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Abstract. In this note, we analyze the existence and uniqueness of asymptotically almost peri-
odic solutions for a class of the abstract nonlinear Volterra integro-differential equations with Lip-
schitz continuous operators. We also provide the basic results about the class of mild (a, k, C,B)-
regularized resolvent families in the nonlinear setting and the well-posedness of abstract nonlinear
Volterra inclusions.

Keywords: Asymptotically almost periodic functions, abstract nonlinear Volterra equations,
(a, k, C,B)-regularized resolvent families.

2010 Mathematics Subject Classification: 42A75, 43A60, 47D99.

1 Introduction

In the existing literature concerning the abstract nonlinear Volterra integro-differential equations
(cf. [2, 7, 10, 11, 17, 19] and the references quoted therein), we have not been able to locate any
relevant result with regards to the question of the existence and uniqueness of asymptotically almost
periodic solutions.
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In this note, we will present a new interesting result concerning the existence and uniqueness of
asymptotically almost periodic solutions to the abstract nonlinear Volterra integral equations with
Lipschitz continuous operators (Theorem 3.1); the proof of this result is relatively simple and it is
based on the use of the Banach contraction principle. The operators under our consideration fail
to be m-accretive in any sense and our results cannot be formulated for the class of asymptotically
periodic functions or the class of pseudo-almost periodic functions. As mentioned in the abstract,
we also introduce and analyze here the class of mild (a, k, C,B)-regularized resolvent families in
the nonlinear setting and provide the basic details about the well-posedness of abstract nonlinear
Volterra inclusions.

2 Asymptotically almost periodic functions

The class of almost periodic functions was introduced by H. Bohr around 1925 and later generalized
by many others ([5]). Let (X, ∥ · ∥) be a complex Banach space and let f : I → X be a continuous
function, where I = [0,∞) or I = R. If a number ϵ > 0 is given, then we call a number τ > 0 an
ϵ-period for f(·) if ∥f(t+ τ)−f(t)∥ ≤ ϵ for all t ∈ I; by ϑ(f, ϵ) we denote the set consisting of all
ϵ-periods for f(·). It is said that f(·) is almost periodic if for each ϵ > 0 the set ϑ(f, ϵ) is relatively
dense in [0,∞), which means that for each ϵ > 0 there exists a finite real number l > 0 such that
any subinterval I ′ of [0,∞) of length l meets ϑ(f, ϵ).

Following M. Fréchet (1941), we say that a continuous function f : [0,∞) → X is asymp-
totically almost periodic if there exist an almost periodic function g : R → X and a continuous
function q : [0,∞) → X vanishing at plus infinity such that f(t) = g(t) + q(t) for all t ≥ 0.
By AAP ([0,∞) : X) we denote the vector space of all asymptotically almost periodic functions
f : [0,∞) → X; equipped with the sup-norm, AAP ([0,∞) : X) is a Banach space. The Bochner
criterion says that a continuous function f : [0,∞) → X is asymptotically almost periodic if for
each sequence (bk) in [0,∞) there exist a subsequence (bkl) of (bk) and a function f∗ : [0,∞) → X
such that liml→+∞ f(t+ bkl) = f∗(t), uniformly for t ≥ 0.

For further information on almost periodic type functions and their applications, we refer the
reader to the research monographs [4, 6, 8, 9, 12, 13, 16] and references quoted therein.

3 The existence and uniqueness of asymptotically almost periodic so-
lutions to (3.1)

Suppose that B : X → X and ∥Bx − By∥ ≤ L∥x − y∥, x, y ∈ X for some finite real constant
L > 0. Of concern is the following abstract nonlinear Volterra integral equation

u(t) = b(t) +

∫ t

0
a(t− s)Bu(s) ds, t ≥ 0. (3.1)

It is worth noting that the Banach contraction principle can be successfully applied in the analysis
of the existence of a unique asymptotically almost periodic solution of problem (3.1), provided that
a ∈ L1([0,∞)) and b(·) is asymptotically almost periodic.

Towards this end, observe first that the Bochner criterion and the Lipschitz continuity of the
operator B together imply that the mapping Bf(·) is asymptotically almost periodic, provided that
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f(·) is asymptotically almost periodic. Further on, we have∫ t

0
a(t− s)f(s) ds =

∫ t

0
a(t− s)[g(s) + q(s)] ds =

∫ t

−∞
a(t− s)g(s) ds

+

[∫ t/2

0
a(t− s)q(s) ds+

∫ t

t/2
a(t− s)q(s) ds−

∫ 0

−∞
a(t− s)g(s) ds

]
:= G(t) +Q(t), t ≥ 0.

Using the integrability of a(·) and the standard argumentation, it follows that the mapping t 7→ G(t),
t ∈ R is almost periodic, the function Q(·) is continuous and limt→+∞Q(t) = 0. Therefore, the
function

t 7→ b(t) +

∫ t

0
a(t− s)f(s) ds, t ≥ 0

is asymptotically almost periodic provided that f(·) is asymptotically almost periodic.

By the foregoing, the operator Ψ : AAP ([0,∞) : X) → AAP ([0,∞) : X), given by

[Ψ(f)](t) := b(t) +

∫ t

0
a(t− s)Bf(s) ds,

t ≥ 0, f ∈ AAP ([0,∞) : X),

is well-defined. Furthermore, the assumption L∥a∥L1([0,∞)) < 1 implies that Ψ(·) is a contraction
and an application of the Banach contraction principle yields that the following result holds true:

Theorem 3.1 Suppose that B : X → X , ∥Bx− By∥ ≤ L∥x− y∥, x, y ∈ X for some finite real
constant L > 0, a ∈ L1([0,∞)), L∥a∥L1([0,∞)) < 1 and b(·) is asymptotically almost periodic.
Then there exists a unique asymptotically almost periodic solution u(t) of (3.1).

We can similarly analyze the existence and uniqueness of asymptotically almost automorphic
solutions of (3.1), provided that the function b(·) is asymptotically almost automorphic.

In connection with the above analysis, we would like to introduce the following notion (by I we
denote the identity operator on X):

Definition 3.2 Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈ L1
loc([0, τ)), a ̸= 0, C : X → X

and B : D(B) ⊆ X → P (X) is a given function. Then we say that B is a subgenerator of [the
generator, if C = I] a (local, if τ < ∞) mild (a, k, C,B)-regularized resolvent family (R(t))t∈[0,τ)
if R(t) : X → X is continuous for every t ∈ [0, τ), (R(t))t∈[0,τ) is strongly continuous and, for
every x ∈ D(B), there exists a locally integrable mapping t 7→ rB(t;x), t ∈ [0, τ) such that
rB(t;x) ∈ BR(t)x, t ∈ [0, τ) and

t∫
0

a(t− s)rB(s) ds = R(t)x− k(t)Cx, t ∈ [0, τ). (3.2)

If C = I, then we omit the term “C” from the notation.

In the nonlinear setting, we would like to emphasize the following:
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(i) It is redundant to assume that R(t)B ⊆ BR(t), t ∈ [0, τ) or
R(t)x− k(t)Cx ∈ B

∫ t
0 a(t− s)R(s)x ds, t ∈ [0, τ), x ∈ X .

(ii) The use of function k(·) is discutable because we cannot prove that B generates a mild
(a ∗ b, k,B)-regularized resolvent family ((b ∗R)(t))t∈[0,τ) provided that B generates a mild
(a, k,B)-regularized resolvent family (R(t))t∈[0,τ); here, b ∈ L1

loc([0, τ)).

If τ = ∞, then we say that (R(t))t≥0 is exponentially non-expansive (non-expansive) if there exists
ω ∈ R (ω = 0) such that

∥R(t)x−R(t)y∥ ≤ eωt∥x− y∥;

the infimum of such numbers is said to be the exponential type of (R(t))t≥0. In the local setting,
the notion from Definition 3.2 can be also introduced for the strongly continuous operator families
defined on the closed interval [0, τ ], where 0 < τ < ∞.

Let us consider now the Banach space C([0, τ ] : X), if 0 < τ < ∞, and the Banach space
AAP ([0,∞) : X), if τ = ∞. Keeping in mind the argumentation contained in the proof of Theo-
rem 3.1, the Banach contraction principle and the Grönwall inequality, we can deduce the following
result (we define R(t)x as a solution of (3.1) with b(t) = k(t)Cx):

Theorem 3.3 (i) Suppose that k ∈ C[0, τ ], k ≥ 0, a ∈ L1[0, τ ], B : X → X is a Lipschitz
continuous operator, ∥Bx−By∥ ≤ L∥x−y∥, x, y ∈ X for some finite real constant L > 0,
and L

∫ τ
0 |a(s)| ds < 1. Then there exists a unique mild (a, k,B,C)-regularized resolvent

family (R(t))t∈[0,τ ] subgenerated by B and the following holds:

∥R(t)x−R(t)y∥

≤

[
k(t) +

∫ t

0
k(s)|a(t− s)| exp

(∫ t

s
|a(t− r)| dr

)
ds

]
· ∥Cx− Cy∥, (3.3)

for any t ∈ [0, τ ] and x, y ∈ X. Moreover, if k(·) is non-decreasing, then

∥R(t)x−R(t)y∥ ≤ k(t) exp

(∫ t

0
|a(s)| ds

)
· ∥Cx− Cy∥, (3.4)

for any t ∈ [0, τ ] and x, y ∈ X.

(ii) Suppose that k ∈ C([0,∞)), k ≥ 0, a ∈ L1([0,∞)), B : X → X is a Lipschitz continuous
operator, ∥Bx − By∥ ≤ L∥x − y∥, x, y ∈ X for some finite real constant L > 0, and
L
∫∞
0 |a(s)| ds < 1. Then there exists a unique mild (a, k,B,C)-regularized resolvent family

(R(t))t≥0 subgenerated by B and (3.3) holds for any τ > 0, resp., (3.4) holds for any τ > 0,
provided that k(·) is non-decreasing. Furthermore, if k(·) is asymptotically almost periodic,
then the mapping t 7→ R(t)x, t ≥ 0 is asymptotically almost periodic for every element
x ∈ X.

If the operator B : D(B) ⊆ X → X is not Lipschitz continuous, then we must apply some
other types of fixed point theorems in order to prove the existence of a local mild (a, k,B,C)-
regularized resolvent family (R(t))t∈[0,τ ] subgenerated by B. It would be very tempting to apply
the structural results about mild (a, k,B,C)-regularized resolvent families in the analysis of the
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abstract nonlinear Volterra integro-differential equations which do not involve Lipschitz continuous
operators (for some recent results concerning the existence and uniqueness of almost periodic type
solutions to the abstract nonlinear functional differential inclusions of first order which do not in-
volve Lipschitz continuous operators, we refer the reader to [1, 18, 20, 21, 22] and references quoted
therein).

4 The well-posedness of abstract nonlinear Volterra inclusions

Suppose that 0 < τ ≤ ∞, a ∈ L1
loc([0, τ)) and f : [0, τ) → X. By a solution of the abstract

Volterra integral inclusion

u(t) ∈ f(t) +

∫ t

0
a(t− s)Bu(s) ds, t ∈ [0, τ), (4.1)

we mean any continuous function t 7→ u(t), t ∈ [0, τ) such that there exists a locally integrable
mapping t 7→ uB(t), t ∈ [0, τ) such that uB(t) ∈ Bu(t), t ∈ [0, τ) and

u(t) = f(t) +

∫ t

0
a(t− s)uB(s) ds, t ∈ [0, τ).

Hence, if B is a subgenerator of a mild (a, k, C,B)-regularized resolvent family
(R(t))t∈[0,τ), then for each x ∈ D(B) the function t 7→ R(t)x, t ∈ [0, τ) is a solution of the
problem (4.1) with f(t) ≡ k(t)Cx. Furthermore, if the requirements of Theorem 3.3(ii) hold and
k(·) is asymptotically almost periodic, then the mapping t 7→ R(t)x, t ≥ 0 is asymptotically almost
periodic for every element x ∈ X.

On the other hand, it is said that any (m − 1)-times continuously differentiable function t 7→
u(t), t ∈ [0, τ) is a solution of the abstract fractional Cauchy inclusion

Dα
t u(t) ∈ Bu(t) + h(t), t ∈ [0, τ); u(j)(0) = uj , 0 ≤ j ≤ m− 1, (4.2)

where h : [0, τ) → X is a continuous mapping, α ∈ (0,∞) \ N, m = ⌈α⌉ and Dα
t u(t) is the

Caputo fractional derivative of order α (cf. [14] for the notion), if the initial conditions are satisfied
and there exists a continuous mapping t 7→ uB(t), t ∈ [0, τ) such that uB(t) ∈ Bu(t), t ∈ [0, τ)
and Dα

t u(t) = uB(t) + h(t), t ∈ [0, τ). The following statement can be proved in exactly the same
way as in the linear case ([14]; cf. also the identity [3, (1.21)]):

Proposition 4.1 Suppose that the mapping t 7→ u(t), t ∈ [0, τ) is (m − 1)-times continuously
differentiable. Then u(·) is a solution of the abstract fractional Cauchy inclusion (4.2) if and only
if u(·) is a solution of the abstract Volterra integral inclusion (4.1) with a(t) ≡ gα(t) and f(t) ≡∑m−1

j=0 gj+1(t)uj + (gα ∗ h)(t), t ∈ [0, τ); here, gζ(t) := tζ−1/Γ(ζ), t > 0 (ζ > 0), where Γ(·) is
the Euler Gamma function.

Furthermore, we have the following:

Proposition 4.2 Suppose that B : X → X , ∥Bx − By∥ ≤ L∥x − y∥, x, y ∈ X for some finite
real constant L > 0 and for each x ∈ X there exists a solution of the abstract fractional Cauchy
inclusion (4.2) with h(t) ≡ 0, u0 = Cx and u(j)(0) = 0 for 1 ≤ j ≤ m− 1. Then B subgenerates
a mild (a, 1, C,B)-regularized resolvent family on [0, τ).
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Proof. We define R(t)x := u(t;x), x ∈ X, t ∈ [0, τ), where u(·;x) is a solution of the abstract
fractional Cauchy inclusion (4.2) with h(t) ≡ 0, u0 = Cx and u(j)(0) = 0 for 1 ≤ j ≤ m − 1.
Then it is clear that the family (R(t))t∈[0,τ) is strongly continuous as well as that Proposition 4.1
shows that, for every x ∈ D(B), there exists a locally integrable mapping t 7→ rB(t;x), t ∈ [0, τ)
such that rB(t;x) ∈ BR(t)x, t ∈ [0, τ) and (3.2) holds with k(t) ≡ 1. It remains to be proved
that the mapping R(t) : X → X is continuous for every fixed number t ∈ [0, τ). But, this simply
follows from an application of the Gronwall inequality, since we have

∥R(t)x−R(t)y∥ ≤ ∥Cx− Cy∥+ L

∫ t

0
gα(t− s)∥R(s)x−R(s)y∥ ds, x, y ∈ X.

□

5 Conclusions and final remarks

In this note, we have investigated the existence and uniqueness of asymptotically almost periodic
solutions to the abstract nonlinear Volterra integro-differential equations with Lipschitz continuous
operators. We have also introduced the class of mild (a, k, C,B)-regularized resolvent families in
the nonlinear setting and provided some results concerning the well-posedness of abstract nonlinear
Volterra inclusions.

The Lipschitz continuity of operator B seems to be almost inevitably assumed if we want to
apply the Banach contraction principle in the analysis of the existence and uniqueness of asymp-
totically almost periodic solutions to (3.1). We close the paper with the observation that we can
similarly analyze some classes of the abstract nonlinear functional Volterra equations with Lips-
chitz continuous operators, involving the bounded or unbounded delays; for example, in our recent
joint research study [15] with H. C. Koyuncuoğlu and T. Katıcan, we have analyzed the asymptotic
behavior of solutions to the abstract non-linear fractional neutral equation

Dα
a,b

[
u(t)− g

(
t, ut

)]
=

w∑
j=1

Bj(t)u(t+ tj) + f
(
t, ut

)
, t ≥ 0; u0 = ξ,

where Bj(t) are Lipschitz continuous operators, Dα
a,b· is a generalized Hilfer (a, b, α)-fractional

derivative and some extra assumptions are satisfied.
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