A)Z(')u and u +— |u|?2u are monotone, we deduce that

(=A) g — (—A)

Sy, T1 (ug — up)) > 0 (3.38)

and
(Jugl™ug — [un| " 2uy, Tt (ug — uy)) > 0. (3.39)

Hence, we obtain the following inequality:

t
[ = e Ty = wyar < [ (= F)Ti = wg) oy dzdt - G40)
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which give

/@1 dz</@1 wog — won)(®) Az 4 1fo — falliiiom = Bom- (34D)
Therefore,

~ _ ~ 2 ~ _ ~
/ '“9“"|dz+/ g =yl 4, /@1(ag—ﬂn)(t)dz
{lig—inl<1} 2 (fig—in>1} 2 Q
< By (3.42)

It follows that

/ |ty — Up|(t)dz = / |ﬂg—ﬂn\(t)dz+/ [ty — Uy|(t) dz
Q {ldo—1iin|<1} {lig—1in|>1}

1
2
(/ |ty — i | (t) dz) meas(Q2)2 + 28,5
{ltp—iin|<1}

< (2meas(ﬂ)5n7n)

N

IN

N|=

+2B40- (3.43)

Since f5 and ugs converge respectively in L*(Q7) and L'(2), we have 8,, — 0 as ¢ and 1) tend
towards 0. Therefore s is a Cauchy sequence in C'([0, T; L1 (£2)). This imply that @5 converges to
win C([0, T); LY(Q)). O

The following lemma is obtained by using Lemma

Lemma 3.9 Let @5 and ug satisfy problem (Ps). Then there exists a function u in L' (Qr) such that
T (u) € LP(0,T} WS(')’p(Q))for all k > 0, and we have:

(i) Gis, ugs converges to u in L' (Qr),

(ii) Ty (us) converges to Ty, (u) weakly in LP(0, T, Wo P(Q)),

(iii) Ty (us) converges to Ty (u) strongly in LP(0,T, W, ()p(Q))

To achieve strong convergence of Ty (us) to Ty (u), Landes regularization in time is employed. To
do this, let’s consider the subsequence (7} (u)), defined by:

(Ty ()2, 1) = /0 DT (u(z, 5)) ds,

(Ty(u)), satisfies the following lemma, whose proof relies on standard arguments:
Lemma 3.10 For all u > 0, we have:
(i) |(Ti(w)u(z,t)] < k(1 — ™) < k;

(ii) (Ti(w)) (=, 1) € LP(0, T, WP (2)) 0 L®(Qr);

iy P01 ) — (1)) (2.0
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Proof. For (i), we have

(Tew)p(z 1) = ‘u [ et as

¢
< u/ "5 Ty (u(z, 5))| ds. (3.44)
0

Since |T)(u(z, s)| < k, we have

t
u/ etk ds
0

< k(l—e M. (3.45)

(T (w)) (2, 1)]

IN

For (ii), let’s first show that (7% (u)),(z, t) belongs to LP(0,T"; Wy). We have

" :
(T ()uer Oll oz = ( / ||<Tk<u>>u<z,t>\|%odt) | (3.46)

Let’s estimate ||(Ty(u)) (2, )| |7y, :

(T (@) (2, )5y, = /QXQ(Tk(U))u(Z,t)(Tk(u))u(g,t)’dedg

|Z _ £|N+s(z,§)p

_ u/t oii(y—1) (/ (T (w)) (2, ) = (Th(w))(&, 9) 7 dzd§> dy
0 QxQ

’z _ é"N-&-s(z,f)p

t
< pu / eI T (u) | By, dy- (3.47)
0

Starting from relation (3.47) , using the integral Minkowski inequality, and (i), equation (3.46)
becomes:

1

T t -
" /0 ( /0 e (t=) dy) P |\ Ty, dt

, 1
| (1= e )P ey, o
0

T
/0 T (a0) [y, (3.48)

IN

(T (@) (2 )] Lo (0,750

IN

IN

and we deduce that (T} (u)),(2,t) belongs to LP(0,T'; Wy) .
Next, we show that (7} (u)),(z,t) belongs to L>(Q7). We have:

N(Te(u)ullze@ry = ess = subreo,rll(Ti(w)pull (o)

t
u/ "I (u(z, 5)) ds
0

= €8s — Supseo7)

L(Q)

IN

t
pess — Supte[o,T]/O "D T (w) || oo () ds

IN

T () || oo (2)-
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Hence, (T (u)),(2,t) € L®(Qr).
To prove (iii), let us set b(t) = ¢ and Q(s,t) = pe >~ Tj(u(z, s)), we have:

) G b(t)
o 0 (" )

) 2Q(s,t db(t
_ /O Qg:’) ds + Q(b(t), t)d(t) (3.49)
= p(Ti(u(z,1)) = (Te(u))u(z,1)) . (3.50)
This concludes the proof of the lemma. ([l

Following Lemma|3.10| and according to [[18, Step 2 of the proof of Theorem 1.1 ], we have:
(Ti(w))y — T (u) strongly in LP(0, T Wg(')’p(ﬂ)),

and from the weak convergence of T} (uy,) to T (u) in LP(0, T'; WOS(')’p(Q)), we conclude:
T (tn) —> Tio(u) strongly in LP(0, T3 WP (Q)).

Now, let ¢ € CH(Qr) with o = 0in CQ x (0,T), p(.,T) = 0in Q and S € W>(R) be such
that suppS’ C [—M, M] for some M > 0. Using remark 2.5] (3.35) can be written as follows:

/ / 8u65' (us cpdzd7'+/ /U5|q 2usS" (ug)p dz dt

U P2 U7 (20 ) = 9(€1) S (ug)(2,1) + S/ (us) (€, 1)
i / /QXQ |z_5|N+s(z,g X 5 dzdgdt

/ / U5 PO () (2, 8) = S ()W 1) | (p(eat) +00) e gy
QxQ i

‘Z— |N+s z,6)p
— / /f(;S/(u(;)gpdzdt,
0 Q

where U%¢ = u(z,t) — u(&,t). We denote

I = / 88: S’ (ug)p dzdr,

Ig = / /|u(;]q2u55’(u5)g0dzdt,

5 U5 S P20 ) (o=, 1) = 0(6,0) | S'(us)(2,) + §'(ug) (v, 1)
. / /QXQ |Z — £|N+s(z,§) 2 dz dg dt,

5 // U PO () (2,0) = S () (€0) | (@) +0(E0) e g,
QxQ : |

2 —¢ |N+s 2,£)p
L = / /f(;S'(u(;)(pdzdt.
0o Jo

The transition to the limit for the sequences [ f , g T ff , 55 is carried out in the same way as in [18|,
Step 3 of the proof of Theorem 1.1]. Thus, we obtain:
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t ~
r — //auS'(u)cpdsz,

B / / POl ) — pl€D) St SWED g, e
QxQ

2 — [N+ 2

ﬁ_ﬁt/Amw%wzwww%x>—mwm»¢wm§w@m®%%

’Z— |N+s(z,§)p
 C— /0 /QfS’(u)gpdzdt.

Let’s now focus on I3. Taking T} (us) as test function in (Pj), we have:

t
//MTk (ugs dsz+/<( A)f,(z’g)u(;,Tk(u(g))dT
0

t t
+/ <yu5\q2U5,Tk(U5)>dT:/ /f(;Tk(u(;)dzdt. (3.51)
0 0 JQ

Since fg((—A)Z(Z’E)u(g, Ty (us)) dT > 0, we have:

t
/ 8;6Tk(u5)dzd7+/ (\U5|Q—2ug,Tk(u5))dT§/ /ngk(u(;)dzdt. (3.52)
0o Ja

For the rest we need fg {|us|?2us, Ty (us)) d < C. To check this, we will go back to the semi-
discretized form. Thus, (3.52)) is equivalent to:

/ W T(u™) dz + 6 / W2 T () <6 / PO (™) + / VT (0™
Q Q Q Q

k:(é/ yf”|+/ "), (3.53)
Q Q

IN

and since u" and T} (u™) have the same sign, we obtain
5/ lu™| 72" Ty, (u") < Ck.
Q

Hence, [, (|us|? 2us, Ty (us)) dr < C.
In addition,

/ lus|?tdzdt = / |U5]q_1dzdt+/ |U5]q_1dzdt
T {lus|<k} {lus|>k}

1

< kq—Q/ |U5\dzdt+/ [ug|9 | Ty (us)| dz dt
{lus|<k} ke Jijus 2k}

< C. (3.54)

Since ug5 converges to u in Q)7,we have

us — u weakly in L (Qr).
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Now, we take T}, (u, — uy,) as a test function in (P5) we have:

T t
/0 (it — ity)es To(uty — )} dt + /0 (~ D)0, — (—A)YEOu, Ty — uy)) dt
t
‘f‘/ <‘U@|q_2u9 - |un|q_2un,Tk(u9 - “77)> dt

0
t
= Q/O (fo— fn)Tk(up — uy) dz dt. (3.55)

Let’s consider ™ and u"" as the semi-discretized forms of u, and u,, respectively. As before, we
obtain:

/ (Ju™|972u™ — ™7 2u™) Ty (u™ — u™) dzdt < k (/ |f™ = f™ dzdt
Q Q
+/ Wt — w7 dz),  (3.56)
Q

which gives
/ (|u”|q_2u" - |um|q_2um)Tk(u" —u™)dzdt — 0 when n,m — oo. (3.57)

In other words,

/ (Juo| " g — |up|?™uy) Ti(up — uy) dzdt — 0. (3.58)
Q
Furthermore,
Uy — up| Tt dzdt = Uy — up|?t dzdt + Uy — up|?t dzdt
0 n 0 n 0 n
T {lug—un|<k} {ug—un>k}
< k:q_z/ |up — upy| dzdt
{lue—unl<k}
1
+- / |1y — up|T | Th (g — uy)| dz dt. (3.59)
{lug—un|>k}
Using Lemma [2.4] we have

1 _ 1 _ _
% /{l - |up — upl? 1’Tk(ug —up)|dzdt < % /{l - (‘“@‘q 2“9 — |up|? 2“77)
Up—Un|Z Up—Un|Z

x signg(ue — uy)| Tk (e — uy)| dzdt
— 0 as g,n — .

Since {us} is a Cauchy sequence in C([0, T]; L*(£2)), according to the previous equation, we have

/ lup — up|?tdzdt — 0 as o, — oco.

T

Therefore, {us} is a Cauchy sequence in L4~ (Q7). Consequently, from the convergence of u; in
Li71(Qr), it follows that

lus|? 2us — |u|?%u strongly in L' (Q7)
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The convergence of I. g is deduced from the previous strong convergence result and the starred weak
convergence of S(us) to S(u).
From all the preceding, taking the limit yields:

T
lim Igz/ /|uq_2u5'(u)gpdzdt.
d—r00 0 (9]

By putting together the convergence results of I f -1 g, we obtain

/ / w(z, t) — u(€, )P (u(z,t) — u(&, ) (S (w)p(z,t) — S (w)p(&, 1)) dz e dt
OxN

|z — E|N+s(z8)p
o[ ez [ s ezt = [ fs etz dzar

' ! (3.60)

Then, in the sense of Definition 3.1} problem (Pr) admits a renormalized solution.

3.2 Uniqueness of renormalized solution

Let’s establish the uniqueness of the renormalized solution for the problem (Pr). Consider two
renormalized solutions, v and v, for the problem. Note that S, € W1>°(R) with supp S’ C
[—e—1,e+1].

For the renormalized solution u, we take S = Se and ¢(z,t) = SL(v)Te(Se(u) — Se(v)) to obtain

Ou / !
Or ES ( )Se(v)Te(Sé(u) - Se(v)) dzdt

T
+ /0 <(—A)Z(Z’5)u— (—A)Z(z’@u, SL(u)SL(v)Te(Se(u) — Se(v))) dt
+ / lu|?2uS! (u)S! (v)To(Se(u) — Sc(v)) dz dt

Qr

— /Q £5!() S (0) T (S () — Se(v)) dz . (3.61)

Similarly, for the renormalized solution v, we take S = Se and ¢(z,t) = S/ (u)Te(Sc(u) — Se(v))
and we also have

ov _, ,
o gSs( w)SL(V)Te(Se(u) — Se(v)) dzdt

T
+/0 (=2);u, S () S{(0)Te(Se(u) = Se(v))) dt
—l—/ 0|97 208! (1) SL(v) T (Se(u) — Se(v)) dz dt
Qr

— /Q £51() S (0) T (S (s) — Se(v)) dz . (3.62)
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We subtract the above equality to have
Ju Ov,, ,
| G = S SIS0 — Si(v) =t

T
+/ (= 2)p5u = (=A) O, S7(u)S7(0)Te(Se(u) — Se(v))) dt

0

+/ (JulT2u — [v]7%0) S (1) S (v)T.(Sc(u) — Sc(v))dzdt = 0. (3.63)
Qr

We will show that the final two terms on the left-hand side of the previous equation are both positive.
This amounts to showing that the term 7¢ (.S (u) —S¢(v)) has the same sign as u— v over the support
of S¢; which is obtained by using the definition of S,. Therefore, employing monotonicity, we infer
that all these terms are positive. The equation transforms into

/ (2 0% §1() ! (0) T (S () — Si(v)) dzdlt < 0. (3.64)
or Ot Ot

Since S/ is bounded and positive, the expressions fQT (%—;‘ — %) S!(u)SL(v)Te(Se(u) —Se(v)) dzdt
and [, (%% — 9UVT,(Se(u) — Se(v)) dz dt have the same sign.

For the remainder, we reason according to the support of Sc. Let us take arbitrary 7 € (0,7"), with
u(.,0) =v(.,0).

ou  Ov
= = 7-)Te(Se(u) = Se(v)) dzdr
/{(ZvT)EQX(Ovt);u(z,‘r),v(z,f)e(_ge)} ((97’ 87-) (Se(u) (v))
:/ (@_@)(U—U)dsz
{(21)€Qx (0,0)u(z,m)0(2,7)E(—e,e)}  OT  OT
-3 / (ulz,) = v(z,1))* dz <0, (3.65)
2 {zeQu(2),v(z)E(—¢€,€)}

which gives u = v.
ou Ov

After calculation, outside (—e, €), the expression of |, Or (E T

to

)Te(Se(u)—Se(v)) dz dr reduces

:l:e/ (@ _ @) dzdr = :l:e/ (u(z,t) —v(z,t))dz. (3.66)
Or ot ot {z€Q,u(2),v(2)€(—e—1,—€)U(e,e+1)}

with +e(u(z,t) — v(z,t)) > 0. Hence, from (3.64) it follows that u(z,t) = v(z,1).
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