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1 Introduction

For any N > 2, 1 < p < ∞, and an arbitrary bounded open subset Ω of RN containing the origin
0, we study in this paper the following nonlinear and noncoercive elliptic Dirichlet problem{

−div(b(x, v,∇v) + B(x, v)) = λ |v|s−1v
|x|p + f in Ω,

v = 0 on ∂Ω,
(1.1)

where b : Ω×R×RN 7−→ RN is a Carathéodory function which satisfies the classical Leray–Lions
assumptions:

b(x, η, ξ) · ξ ≥ α|ξ|p, (1.2)

|b(x, η, ξ)| ≤ C(L(x) + |η|p−1 + |ξ|p−1), (1.3)

(b(x, η, ξ)− b(x, η, ξ′))·(ξ − ξ′) ≥ 0, (1.4)

for almost every x ∈ Ω, for every (η, ξ) ∈ R × RN , α and C are positive real numbers, and
L ∈ Lp′(Ω), with p′ =

p

p− 1
.

B : Ω× R 7−→ RN is a Carathéodory function such that

|B(x, η)| ≤ c0(x)|η|γ with c0(x) ∈ L
N

p−1 (Ω) and 0 ≤ γ ≤ p− 1. (1.5)

f ∈ L1(Ω), 0 ≤ s < (p− 1)
(
1− p

N

)
and λ ≥ 0. (1.6)

Numerous researchers, as highlighted in papers like [1,2,14,15], have delved into comprehend-
ing the impact of the Hardy potential on the existence and nonexistence of solutions.

Notably, in [8], authors studied both the existence and the summability of solutions for the given
problem −div(M(x)∇v) = λ

v

|x|2
+ f in Ω,

v = 0 on ∂Ω.
(1.7)

Here M : Ω → RN2
is a bounded and measurable matrix, i.e., there exist α, β > 0 such that

α |ξ|2 ≤M(x)ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ξ ∈ RN ,

λ ≥ 0, and the data f belongs to Lm(Ω) with m > 1. More in detail the authors, in the paper
we quoted before, proved that the problem (1.7) has no weak solution when the data f belongs to
L1(Ω). Moreover, the weak solution of the problem (1.7) is unbounded even if m > N

2 . Related
results, for problems involving the Hardy potential, can be seen in the book [15] and [14], in a more
general framework. Furthermore, for problems involving a lower order term with natural growth
are covered extensively in the literature (see, for instance, [7, 16] and the references therein).

M. F. Betta, O. Guibé, and A. Mercaldo studied the following nonlinear elliptic Neumann prob-
lem [5]: {

−div(b(x, v,∇v) + B(x, v)) = f in Ω,

(b(x, v,∇v) + B(x, v)) · n = 0 on ∂Ω.
(1.8)
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Their research has compellingly demonstrated the existence of renormalized solutions to the above
problem. Furthermore, their approach provides a means to prove the existence of solutions for an
operator containing a zero-order term and to deduce the stability of renormalized solutions. Inter-
ested readers are encouraged to explore the details in the cited references for a more comprehensive
understanding.

Moving on, let’s address the Dirichlet problems brought up by the nonlinear convection term.
When f is a Radon measure with bounded variation defined on Ω, T. Del Vecchio and M.R. Poster-
aro demonstrated, using the symmetrization method, the existence of weak solutions for a class of
nonlinear and noncoercive problem involving a lower order term, whose prototype is{

−div(|∇v|p−2∇v + c0(x)|v|γ) + d(x)|∇v|µ = f in Ω,

v = 0 on ∂Ω.
(1.9)

In this context, the functions d(x) and c0(x) belong to LN (Ω) and L
N

p−1 (Ω) respectively. Moreover,
in the case when λ = µ = p− 1 they supposed that ∥d∥LN (Ω) or ∥c0∥

L
N

p−1 (Ω)
is small enough.

In another notable study [12], O. Guibé and A. Mercaldo studied the problem (1.9) in the general
framework of Lorentz spaces. The authors successfully demonstrated the existence of renormalized
solutions under the conditions 0 ≤ γ ≤ p− 1 and 0 ≤ µ ≤ p− 1.

In the present paper, our main contribution is the incorporation of both the nonlinear convection
and the Hardy potential terms in the same equation and to give an existence result of renormalized
solutions.

Proving the existence of renormalized solutions for the nonlinear noncoercive elliptic problem
(1.1) with data in L1(Ω) presents several obstacles.

Firstly, since no assumed smallness hypothesis on ∥c0∥
L

N
p−1 (Ω)

, the operator

v 7−→ − div (b(x, v,∇v) + B(x, v))

is not, in general, coercive. Secondly, the lack of compactness, mainly attributed to the impact of the
singular term (the Hardy potential), generally obstructs the existence of a solution. This means that
we will be dealing with all the difficulties previously described, at the same time. To our knowledge,
the analysis of the combined effect of the convection term satisfies only a growth property and the
Hardy potential has not been previously explored.

The paper is organized as follows. In Section 2, we provide some preliminaries on the definitions
of the Lorentz-Marcinkiewicz space and the notion of a renormalized solution. Section 3 will be
devoted to give the proof of the existence result.

2 Definitions of renormalized solutions

Before giving the definition of such a notion of solution, we need a few notations and definitions.
For k > 0, denote by Tk : R → R the usual truncation at level k, that is

Tk(l) = min{k,max{−k, l}}.
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We recall the basic tools on the Lorentz-Marcinkiewicz space that we need in our study. For 1 <
q < ∞ and 1 < s < ∞ the Lorentz space Lq,s(Ω) is the space of Lebesgue measurable functions
such that

∥f∥Lq,s(Ω) =

(∫ meas(Ω)

0

[
f∗(l)l

1
q

]s dl
l

)1/s

< +∞.

Here f∗ denotes the decreasing rearrangement of f , i.e., the decreasing function defined by

f∗(l) = inf{s ≥ 0 : meas{x ∈ Ω : |f(x)| > s} < l} t ∈ [0,meas(Ω)].

We recall also that, for any 1 ≤ r < +∞ the Lorentz-Marcinkiewicz space Lr,∞(Ω) is the set of
measurable functions f on Ω such that

∥f∥Lr,∞(Ω) = sup
l
l(meas{x ∈ Ω : |f | > l})

1
r < +∞, (2.1)

endowed with the norm defined by (2.1). Moreover for any p and q such that
1 ≤ q < r < p ≤ +∞, the following chain of continuous inclusions in Lebesgue spaces holds true

Lp(Ω) ⊂ Lr,∞(Ω) ⊂ Lq(Ω) ⊂ L1(Ω). (2.2)

For references about rearrangements see, for example, [9]. The following technical lemma will be
useful in the sequel.

Lemma 2.1 Assume that Ω is an open subset of RN with finite measure and that 1 < p < N . Let
u be a measurable function satisfying Tk(v) ∈W 1,p

0 (Ω), for every positive k, and such that∫
Ω
|∇Tk(v)|p dx ≤Mk + L, ∀k > 0,

where L and M are given constants. Then, there exist a constant C which depending only on N
and p such that

∥|v|p−1∥
L

N
N−p

,∞
(Ω)

≤ C(N, p)
[
M + (meas(Ω))

1
pL

1
p′
]
, (2.3)

and
∥|∇v|p−1∥

L
N

N−1
,∞

(Ω)
≤ C(N, p)

[
M + (meas(Ω))

1
p∗L

1
p′
]
, (2.4)

where p∗ =
Np

N − p
.

Proof. See [12]. □

Consider a measurable function v : Ω → R that is finite almost everywhere and satisfies Tk(v) ∈
W 1,p

0 (Ω) for all k > 0. According to the uniqueness result found in [4], Lemma 2.1, there exists a
unique measurable function G : Ω → RN such that:

∇Tk(v) = Gχ{|v|≤k} a.e. in Ω, for all k > 0. (2.5)

We define the gradient ∇v of function v to be this function G and represent it as ∇v = G. It is
important to note that this definition differs from the definition of the distributional gradient. How-
ever, if G ∈

(
L1

loc(Ω)
)N , then v ∈ W 1,1

loc (Ω), and in this case, G corresponds to the distributional
gradient of v.
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Conversely, there are examples of functionsG /∈ L1
loc(Ω) (resulting in the distributional gradient

of G being undefined) for which the gradient ∇v is defined in the previous sense.

We are now in a position to introduce the notion of renormalized solutions.

Definition 2.1 We say that a function v : Ω → R is a renormalized solution of Problem (1.1) if it
satisfies the following conditions:

v is measurable and finite almost everywhere in Ω, (2.6)

Tk(v) ∈W 1,p
0 (Ω) ∀k > 0, (2.7)

lim
n→+∞

1

n

∫
Ω
|∇Tn(v)|p dx = 0, (2.8)

and if, for any h ∈W 1,∞(R) such that supp(h) is compact we have∫
Ω
b(x, v,∇v)·∇vh′(v)φdx+

∫
Ω
b(x, v,∇v)·∇φh(v) dx

+

∫
Ω
B(x, v)·∇vh′(v)φdx+

∫
Ω
B(x, v)·∇φh(v) dx

= λ

∫
Ω

|v|s−1v

|x|p
h(v)φdx+

∫
Ω
fh(v)φdx ∀φ ∈W 1,p

0 (Ω) ∩ L∞(Ω).

(2.9)

In the following we will indicate by Ci any positive constant which depends only on data and whose
values may change from line to line.

Remark 2.1 In (2.9), every term is well-defined. It is worth noting that growth assumption (1.5) on
the function B, along with the conditions (2.6)–(2.8), allows us to establish that any renormalized
solution v satisfies

lim
n→+∞

1

n

∫
Ω
|B(x, v)||∇Tn(v)| dx = 0. (2.10)

To prove this, we first observe that the growth assumption (1.5) implies that∫
Ω
|B(x, v)||∇Tn(v)|dx ≤

∫
Ω
c0(x)|Tn(v))|γ | ∇Tn(v)|dx.

By employing Hölder’s and Sobolev’s inequalities, we can deduce that∫
Ω
c0(x)|Tn(v)|γ |∇Tn(v)| dx ≤ (meas(Ω))

p−1−γ
p∗ ∥c0∥

L
N

p−1 (Ω)
∥Tn(v)∥γLp∗ (Ω)

∥∇Tn(v)∥Lp(Ω)

≤Sγ (meas(Ω))
p−1−γ

p∗ ∥c0∥
L

N
p−1 (Ω)

∥∇Tn(v)∥γ+1
Lp(Ω) .

Therefore Young inequality leads to

1

n

∫
Ω
c0(x)|Tn(v)|γ |∇Tn(v)|dx ≤ C1

n
∥c0∥

L
N

p−1 (Ω)
+

C2
n

∥∇Tn(v)∥pLp(Ω) . (2.11)

By combining (2.11) and (2.8), we can derive (2.10).
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Remark 2.2 We point out that the term

λ

∫
Ω

|v|s−1v

|x|p
h(v)φdx

is well-defined. Indeed, let n > 0 such that supp(h) ⊂ [−2n, 2n]. We have

λ

∫
Ω

|v|s−1v

|x|p
h(v)φdx = λ

∫
Ω

|T2n(v)|s−1T2n(v)
|x|p

h(v)φdx.

By applying Hölder’s and Hardy’s inequalities, we can conclude that:

λ

∫
Ω

|T2n(v)|s

|x|p
|h(v)φ| dx ≤ 2λn∥φ∥L∞(Ω)

(∫
Ω

|T2n(v)|p

|x|p
dx

) s
p
(∫

Ω

dx

|x|p

) p−s
p

≤ 2λn∥φ∥L∞(Ω)H
s
p

(∫
Ω
|∇T2n(v)|p dx

) s
p
(∫

Ω

dx

|x|p

) p−s
p

.

Ultimately, by (2.7) and since
1

|x|p
∈ L1(Ω), it results

|v|s−1v

|x|p
h(v)φ ∈ L1(Ω). (2.12)

3 Existence

This section is devoted to establish the following existence theorem.

Theorem 3.1 Under assumptions (1.2) − (1.6) there exists a renormalized solution of equation
(1.1).

Proof. We split the proof into four steps.

First Step: A priori estimates

For ε > 0, let us define
Bε(x, l) = B(x, T 1

ε
(l)) ∀l ∈ R.

f ε = T 1
ε
(f). (3.1)

Let vε ∈W 1,p
0 (Ω) be a weak solution to the following approximate problem−div(b(x, vε,∇vε) + Bε(x, vε)) = λ

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
+ f ε inΩ,

vε = 0 on ∂Ω.
(3.2)

The existence of a solution vε of (3.2) is a well-known result (see, e.g., [13]), namely for all φ ∈
W 1,p

0 (Ω) ∩ L∞(Ω) it satisfies∫
Ω
b(x, vε,∇vε)·∇φdx+

∫
Ω
Bε(x, vε)·∇φdx = λ

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
φdx+

∫
Ω
f εφdx.

(3.3)

Now we give the following lemma which gives some a priori estimates results on vε and ∇vε.
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Lemma 3.1 Assume that the assumptions (1.2) − (1.6) hold. Then, there exist two positive con-
stants c1 and c2 depend only onN, p, α,meas(Ω), ∥c0∥

L
N

p−1 (Ω)
such that every weak solution of the

problem (3.3) satisfies
∥|vε|p−1∥

L
N

N−p
,∞

(Ω)
≤ c1, (3.4)

∥|∇vε|p−1∥
L

N
N−1

,∞
(Ω)

≤ c2. (3.5)

Proof. We first establish an estimate of the level sets of the functions |vε|. In the second step we
prove that Tk(vε) is bounded in W 1,p

0 (Ω).

Step 1: vε is finite a.e. in Ω.

Let us consider the real valued function ψp : R → R defined by

ψp(l) =

∫ l

0

dr(
β

1
p−1
ε + |r|

)p ,

where βε > 1 will be suitable chosen. We use φ = ψp(vε) ∈W 1,p(Ω) ∩ L∞(Ω) in (3.3), we get∫
Ω
b(x, vε,∇vε)·∇vεψ′

p(vε) dx+

∫
Ω
Bε(x, vε)·∇vεψ′

p(vε) dx

= λ

∫
Ω

|Tε(vε)|s−1Tε(vε)

|x|p + ε
ψp(vε) dx+

∫
Ω
f εψp(vε) dx. (3.6)

Using (1.2), (1.3), (2.6) and Young’s inequality, we get that

α

∫
Ω

|∇vε|p

(β
1

p−1
ε + |vε|)p

dx ≤
∫
Ω
c0(x)|vε|γ | ∇vε||ψ′(vε)| dx

+
λ

βε(p− 1)

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
dx+

∥f∥L1(Ω)

βε(p− 1)

≤ 1

p′α
1

p−1

∥c0∥p
′

Lp′ (Ω)
+
α

p

∫
Ω

|∇vε|p

(β
1

p−1
ε + |vε|)p

dx+
1

βε(p− 1)
Mε,

where

Mε = λ

∫
Ω

|T 1
ε
(vε)|s dx

|x|p + ε
+ ∥f ε∥L1(Ω),

i.e., ∫
Ω

|∇vε|p

(β
1

p−1
ε + |vε|)p

dx ≤ 1

αp′
∥c0∥p

′

Lp′ (Ω)
+

p′

αβε(p− 1)
Mε.

Let us define βε = 1 +
p′

α(p− 1)
Mε. As βε > 1, we have that∫

Ω

|∇vε|p

(β
1

p−1
ε + |vε|)p

dx ≤ 1

αp′
∥c0∥p

′

Lp′ (Ω)
+
βε − 1

βε

≤ 1

αp′
∥c0∥p

′

Lp′ (Ω)
+ 1.
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Applying the Poincaré inequality, we get that

∫
Ω

|∇vε|p

(β
1

p−1
ε + |vε|)p

dx ≥ Λ

∫
Ω

ln
1 +

|vε|

β
1

p−1
ε

p

dx.

Note that, for any h > 0, we have

meas
{
|vε| ≥ hβ

1
p−1
ε

}
=

1

[ln(1 + h)]p

∫
{|vε|≥hβ

1
p−1
ε }

[ln(1 + h)]p dx

≤ 1

[ln(1 + h)]p

∫{
|vε|≥hβ

1
p−1
ε

}
ln

1 +
|vε|

β
1

p−1
ε

p

dx

≤ 1

[ln(1 + h)]p

∫
Ω

ln
1 +

|vε|

β
1

p−1
ε

p

dx

≤ C3
[ln(1 + h)]p

.

Then, for any η > 0, we deduce that

meas {|vε| ≥ σ} ≤ 1

ηp
,

where

σ =
(
exp(ηC1/p

3 )− 1
)
β

1
p−1
ε . (3.7)

Step 2: Tk(vε) is bounded in W 1,p
0 (Ω).

We take Tk(vε) as test function in (3.3) we obtain∫
Ω
b(x, vε,∇vε)·∇Tk(vε) dx+

∫
Ω
Bε(x, vε)·∇Tk(vε) dx

= λ

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
Tk(vε) dx+

∫
Ω
f εTk(vε) dx.

Let us notice that we require to distinguish two cases.

If γ < p− 1, by (1.2), (1.5), Hölder inequality and Young inequality we get

α

∫
Ω
|∇Tk(vε)|p dx ≤

∫
Ω
c0(x)|vε|γ |∇Tk(vε)| dx,+k λ

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
dx+ k∥f ε∥L1(Ω)

≤
∫
Ω
c0(x)|vε|γ |∇Tk(vε)| dx+ kMε

≤ C4 ∥∇Tk(vε)∥γp
′

Lp(Ω) +
α

2p
∥∇Tk(vε)∥pLp(Ω) + kMε

≤ Cr′
4

r′(αr2p )
r′/r

+
α

p
∥∇Tk(vε)∥pLp(Ω) + kMε,
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where
r =

p− 1

γ
and

1

r
+

1

r′
= 1.

Then, we obtain that
∥∇Tk(vε)∥pLp(Ω) ≤M1 +M ′

ε k ∀k > 0,

with

M1 =
p′ Cr′

4

α r′(α r
2p )

r′/r
and M ′

ε =
p′

α
Mε.

From Lemma 2.1, it follows that

∥|vε|p−1∥
L

N
N−p

,∞
(Ω)

≤ C(N, p)

[
M ′

ε + (meas (Ω))
1
pM

1
p′
1

]
,

∥|∇vε|p−1∥
L

N
N−1

,∞
(Ω)

≤ C(N, p)

[
M ′

ε + (meas (Ω))
1
p∗M

1
p′
1

]
.

If γ = p− 1, by (1.2), (1.5), Hölder and Young inequalities, we get

α

∫
Ω

∣∣∇Tk(vε)
∣∣p dx ≤

∫
Ω
c0(x) |vε|p−1 |∇Tk(vε)| dx+ kMε

≤
∫
{|vε|>σ}

c0(x) |vε|p−1 |∇Tk(vε)|dx

+

∫
{|vε|≤σ}

c0(x) |vε|p−1 |Tk(vε)| dx+ kMε

≤ Sp−1∥c0∥
L

N
p−1 ({|vε|≥σ})

∥∇Tk(vε)∥pLp(Ω) + C6

+
α

p
∥∇Tk(vε)∥pLp(Ω) + kMε ,

where σ is the number defined by (3.7).

Now, we choose η = η̄ such that

meas

{
|vε| > (exp(η̄ C1/p

3 )− 1)β
1

p−1
ε

}
≤ 1

η̄p
< τ,

for some τ > 0, implies

p′

α
Sp−1∥c0∥

L
N

p−1 ({|vε| > exp(η̄ C1/p
3 )− 1)β

1
p−1
ε })

≤ 1

2
.

Therefore, we get
∥∇Tk(vε)∥pLp(Ω) ≤M2 +M ′

εk, ∀k > 0,

where

M2 =
p′ C6
α

.

Again, thanks to Lemma 2.1, we derive the following estimates

∥|vε|p−1∥
L

N
N−p

,∞
(Ω)

≤ C(N, p)

[
M ′

ε + (meas (Ω))
1
pM

1
p′
2

]
,
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∥|∇vε|p−1∥
L

N
N−1

,∞
(Ω)

≤ C(N, p)

[
M ′

ε + (meas (Ω))
1
p∗M

1
p′
2

]
.

On the other hand we have

Mε ≤ λ

∫
Ω

|T 1
ε
(vε)|s

|x|p
dx+ ∥f ε∥L1(Ω). (3.8)

By (2.2), Hölder inequality and since s < (p− 1)
(
1− p

N

)
, we get

∫
Ω

|T 1
ε
(vε)|s

|x|p
dx ≤

(∫
Ω
|vε|p−1 dx

) s
p−1

∫
Ω

dx

|x|
p(p−1)
p−s−1


p−s−1
p−1

≤ C7∥|vε|p−1∥
s

p−1

L1(Ω)

≤ C8∥|vε|p−1∥
s

p−1

L
N

N−p
,∞

(Ω)

≤ C8
[
C(N, p)

[
M ′

ε + (meas (Ω))
1
pM

1
p′
2

]] s
p−1

≤ C8C(N, p)
(
p′

α

) s
p−1

M
s

p−1
ε + C8C(N, p)(meas (Ω))

s
p(p−1)M

s
p

2

≤ C9M
s

p−1
ε + C8C(N, p)(meas (Ω))

s
p(p−1)M

s
p

2

≤ C10 +
1

2λ
Mε + C8C(N, p)(meas (Ω))

s
p(p−1)M

s
p

2 .

Which, by (3.8), implies that ∫
Ω

|T 1
ε
(vε)|s

|x|p
dx ≤ C11. (3.9)

Thus, we deduce that
∥∇Tk(vε)∥pLp(Ω) ≤Mk + L, ∀k > 0. (3.10)

Finally, by (3.7) and Lemma 2.1, we get (3.4) and (3.5). □

Following the papers [4, 6], we deduce that there is a function vk ∈ W 1,p
0 (Ω) such that, up to a

subsequence still denoted by vε one has

Tk(vε)⇀ vk weakly in W 1,p
0 (Ω),

Tk(vε) → vk strongly in Lp(Ω).

Let σ > 0 and η > 0 be fixed. For every k > 0, and every ε and δ we have

{|vε − vδ| > σ} ⊆ {|vε| > k} ∪ {|vδ| > k} ∪ {|Tk (vε)− Tk (vδ)| > σ} .

Let η > 0 be fixed, there exists k > 0 such that, for every ε and δ,

meas ({|vε| > k}) + meas ({|vδ| > k}) < η

2
.

Once k is chosen, we deduce from (3.10) that Tk (vε) is bounded in W 1.p
0 (Ω), and so, up to a

subsequence still denoted by vε, Tk (vε) is (strongly convergent in Lp(Ω) and hence) a Cauchy
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sequence in measure. Consequently, there exists ε0 such that, for every ε and δ smaller than ε0, we
have

meas ({|Tk (vε)− Tk (vδ)| > σ}) < η

2
.

We have thus proved that up to a subsequence, vε is a Cauchy sequence in measure. Therefore, there
exist a further subsequence, still denoted by vε, and a measurable function v, which is finite almost
everywhere, such that

vε → v a.e. in Ω. (3.11)

Consequently, we have
Tk(vε)⇀ Tk(v) weakly in W 1,p

0 (Ω), (3.12)

Tk(vε) → Tk(v) strongly in Lp(Ω) and a.e. in Ω, (3.13)

∀k > 0, b(x, Tk(vε),∇Tk(vε))⇀ σk weakly in (Lp′(Ω))N . (3.14)

Second step: Energy formula

In this step, we aim to derive an energy estimate for the approximating solutions.

Using
1

n
Tn(vε) as test function in (3.3) leads to

1

n

∫
Ω
b(x, vε,∇vε)·∇Tn(vε) dx+

1

n

∫
Ω
Bε(x, vε)·∇Tn(vε) dx

=
λ

n

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
Tn(vε) dx+

1

n

∫
Ω
f εTn(vε) dx.

Thanks to (1.2) and (1.5) we deduce that

α

n

∫
Ω
|∇Tn(vε)|p dx ≤ 1

n

∫
Ω
c0(x)|Tn(vε)|γ |∇Tn(vε)|dx

+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)| dx+

1

n

∫
Ω
f εTn(vε) dx.

As before, we distinguish two cases.

If γ < p− 1, we have, by Hölder, Sobolev and Young inequalities, that

α

n

∫
Ω
|∇Tn(vε)|p dx

≤ 1

n
∥c0∥

L
N

p−1 (Ω)

(∫
Ω
|Tn(vε)|

γ
p−1

p∗
dx

) p−1
p∗
(∫

Ω
|∇Tn(vε)|p dx

) 1
p

+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)|dx+

1

n

∫
Ω
f εTn(vε) dx

≤ C14
n

+
α

2n

∫
Ω
|∇Tn(vε)|p dx+

λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)| dx+

1

n

∫
Ω
f εTn(vε) dx.

Which implies that

α

2n

∫
Ω
|∇Tn(vε)|p dx ≤ C14

n
+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)| dx+

1

n

∫
Ω
f εTn(vε) dx.
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If γ = p− 1, we have, by Hölder and Sobolev inequalities, that

α

n

∫
Ω
|∇Tn(vε)|p dx ≤ 1

n

∫
Ω∩{|vε|≤σ}

c0(x)|Tn(vε)|p−1|∇Tn(vε)| dx

+
1

n

∫
Ω∩{|vε|>σ}

c0(x)|Tn(vε)|p−1|∇Tn(vε)| dx

+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)|dx+

1

n

∫
Ω
f εTn(vε) dx

≤ 1

n

∫
Ω∩{|vε|≤σ}

c0(x)|Tn(vε)|p−1|∇Tn(vε)| dx

+
Sp−1

n
∥c0∥

L
N

p−1 ({|vε|>σ})

∫
Ω
|∇Tn(vε)|p dx

+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)|dx+

1

n

∫
Ω
f εTn(vε) dx,

where σ is the number defined by (3.7).

Now, we choose σ such that

Sp−1∥c0∥
L

N
p−1 ({|vε|>σ})

<
α

2
.

Thus, we get

α

2n

∫
Ω
|∇Tn(vε)|p dx ≤ C15

n
+

1

n

∫
Ω∩{|vε|≤σ}

c0(x)|Tn(vε)|p−1|∇Tn(vε)|dx

+
λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
|Tn(vε)| dx+

1

n

∫
Ω
f εTn(vε) dx.

For any n > σ, by applying Hölder and Sobolev inequalities, we derive

1

n

∫
Ω∩{|vε|≤σ}

c0(x)|Tn(vε)|γ |∇Tn(vε)|dx ≤ σγ

n
∥c0∥Lp′ (Ω)∥∇Tσ(vε)∥

p
Lp(Ω),

which implies, thanks to (3.10), that

lim
n→+∞

lim sup
ε→0

1

n

∫
Ω∩{|vε|≤σ}

c0(x)|Tσ(vε)|γ |∇Tσ(vε)|dx = 0. (3.15)

By virtue of (3.11) we have that

Tn (vε)⇀ Tn(v), weak-* in L∞(Ω). (3.16)

Additionally, since f ε strongly converges to f in L1(Ω), it follows that

lim sup
ε→0

1

n

∫
Ω
|fε| |Tn (vε)| dx =

1

n

∫
Ω
|f | |Tn(v)| dx.

Moreover, it is easy to prove, since v is finite a.e. in Ω, that

Tn(v)
n

⇀ 0 weak-* in L∞(Ω). (3.17)
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Therefore, we deduce that

lim
n→+∞

lim sup
ε→0

1

n

∫
Ω
|fε| |Tn (vε)| dx = 0. (3.18)

Let E be a measurable subset of Ω such that

∀δ > 0,∃η(δ) > 0 such that meas (E) ≤ η(δ). (3.19)

Observe that, by (3.4) and the Hölder inequality, and since s < (p− 1)
(
1− p

N

)
, we have

∫
E

|vε|s

|x|p
dx ≤

(∫
E
|vε|p−1 dx

) s
p−1

∫
E

dx

|x|
p(p−1)
p−1−s


p−1−s
p−1

≤
(∫

Ω
|vε|p−1 dx

) s
p−1

∫
E

dx

|x|
p(p−1)
p−1−s


p−1−s
p−1

≤ C16

∫
E

dx

|x|
p(p−1)
p−1−s


p−1−s
p−1

.

By means of the absolute continuity of the Lebesgue integral, using (3.19), it follows∫
E

dx

|x|
p(p−1)
p−1−s


p−1−s
p−1

≤ δ.

Hence, ∫
E

|vε|s

|x|p
dx ≤ C16δ.

Consequently by Vitali’s theorem, we deduce that

|vε|s

|x|p
→ |v|s

|x|p
strongly in L1(Ω), (3.20)

which, together with (3.16) and (3.17), yields that

lim
n→+∞

lim sup
ε→0

λ

n

∫
Ω

|T 1
ε
(vε)|s

|x|p + ε
Tn(vε) dx = 0,

and therefore, thanks to (3.15) and (3.18),

lim
n→+∞

lim sup
ε→0

1

n

∫
{|vε|≤n}

b(x, vε,∇vε)·∇vε dx = 0. (3.21)

Third step: The weak L1−convergence of the truncated energy

In this step we prove that for any k > 0,

lim
ε→0

∫
Ω
(b (x, Tk (vε) ,∇Tk (vε))− b (x, Tk(vε),∇Tk(v))) ·∇ (Tk (vε)− Tk(v)) dx = 0. (3.22)
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The method which we use to prove (3.22) relies on similar techniques developed in [5]. For all
n ∈ N, we define the function hn : R 7−→ R as:

hn(l) =


0, |l| > 2n,
2n−|l|

n , n < |l| ≤ 2n,

1, |l| ≤ n.

Let k > 0, if we take φ = hn(vε)(Tk(vε)− Tk(v)) in (3.3) we get∫
Ω
b(x, vε,∇vε)·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx+

∫
Ω
b(x, vε,∇vε)·∇(Tk(vε)− Tk(v))hn(vε) dx

+

∫
Ω
Bε(x, vε)·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx+

∫
Ω
Bε(x, vε)·∇(Tk(vε)− Tk(v))hn(vε) dx

= λ

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
hn(vε)(Tk(vε)− Tk(v)) dx+

∫
Ω
f εhn(vε)(Tk(vε)− Tk(v)) dx.

(3.23)

Now, we proceed by taking the limit in (3.23) first as ε→ 0, then as n→ +∞.

Observe that, recalling the definition of the function hn,∣∣∣∣∣
∫
Ω
b(x, vε,∇vε)·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx

∣∣∣∣∣ ≤ 2k

n

∫
Ω2n

b(x, vε,∇vε)·∇vε dx,

where
Ω2n = {x ∈ Ω | n ≤ |vε(x)| ≤ 2n}.

Thus, by (3.21), we deduce that

lim
n→+∞

lim sup
ε→0

∫
Ω
b(x, vε,∇vε)·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx = 0. (3.24)

Thanks to (3.11) we obtain

Bε(x, vε)hn(vε) → B(x, v)hn(v) a.e. in Ω.

In addition, by (1.5), we have

|Bε(x, vε)hn(vε)| ≤ (2n)γc0(x).

By Lebesgue’s dominated convergence theorem, we conclude

Bε(x, vε)hn(vε) → B(x, v)hn(v) strongly in L
N

p−1 (Ω).

So that, using (3.12), we deduce that

lim
n→+∞

lim sup
ε→0

∫
Ω
Bε(x, T2n(vε))·∇(Tk(vε)− Tk(v))hn(vε) dx = 0. (3.25)

According to the definition of hn, it follows that∣∣∣∣∫
Ω
Bε(x, T2n(vε))·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx

∣∣∣∣ ≤ 2k

n

∫
Ω2n

|Bε(x, vε)||∇vε|dx.
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Thus, by (3.21) and Remark 2.1, we affirm that

lim
n→+∞

lim sup
ε→0

∫
Ω
Bε(x, T2n(vε))·∇vεh′n(vε)(Tk(vε)− Tk(v)) dx = 0. (3.26)

For 2n ≤ 1
ε and for any l ∈ R we have

|T 1
ε
(l)|s−1T 1

ε
(l)

|x|p + ε
hn(l) =

|T2n(l)|s−1T2n(l)
|x|p + ε

hn(l).

Moreover, due to (3.11), we have

Tk(vε)− Tk(v)⇀ 0 a.e. in Ω and weak-* in L∞(Ω).

By Vitali’s theorem, since hn is bounded by 1 and due to (3.20), we get that

lim
n→+∞

lim sup
ε→0

λ

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
hn(vε)(Tk(vε)− Tk(v)) dx = 0. (3.27)

Furthermore, as a consequence of (3.1), we deduce that

lim
n→+∞

lim sup
ε→0

∫
Ω
f εhn(vε)(Tk(vε)− Tk(v)) dx = 0. (3.28)

Then (3.24) − (3.28) allow one to assure that

lim
n→+∞

lim sup
ε→0

∫
Ω
b(x, vε,∇vε)·∇(Tk(vε)− Tk(v))hn(vε) dx ≤ 0.

Note that, for any n > k, we have

hn(vε)b (x, T2n (vε) ,∇T2n (vε))χ{|vε|<k} = b (x, Tk (vε) ,∇Tk (vε)) a.e. in Ω.

From (3.11) and (3.14) it follows that for any k < n

σ2n·∇Tk(v) = σk·∇Tk(v) a.e. in Ω.

Therefore,

lim sup
ε→0

∫
Ω
b(x, Tk(vε),∇Tk(vε))·∇Tk(vε) dx

≤ lim
n→+∞

lim sup
ε→0

∫
Ω
hnb(x, Tk(vε),∇Tk(vε))·∇Tk(vε) dx

= lim
n→+∞

∫
Ω
hn(v)σ2n·∇Tk(v) dx =

∫
Ω
σk·∇Tk(v) dx. (3.29)

Moreover, we have∫
Ω
(b (x, Tk (vε) ,∇Tk (vε))− b (x, Tk (vε) ,∇Tk(v))) · (∇Tk (vε)−∇Tk(v)) dx

=

∫
Ω
b (x, Tk (vε) ,∇Tk (vε)) · (∇Tk (vε)−∇Tk(v)) dx

−
∫
Ω
b (x, Tk (vε) ,∇Tk(v)) · (∇Tk (vε)−∇Tk(v)) dx.
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From (1.4), it follows, for any ε > 0, that

0 ≤
∫
Ω
(b (x, Tk (vε) ,∇Tk (vε))− b (x, Tk (vε) ,∇Tk(v))) · (∇Tk (vε)−∇Tk(v)) dx. (3.30)

In addition, thanks to (3.11) and (1.3), we affirm that

b (x, Tk (vε) ,∇Tk(v)) → b (x, Tk(v),∇Tk(v)) strongly in (Lp′(Ω))N ,

which implies, by (3.29) and (3.30), that the approximate solution vε verifies (3.22).

As a consequence of (3.22), we have

lim
ε→0

∫
Ω
b (x, Tk (vε) ,∇Tk (vε)) ·∇Tk (vε) dx =

∫
Ω
σk·∇Tk(v) dx.

By the monotone character of b and Minty’s argument, we conclude that

σk = b(x, Tk(v),∇Tk(v)). (3.31)

Using (3.12) and (3.14) leads to

b(x, vε,∇vε)·∇Tk(vε)⇀ b(x, v,∇v)·∇Tk(v) weakly inL1(Ω). (3.32)

Fourth Step: Passing to the limit

In this step we prove that u satisfies (2.6), (2.7), (2.8) and (2.9).

We first observe that, by the Fatou Lemma and (3.11), we have

meas {|v| ≥ σ} ≤ lim inf
ε→0

meas {|vε| ≥ σ} ≤ 1

ηp
,

thus, v is finite almost everywhere in Ω, that is, (2.6) holds. Moreover, thanks to the weak con-
vergence of Tk(vε), we assert that (2.7) holds. In addition, the decay of the truncated energy (2.8)
is a consequence of (3.21) and (3.32). Let v ∈ W 1,p

0 (Ω) ∩ L∞(Ω) and let h ∈ W 1,∞(R) be a
function with compact support contained in the interval [−k, k], where k > 0. Taking h(vε)φ as a
test function in (3.3) we get∫

Ω
b(x, vε,∇vε)·∇vεh′(vε)φdx+

∫
Ω
b(x, vε,∇vε)·∇φh(vε) dx

+

∫
Ω
Bε(x, vε)·∇vεh′(vε)φdx+

∫
Ω
Bε(x, vε)·∇φh(vε) dx

= λ

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
h(vε)φdx+

∫
Ω
f εh(vε)φdx.

(3.33)

Thanks to (3.32) we have

lim
ε→0

∫
Ω
b(x, vε,∇vε)·∇vεh′(vε)φdx = lim

ε→0

∫
Ω
b(x, Tk(vε),∇Tk(vε))·∇Tk(vε)h′(vε)φdx

=

∫
Ω
b(x, v,∇v)·∇vh′(v)φdx.
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Using (3.14), (3.31) and the fact that h is a compact support we obtain

lim
ε→0

∫
Ω
b(x, vε,∇vε)·∇φh(vε) dx =

∫
Ω
b(x, v,∇v)·∇φh(v) dx.

Due to (3.13) we have
Bε(x, vε)h(vε) → B(x, v)h(v) a.e. in Ω,

and by the growth condition (1.5) we deduce that

|Bε(x, vε)h(vε)| ≤ kγc0(x).

Therefore, by Lebesgue’s convergence theorem, we conclude that

Bε(x, vε)h(vε) → B(x, v)h(v) strongly in L
N

p−1 (Ω),

so that
lim
ε→0

∫
Ω
Bε(x, vε)·∇φh(vε) dx =

∫
Ω
B(x, v)·∇φh(v) dx.

Similarly, from (3.12) and the condition p′ < N
p−1 , we arrive at

lim
ε→0

∫
Ω
Bε(x, vε)·∇vεh′(vε)φdx =

∫
Ω
B(x, v)·∇φh′(v)φdx.

Applying Vitali’s theorem, thanks to (3.20), we obtain

lim
ε→0

∫
Ω

|T 1
ε
(vε)|s−1T 1

ε
(vε)

|x|p + ε
h(vε)φdx = λ

∫
Ω

|v|s−1v

|x|p
h(v)φdx.

From (3.1) and (3.11) it follows that

lim
ε→0

∫
Ω
f εh(vε)φdx =

∫
Ω
fh(v)φdx.

Therefore, by passing to the limit in (3.24), we ensure that the limit v satisfies (2.9) in the definition
of renormalized solutions. Thus, we conclude that v is a renormalized solution to (1.1). □
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