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Abstract. In this paper we study and obtain the existence of almost periodic solutions of the fol-
lowing class of stochastic singular difference equations of the form:

AX(k + 1) +BX(k) = f(k,X(k)) ξ(k + 1), k ∈ Z ,

where A and B are singular N ×N random matrices (detA = detB = 0), f : Z×L1(Ω;RN ) →
L1(Ω;RN ) is almost periodic in the first variable uniformly in the second one, and ξ = {ξ(k), k ∈
Z} is an almost periodic random sequence and stochastically independent of f . These results are,
subsequently, applied to find the existence of almost periodic solutions of the second-order stochas-
tic singular difference equations.
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1 Introduction

The study of almost periodicity which generalizes the notion of periodicity is an area of interest
in its own right and has sundry applications in fields like Physics. For a study of almost periodic
sequences we refer the reader to ([2], [3], [4], [5], [7], [8]) and references therein. Almost periodicity
is also of importance in the study of stochastic processes. On the other hand, a first-order difference
equation may be used to describe phenomena that evolve in discrete time when the size of each
generation is a function of the preceding one. However, the real world often refuses to conform to
such a neat mathematical representation. Unpredictable effects may be included in the form of a
sequence of random variables and the result is a stochastic difference equation.
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In Bezandry et al. [3], the notion of mean almost periodicity was introduced and used to study
the existence and uniqueness of mean almost periodic solutions to the stochastic Beverton-Holt
equation.

In this paper, we study the existence of almost periodic solutions to the following class of sys-
tems of stochastic singular difference equations of the form:

AX(k + 1) +BX(k) = f(k,X(k)) ξ(k + 1), k ∈ Z, (1.1)

on RN , where A and B are singular N × N random matrices (detA = detB = 0), f : Z ×
L1(Ω;RN ) → L1(Ω;RN ) is a function to be specified later. We assume that ξ = {ξ(k), k ∈ Z} is
an almost periodic random sequence in R and stochastically independent of f , and E |ξ(k)| < ∞
for all k ∈ Z. We also assume that the random matrices A and B are stochastically independent
and independent of X(0) and ξ(0). This assumption together with eq. (1.1) implies that (A,B) is
stochastically independent of the sequences {X(k)}k∈Z and {ξ(k)}k∈Z.

To the best of our knowledge, the existence of almost periodic solutions to stochastic singular
difference equation in the form (1.1) is an untreated question which constitutes the main motiva-
tion of this paper. Recently, there has been an increasing interest in extending certain classical
results to stochastic cases. This is due to the fact that almost all problems in a real life situation to
which mathematical models are applicable are basically stochastic rather than deterministic. The
deterministic case of eq. (1.1) has been discussed in Diagana-Pennequin [6].

The paper is organized as follows. In Section 2, we recall a basic theory of mean almost periodic
random sequences on Z. In Section 3, we review some results for the existence of mean almost
periodic solutions to some systems of first-order stochastic linear nonsingular difference equations.
In Section 4, we apply the techniques developed in Section 2 and use the results reviewed in Section
3 to find some sufficient conditions for the existence of mean almost periodic solutions to some
class of systems of stochastic singular difference equations. Section 5 is devoted to application
of existence results obtained in Section 4 to find mean almost periodic solutions of some second-
order (and higher-order) stochastic singular difference equation. In the final section, we draw the
conclusions and indicate the future directions of the work.

2 Preliminaries

In this section we recall the basic properties of almost periodic random sequences. To facilitate our
task, we first introduce the notations needed in the sequel.

Let (RN , ∥ · ∥) be the N -dimensional Euclidean space and let (Ω,F ,P) be a complete proba-
bility space. Throughout the rest of the paper, Z denotes the set of all integers. Define L1(Ω;RN )
to be the space of all RN -valued random variables V such that

E ∥V ∥ :=
(∫

Ω
∥V (ω)∥dP(ω)

)
< ∞. (2.1)

It is then routine to check that L1(Ω;RN ) is a Banach space when it is equipped with its natural
norm ∥ · ∥1 defined by ∥V ∥1 := E ∥V ∥ for each V ∈ L1(Ω,RN ).

Let X = {X(k)}k∈Z be a sequence of RN -valued random variables satisfying E ∥X(k)∥ < ∞
for each k ∈ Z. Thus, interchangeably we can, and do, speak of such a sequence as a function,
which goes from Z into L1(Ω;RN ).
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Definition 2.1 X = {X(k)}k∈Z is bounded if there exists an M > 0 such that E ∥X(k)∥ ≤ M for
all k ∈ Z.

Let UB(Z; L1(Ω;RN )) denote the collection of all uniformly bounded L1(Ω;RN )-valued ran-
dom sequences X = {X(k)}k∈Z. It is then easy to check that the space UB(Z; L1(Ω;RN )) is a
Banach space when it is equipped with the norm:

∥X∥∞ = sup
k∈Z

E ∥X(k)∥.

This setting requires the following preliminary definitions.

Definition 2.2 A L1(Ω;RN )-valued random sequence X = {X(k)}k∈Z is said to be Bohr almost
periodic in mean if for each ε > 0 there exists N0(ε) > 0 such that among any N0 consecutive
integers there exists at least an integer p > 0 for which

E ∥X(k + p)−X(k)∥ < ε, ∀ k ∈ Z.

An integer p > 0 with the above-mentioned property is called an ε-almost period for X . The
collection of all RN -valued random sequences X = {X(k)}k∈Z which are Bohr almost periodic in
mean is then denoted by AP (Z;L1(Ω;RN )).

Definition 2.3 A L1(Ω;RN )-valued random sequence X = {X(k)}k∈Z is said to be almost peri-
odic in probability if for each ε > 0, and η > 0 there exists N0(ε, η) > 0 such that among any N0

consecutive integers there exists at least an integer p > 0 for which

P
{
ω ∈ Ω : ∥X(ω, k + p)−X(ω, k)∥ > ε

}
< η, ∀ k ∈ Z.

Theorem 2.4 If X is almost periodic in mean, then it is almost periodic in probability and there
also exists a constant M > 0 such that E∥X(k)∥ ≤ M for all k ∈ Z. Conversely, if X is almost
periodic in probability and the sequence

{
∥X(k)∥, k ∈ Z

}
is uniformly integrable, then X is

almost periodic in mean.

Proof. The proof is straightforward and omitted. □

Definition 2.5 A function F : Z × L1(Ω;RN ) 7→ L1(Ω;RN ), (k, U) 7→ F (k, U) is said to be
almost periodic in mean in k ∈ Z uniformly in U ∈ L1(Ω;RN ) if for any ε > 0, there exists
a positive integer n0(ε) such that among any n0(ε) consecutive integers there exists at least an
integer p with the following property

E ∥F (k + p, U)− F (k, U)∥ < ε

for each random variable U ∈ L1(Ω;RN ) and k ∈ Z.

We now state the following composition result.
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Theorem 2.6 [2] Let F : Z× L1(Ω;RN ) 7→ L1(Ω;RN ), (k, U) 7→ F (k, U) be almost periodic in
mean in k ∈ Z uniformly in U ∈ L1(Ω;RN ). If in addition, F is Lipschitz in U ∈ L1(Ω;RN ) (that
is, there exists L > 0 such that

E ∥F (k, U)− F (k, V )∥ ≤ L E ∥U − V ∥ ∀ U, V ∈ L1(Ω;RN ), k ∈ Z)

then for any almost periodic random sequence X = {X(k)}k∈Z , then the L1(Ω;RN )-valued ran-
dom sequence Y (k) = F (k,X(k)) is almost periodic in mean.

The following results will play a key role in the study of almost periodic solutions of linear and
nonlinear stochastic difference equations.

Theorem 2.7 Let A be an N × N random matrix and X : Z → L1(Ω;RN ) be almost periodic
random sequence. Assume that A and X are independent. Then {AX(k), k ∈ Z} is almost periodic
in mean.

Remark 2.8 If A is a random matrix, then E ∥A∥ < ∞. To see this, note that since A is bounded
almost surely, it implies that it is essentially bounded. That is, there exists an M > 0 such that
P (∥A∥ > M) = 0. The latter implies that P(∥A∥ > x) = 0 for all x > M . We then have

E ∥A∥ =

∫ ∞

0
P (∥A∥ > x) dx

=

∫ M

0
P (∥A∥ > x) dx+

∫ ∞

M
P (∥A∥ > x) dx

=

∫ M

0
P (∥A∥ > x) dx < ∞.

Proof. (Theorem 2.7) First, note that A is bounded almost surely. It follows from Remark 2.8 that
E ∥A∥ < ∞. Now, fix ε > 0. By assumption, we can then choose an N0(ε) > 0 such that among
any N0 consecutive integers there exists at least an integer p > 0 for which

E ∥X(k + p)−X(k)∥ <
ε

E ∥A∥
.

Using the independence, we have

E ∥AX(k + p)−AX(k)∥ ≤ E ∥A∥ E ∥X(k + p)−X(k)∥ < ε ,

for each k ∈ Z. Therefore AX is almost periodic in mean. □

Theorem 2.9 Let α : Z → C be an almost periodic deterministic sequence and X : Z →
L1(Ω;RN ) be a mean almost periodic random sequence. Then αX : Z → L1(Ω;RN ) defined
by (αX)(k) = α(k)X(k), k ∈ Z is almost periodic in mean.

Proof. Fix ε > 0. By assumption, we can then choose an N0(ε) > 0 such that among any N0

consecutive integers there exists at least an integer p > 0 for which

(i) E ∥X(k + p)−X(k)∥ < ε
2M1

,
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(ii) |α(k + p)− α(k)| < ε
2M2

,

for each k ∈ Z and where M1 = supn∈Z |α(n)| and M2 = supn∈Z E ∥X(n)∥.

We then have

E ∥α(k + p)X(k + p)− α(k)X(k)∥
≤ |α(k + p)|E ∥X(k + p)−X(k)∥+ |α(k + p)− α(k)|E ∥X(k)∥
≤ M1 E ∥X(k + p)−X(k)∥+M2|α(k + p)− α(k)| < ε .

Therefore αX is almost periodic in mean. □

More generally, we have

Theorem 2.10 Let X : Z → L1(Ω;C) be mean almost periodic random sequence and Y : Z →
L1(Ω;RN ) be mean almost periodic random sequence. Assume that X and Y are stochastically
independent. Then XY : Z → L1(Ω;RN ) defined by (XY )(k) = X(k)Y (k), k ∈ Z is almost
periodic in mean.

Proof. Fix ε > 0. By assumption, we can then choose an N0(ε) > 0 such that among any N0

consecutive integers there exists at least an integer p > 0 for which

(i) E ∥Y (k + p)− Y (k)∥ < ε
2M1

,

(ii) E ∥X(k + p)−X(k)∥ < ε
2M2

,

for each k ∈ Z and where M1 = supn∈Z E ∥X(n)∥ and M2 = supn∈Z E ∥Y (n)|.

Using that fact that X and Y are stochastically independent,we then have

E ∥X(k + p)Y (k + p)−X(k)Y (k)∥
≤ E ∥X(k + p)∥E ∥Y (k + p)− Y (k)∥+ E ∥X(k + p)−X(k)∥E ∥Y (k)∥
≤ M1 E ∥Y (k + p)− Y (k)∥+M2 E ∥X(k + p)−X(k)∥ < ε .

Therefore, XY is almost periodic in mean. □

Theorem 2.11 Let b : Z+ → L1(Ω;C) be a summable random sequence, i.e
∑∞

l=0 E |b(l)| < ∞.
Then for any almost periodic random sequence X : Z → L1(Ω;RN ) and independent of b, the
random sequence W (·) defined by

W (k) =
k∑

l=−∞
b(k − l)X(l), k ∈ Z

is also almost periodic in mean.

Proof. Fix ε > 0. By assumption, we can then choose an N0(ε) > 0 such that among any N0

consecutive integers there exists at least an integer p > 0 for which

E ∥X(k + p)−X(k)∥ < ε/M
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with M =
∑∞

l=0 E |b(l)| < ∞.

Define W (k) =
∑k

l=−∞ b(k− l)X(l). Using the independence of b and X , the summability of
b, and the periodicity of X , we then have

E ∥W (k + p)−W (k)∥ = E
∥∥∥ k+p∑
l=−∞

b(k + p− l)X(l)−
k∑

l=−∞
b(k − l)X(l)

∥∥∥
= E

∥∥∥ k∑
l=−∞

b(k − l)[X(l + p)−X(l)]
∥∥∥

≤
k∑

l=−∞
E |b(k − l)|E ∥X(l + p)−X(l)∥

≤
( ∞∑
j=0

E |b(j)|
)
· sup
l∈Z

E ∥X(l + p)−X(l)∥ < M · ε

M
= ε .

Hence,
sup
k∈Z

E ∥W (k + p)−W (k)∥ < ε .
□

3 Almost Periodic Solutions of Nonsingular Stochastic Difference
Equations

In this section we review the existence of almost periodic solutions of the following systems of
nonsingular first-order stochastic linear difference equations of type

X(ω, k + 1) = A(ω)X(ω, k) + g(ω, k) ξ(ω, k + 1) , (3.1)

where A is an N ×N square random matrix, g : Ω × Z → L1(Ω,RN ), and ξ = {ξ(k), k ∈ Z} is
an almost periodic random sequence in R. We assume that ξ is stochastically independent of g and
E |ξ(k)| < ∞ for all k ∈ Z. We also assume that the random matrix A is stochastically independent
of X(0) and ξ(0).

We begin with the scalar case. We denote by S1 = {z ∈ C : |z| = 1}.

Theorem 3.1 [1] Suppose that A := λ ∈ C \ S1. If g : Ω× Z → L1(Ω;RN ) is almost periodic in
mean, then there is a mean almost periodic solution of eq. (3.1) given by

(i) X(k) =

k∑
l=−∞

λk−lg(l − 1) ξ(l) in case |λ| < 1;

(ii) X(k) = −
∞∑
l=k

λk−l−1g(l) ξ(l + 1) in case |λ| > 1.

Proof. Our proof follows closely that of ([1]). Since we are in stochastic case and for sake of
clarity, we reproduce it here with slight modifications.
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To prove (i), define Y (k) = λkξ(k) and since |λ| < 1 almost surely and using independence, we
have

E
∞∑
k=1

|Y (k)| = sup
j∈Z

E |ξ(j)| E
∣∣∣∣ 1

1− |λ|

∣∣∣∣ < ∞ .

It follows from Theorem 2.11 that X is almost periodic in mean.

To prove (ii), define Y (k) = λ−kξ(k) and since |λ| > 1 almost surely, we have

E
∞∑
l=0

|Y (l)| = sup
j∈Z

E |ξ(j)|E
∣∣∣∣ 1

|λ| − 1

∣∣∣∣ < ∞ .

It follows from Theorem 2.11 that X is almost periodic in mean. □

As a consequence of the previous theorem, we obtain the following result in case of a nonsingular
random matrix A.

Theorem 3.2 [1] Suppose A is a constant N × N nonsingular random matrix with eigenvalues
λ /∈ S1. Then, if g is almost periodic in mean, there is a mean almost periodic solution of eq. (3.1).

Proof. It is well known that there exists a nonsingular matrix S such that S−1AS = B is an upper
triangular matrix. Setting X(k) = S Y (k), eq. (3.1) becomes

Y (k + 1) = B Y (k) + S−1 g(k) ξ(k + 1), k ∈ Z. (3.2)

Obviously, eq. (3.2) is the same type as eq. (3.1). One can easily show using Theorem 2.7 and
Theorem 2.10 that S−1 g(k) ξ(k + 1) is almost periodic in mean. The general case of an arbitrary
random matrix A can now be reduced to the scalar case. Indeed, the last equation of eq. (3.2) is of
the form

Z(k + 1) = λZ(k) + C(k) ξ(k + 1), k ∈ Z (3.3)

where λ is a random element of C and C(k) ξ(k + 1) is a mean almost periodic random sequence.
Hence, all we need to show is that any solution Z(k) of eq. (3.3) is almost periodic in mean. But
this is the content of Theorem 3.1. It then implies that the N -th component YN (k) of the solution
Y (k) of eq. (3.2) is almost periodic in mean. Then substituting YN (k) in the (N − 1)th equation
of eq. (3.2) we obtain again an equation of the form eq. (3.3) for YN−1(k); and so on. The proof is
complete. □

4 Almost Periodic Solutions of Stochastic Singular Difference Equa-
tions

4.1 Linear case

We are first interested in the case when the forcing term f does not depend on X . Namely, we study
the existence of mean almost periodic solutions for the singular stochastic difference equation

AX(k + 1) +BX(k) = C(k) ξ(k + 1), k ∈ Z (4.1)
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where A,B are N × N square random matrices satisfying detA = detB = 0 and C : Z →
L1(Ω;RN ) is a mean almost periodic sequence and ξ is as before.

Define
ρ(A,B) = {λ ∈ C : λA+B is invertible} .

We now state one of our main results.

Theorem 4.1 If S1 ⊂ ρ(A,B), then eq. (4.1) has a unique mean almost periodic solution.

Proof. We borrow Diagana-Pennequin’s proof [6] and adapt it in stochastic case.

We set

Â = (A+B)−1A, B̂ = (A+B)−1B, and Ĉ(k) = (A+B)−1C(k), k ∈ Z .

We can easily show that eq. (4.1) is equivalent to

ÂX(k + 1) + B̂ X(k) = Ĉ(k) ξ(k + 1), k ∈ Z . (4.2)

Using the identity Â+B̂ = IN , we deduce that ÂB̂ = B̂Â and consequently, one can find common
basis of trigonalization for Â and B̂. Thus, there exists an invertible matrix T such that

Â = T−1

[
A1 0
0 A2

]
T

and

B̂ = T−1

[
B1 0
0 B2

]
T

where A1, B2 are invertible and A2, B1 are nilpotent.

Noting Ai +Bi is the identity matrix of the same size as Ai and letting

TX(k) =

[
W (k)
V (k)

]
and

TĈ(k) =

[
α(k)
β(k)

]
where {α(k)} and {β(k)} are mean almost periodic random sequences, then eq. (4.2) can be written
as follows: {

A1W (k + 1) +B1W (k) = α(k) ξ(k + 1)

A2 V (k + 1) +B2 V (k) = β(k) ξ(k + 1) .
(4.3)

Using the fact that both A1 and B2 are invertible, one can show that eq. (4.3) is equivalent to{
W (k + 1) +A−1

1 B1W (k) = A−1
1 α(k) ξ(k + 1)

B−1
2 A2 V (k + 1) + V (k) = B−1

2 β(k) ξ(k + 1) .
(4.4)

Now let us focus on the first equations appearing in eq. (4.4).

W (k + 1)− (−A−1
1 B1)W (k) = A−1

1 α(k) ξ(k + 1), k ∈ Z . (4.5)
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Note that Theorem 2.7 and Theorem 2.10 imply that {A−1
1 α(k) ξ(k + 1)}k∈Z is almost periodic in

mean. We shall now prove that −A−1
1 B1 has no eigenvalue that belongs to S1. From that we will

deduce that eq. (4.5) has a unique mean almost periodic solution. For that, let us consider a nonzero
eigenvalue λ of −A−1

1 B1. Let U ̸= 0. We have −A−1
1 B1 U = λU . Consequently

(λA+B)U = 0,

from which we deduce

(λÂ+ B̂)T−1

[
U
0

]
= 0.

Since

T−1

[
U
0

]
̸= 0,

it follows that λÂ+ B̂ is not invertible and so is the case for λA+B. With the assumptions made,
this proves that |λ| ≠ 1. Consequently, we deduce that there exists a unique mean almost periodic
solution {W (k)}k∈Z to the first equation of eq. (4.4).

For the second equation appearing in eq. (4.4), setting Y (k) = V (−k), it becomes by changing
k in −k,

Y (k) +B−1
2 A2 Y (k − 1) = B−1

2 β(−k) ξ(−(k − 1)). (4.6)

Using similar arguments as before, we can prove that eq. (4.6) has a unique mean almost periodic
solution {Y (k)}k∈Z, so the second equation appearing in eq. (4.4) has also a unique mean almost
periodic solution {V (k)}k∈Z. Since eq. (4.4) and eq. (4.1) are equivalent, we obtain existence and
uniqueness of a mean almost periodic solution of eq. (4.1). □

4.2 Nonlinear case

AX(k + 1) +BX(k) = f(k,X(k)) ξ(k + 1), k ∈ Z (4.7)

where A,B are N × N square random matrices satisfying detA = detB = 0 and f : Z ×
L1(Ω,RN ) → L1(Ω,RN ) is a mean almost periodic sequence and ξ is as before.

Our setting requires the following assumption.

(H) The function (k,W ) → f(k,W ) is almost periodic in mean in k ∈ Z uniformly in W in
L1(Ω;O) where O ⊂ RN is an arbitrary bounded subset. In addition, we assume that there exists a
constant L > 0 such that

E ∥f(k, U)− f(k, V )∥ ≤ L · E ∥U − V ∥, ∀ U, V ∈ L1(Ω,O), k ∈ Z .

Theorem 4.2 Suppose that S1 ⊂ ρ(A,B) and that (H) holds. Then for sufficiently small L,
eq. (4.7) has a unique mean almost periodic solution.

Proof. Letting C(k) = f(k,X(k)) and using Theorem 2.6 together with similar arguments pre-
sented above, one can easily obtain the existence and uniqueness of a mean almost periodic solution
to eq. (4.7). □
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Example 4.3 In this example, the Euclidean space R2 is equipped with the norm ∥ · ∥, which is
defined for all u = (u1, u2) by ∥u∥ = |u1|+ |u2|.

Let α, β be random variables taking their values in (0, 1), and let ηk = (η1k, η
2
k), k ∈ Z, be

a random almost periodic (in mean) sequence in R2 independent of X and ξ(k), k ∈ Z defined in
eq. (4.7). Define

A =

[
α 1
α 1

]
, B =

[
β β
0 0

]
,

and F : Z× L1(Ω,O) → R2:

F (k,X) =

[
η1k tan−1X1

η2k tan−1X2

]
,

where O =
{
y ∈ R2 : ∥y∥ ≤ δ

}
for any δ > 0 and X = (X1, X2)

T . Then, by Theorem 4.2,
eq. (4.7) has a unique almost periodic (in mean) solution.

Indeed, we note that detA = detB = 0 and let us verify that F satisfies Assumption (H). Using
the independence and the fact that tan−1(·) is a Lipschitz function, we can write

E ∥F (k,X)− F (k, Y )∥ = E |η1k| E | tan−1X1 − tan−1 Y1|
+ E |η2k| E | tan−1X2 − tan−1 Y2|

≤ E ∥ηk∥ [E |X1 − Y1|+ E |X2 − Y2|]
≤ E ∥ηk∥ E ∥X − Y ∥ .

5 Almost Periodic Solutions of Stochastic Second-Order Singular Dif-
ference Equations

In this section, we study the existence of mean almost periodic solution to singular stochastic
second-order difference equation of type:

AX(k + 2) +BX(k + 1) + C X(k) = f(k,X(k)) ξ(k + 1), k ∈ Z (5.1)

where A,B,C are N × N square random matrices satisfying detA = detB = detC = 0 and
f : Z × L1(Ω,RN ) → L1(Ω,RN ) is almost periodic in mean in the first variable uniformly in the
second variable and ξ is as before. In order to study the existence of mean almost periodic solution
to eq. (5.1), we make extensive use of the results obtained in the previous section.

For that, we rewrite eq. (5.1) as follows

LW (k + 1) +M W (k) = F (k,W (k)) ξ(k + 1), k ∈ Z (5.2)

where

L =

[
B A
I 0

]
, M =

[
C 0
0 −I

]
, F =

[
f
0

]
, andW(k) =

[
X(k)

X(k + 1)

]
with 0 and I being the N ×N zero and identity matrices.

Lemma 5.1 λL+M is invertible if and only if λ2A+ λB + C is invertible.
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Proof. The N ×N square matrix λL+M is given by

λL+M =

[
λB + C λA

λI −I

]
.

Consequently, solving

(λL+M)

[
U
V

]
=

[
X
Y

]
yields (λB + C)U + λAV = X and λU − V = Y . If λ2A + λB + C is invertible, then from
V = λU − Y it follows that (λ2A+ λB + C)U = λAY +X which yields

U = [λ2A+ λB + C]−1(λAY +X), V = [λ2A+ λB + C]−1(X + λAY )− Y.

The latter implies that λL+M is invertible.

The converse can be proven using similar arguments as before and hence is omitted. □

Set
ρ(A,B,C) =

{
λ ∈ C : λ2A+ λB + C is invertible

}
.

Using Lemma 5.1 and Theorem 4.2, we obtain the following result:

Theorem 5.2 Suppose S1 ⊂ ρ(A,B,C) and that (H) holds. Then for sufficiently small L, eq. (5.1)
has a unique mean almost periodic solution.

More generally, let q ≥ 2 be an integer. The previous techniques can be easily used to study
the existence of almost periodic solutions to higher order singular systems of stochastic difference
equation of type

AqX(k+ q) +Aq−1X(k+ q− 2)+ · · ·+A1X(k+1)+A0X(k) = f(k,X(k)) ξ(k+1), (5.3)

where Al for l = 0, 1, 2, · · · , q are N × N square random matrices satisfying detAl = 0 for
l = 0, 1, 2, · · · , q and f : Z × L1(Ω;RN ) → L1(Ω;RN ) is almost periodic in mean in the first
variable uniformly in the second one and ξ is as before.
Setting

ρ(Aq, Aq−1, · · · , A0) :=
{
λ ∈ C :

λqAq + λq−1Aq−1 + λq−2Aq−2 + · · ·+ λ1A1 +A0 is invertible
}
,

the existence result can be formulated as follows.

Theorem 5.3 Suppose S1 ⊂ ρ(Aq, Aq−1, · · · , A0) and (H) holds. Then for sufficiently small L,
eq. (5.3) has a unique mean almost periodic solution.

6 Conclusion and Future Directions

The aim of the present paper is to extend the results of Diagana-Pennequin [6] to the stochastic
case. Our study showed how to find solutions for stochastic difference equations with singular con-
stant coefficients in the case that the random coefficients of matrices A and B are square, under the
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conditions that detA = detB = 0. The applications of such equations can be found in many prac-
tical areas, such as the Leontiev dynamic model of multisector economy, singular discrete optimal
control problems and so forth.

The nonautonomous stochastic singular form of eq. (1.1) is delicate and remains to be investi-
gated. It deserves our great attention.

Acknowledgement: The author would like to thank the anonymous referees for their valuable
comments and suggestions that improved the exposition of the paper.
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