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1 Introduction

The primary objective of this study is to examine the existence of mild solutions in α-norm for the
following nonlocal integrodifferential equation

d

dt

[
u(t) +

∫ t

0
N(t− s)u(s) ds

]
= −Au(t) +

∫ t

0
B(t− s)u(s) ds+ f(t, u(t)), t ∈ [0, a],

u(0) = u0 + g(u),
(1.1)

where u(·) is the state variable taking values in a Banach space (X, ∥ · ∥). The operator −A is
the infinitesimal generator of an analytic semigroup (T (t))t≥0 on (X, ∥ · ∥), B(t) is a closed linear
operator with domainD(A),N(t)(t ≥ 0) is bounded linear operators onX , f : [0, a]×Xα −→ X ,
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g : C([0, a];Xα) −→ Xα are given functions to be specified later, and Xα stands for the domain
of the fractional power operator Aα equipped with an adequate norm which will be described in the
sequel.

Neutral integro-differential equations provide an abstract framework for modeling various types
of partial neutral integro-differential equations. These equations are encountered in problems related
to heat flow in materials with memory, viscoelasticity, heat conduction, wave propagation, and
numerous other physical phenomena.

In recent years, the theory of partial neutral integrodifferential equations with nonlocal condi-
tions received a keen interest due to their applications in many practical dynamical phenomena aris-
ing in physics, technical sciences, engineering and economy. The importance of nonlocal conditions
is manifested in their better effects in applications than the classical initial conditions u(0) = u0, for
more details, the reader may see [6,7] and the references given there. For that reason, Byszewski et
al. [4, 5] initiated the study of semilinear evolution nonlocal Cauchy problem. Furthermore, many
authors extended the study to integrodifferential equations. For instance, Fu et al. [14,15] examined
the existence results for various class of nonlocal neutral integrodifferential equations. Dos Santos et
al. [9] proved the existence results for several class of nonlocal fractional neutral integrodifferen-
tial equations with unbounded delay. Zhu et al. [22] investigated the existence and regularity of
solutions for the following neutral integrodifferential problem with nonlocal condition:

d

dt

[
x(t) +

∫ t

0
N(t− s)x(s) ds

]
= A[x(t) +

∫ t

0
F (t− s)x(s) ds] + f(t, x(r(t))), t ∈ [0, T ],

x(0) + g(x) = x0,

in a Banach space X with A(·) the generator of an analytic semigroup and F (t) : D(A) −→ D(A)
and N(t) : X −→ X are two families of bounded linear operators on X . Moreover, the function
r : [0, T ] −→ [0, T ] is continuous and satisfies 0 ≤ r(t) ≤ t and f, g are given functions.

Differential equations with input functions depending on the spatial derivatives of the state vari-
able are frequently used for describing distributed or spatially distributed behavior. This kind of
dependency, which is frequently seen in disciplines like physics, engineering, and biology, can re-
sult in complicated and sometimes nonlinear behavior. The dynamics of fluid flow in a pipe or the
spread of a chemical reaction through a medium can be modeled using these differential equations
in particular, where the input function could stand in for the flow rate or concentration of the fluid
or chemical, respectively, and the spatial derivative of the state variable could stand in for the spatial
variation of the fluid velocity or chemical concentration. As a model for this class one may take the
following nonlocal problem:

∂

∂t

[
v(t, x) +

∫ t

0
(t− s)δe−w(t−s)v(s, x) ds

]
=

∂2

∂x2
v(t, x) +

∫ t

0
e−θ(t−s) ∂

2

∂x2
v(s, x) ds+ h(t,

∂

∂x
v(t, x)), 0 ≤ x ≤ π, 0 ≤ t ≤ b,

v(t, 0) = v(t, π) = 0, t ∈ [0, b],

v(0, x) = v0(x) +

∫ π

0
γ(x, y)

∂v(t0, y)

∂y
dy, 0 ≤ x ≤ π.

Here the situation is completely different. Particularly, if we take X = L2([0, π]), then the second
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variable of h is defined on X 1
2

and so the solutions can not be discussed on X as it cited in many
papers, which implies that the results obtained for example in [11] become invalid.

When N(·) = 0, Ezzinbi et al. [11] proved the existence of mild solutions to the nonlocal
problem (1.1) when g and (T (t))t≥0 are compact. The analysis uses the resolvent operator theory
and the Leray-Schauder alternative. Further progress were made in [13], where the compactness of
g has been avoided and that of (T (t))t≥0 was replaced with the norm continuity of (T (t))t≥0. The
authors used, in their study, the fixed point theorem of Sadovskii-Krasnosel’skii type. Motivated
by the works of Ezzinbi and Ghnimi [11, 13], we investigate the existence of mild solutions of
problem (1.1) by using the resolvent operator in the sense given by Dos santos et al. [10], fractional
power operators theory and α-norm. In particular, our focus lies on the existence of mild solutions
for system (1.1) within the space Xα, instead of the entire state space X , without imposing the
assumption of compactness on the semigroup (T (t))t≥0. This approach allows us to extend the
applicability of the results, even when the nonlinear function f in system (1.1) includes spatial
derivatives. The key distinction is that the function f is defined on [0, a]×Xα, rather than [0, a]×X .
As we will see later, this alteration significantly complicates the discussion at hand.

The rest of this paper is arranged as follows. In section 2, we recall some fundamental properties
of the analytic resolvent operator and fractional powers of closed operators. The existence of mild
solutions will be given in section 3. Finally, in section 4, we give an example to apply the abstract
results.

2 Preliminaries

2.1 Fractional power of closed operators

In the following, the domain Y = D(A) of A is equipped with the graph norm denoted by ∥ · ∥1.
We assume that the resolvent set ρ(A) contains the spectral eigenvalue 0. As a result, we may
define the fractional power Aα for 0 < α < 1 as a closed linear invertible operator on its domain
Xα = D(Aα). The operator Aα is given by Aα = (A−α)−1 where

A−α =
1

Γ(α)

∫ +∞

0
tα−1T (t) dt with Γ(α) =

∫ +∞

0
tα−1e−t dt.

Moreover, for (Aα, D (Aα)), 0 < α < 1, and its inverse A−α, one has the following famous
properties.

Theorem 2.1 [19] Let 0 < α < 1. The following properties are true.

1. Xα = Im(A−α) is a Banach space with the norm ∥x∥α = ∥Aαx∥ for x ∈ Xα.

2. Aα is a closed linear operator with domain Xα and we have Aα = (A−α)−1.

3. A−α is a bounded linear operator on X .

4. If 0 < α ≤ β then D(Aβ) ↪→ D(Aα). Moreover the injection is compact if T (t) is compact
for t > 0.

5. T (t) : X → Xα for t > 0.
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6. AαT (t)x = T (t)Aαx for x ∈ Xα and t ≥ 0.

7. For every t > 0, AαT (t) is bounded on X and there exist Mα > 0 and β ∈ (0, δ) such that

∥AαT (t)∥ ≤Mα
e−βt

tα
for t > 0.

2.2 Analytic resolvent operators

Next, we present the basic theory of resolvent operators for the following linear integrodifferential
equation

d

dt

[
u(t) +

∫ t

0
N(t− s)u(s) ds

]
= Au(t) +

∫ t

0
B(t− s)u(s) ds, t ≥ 0,

u(0) = u0 ∈ X.

(2.1)

Definition 2.1 [10] A one-parameter family of bounded linear operators (R(t))t≥0 on X is called
a resolvent operator of (2.1) if the following conditions are verified.

(i) The function R(·) : [0,∞) → L(X) is strongly continuous, exponentially bounded and
R(0)x = x for all x ∈ X .

(ii) For x ∈ D(A), R(·)x ∈ C([0,∞), Y ) ∩ C1([0,∞), X) and

d

dt

[
R(t)x+

∫ t

0
N(t− s)R(s)x ds

]
= ARx(t) +

∫ t

0
B(t− s)R(s)x ds,

d

dt

[
R(t)x+

∫ t

0
R(t− s)N(s)x ds

]
= R(t)Ax+

∫ t

0
R(t− s)B(s)x ds,

for every t ≥ 0.

In [10], the authors obtained an analytic resolvent operator of Eq.(2.1) under the following
assumptions. The notation f̂ represents the Laplace transform of f .

(V1) The operator −A : D(A) ⊆ X → X is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on X . In this paper, M0 > 0 and ϑ ∈ (π/2, π) are constants such that ρ(A) ⊇
Λϑ = {λ ∈ C\{0} : | arg(λ)| < ϑ} and ∥R(λ,A)∥ ≤M0|λ|−1 for all λ ∈ Λϑ.

(V2) The functionN : [0,∞) → L(X) is strongly continuous and N̂(λ)x is absolutely convergent
for x ∈ X and Re(λ) > 0. There exist α > 0 and an analytical extension of N̂(λ) (still
denoted by N̂(λ)) to Λϑ such that ∥N̂(λ)∥ ≤ N0|λ|−α for every λ ∈ Λϑ, and ∥N̂(λ)x∥ ≤
N1|λ|−1∥x∥1 for every λ ∈ Λϑ and x ∈ D(A).

(V3) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator, D(A) ⊆ D(B(t)) and
B(·)x is strongly measurable on (0,∞) for each x ∈ D(A). There exists a b(·) ∈ L1

loc (R+)

such that b̂(λ) exists for Re(λ) > 0 and ∥B(t)x∥ ≤ b(t)∥x∥1 for all t > 0 and x ∈ D(A).
Moreover, the operator valued function B̂ : Λπ/2 → L(Y,X) has an analytical extension (still
denoted by B̂ ) to Λϑ such that ∥B̂(λ)x∥ ≤ ∥B̂(λ)∥∥x∥1 for all x ∈ D(A), and ∥B̂(λ)∥ → 0
as |λ| → ∞.
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(V4) There exist a subspace D ⊆ D(A) dense in Y and positive constants Ci, i = 1, 2, such
that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), N̂(λ)(D) ⊆ D(A), ∥AB̂(λ)x∥ ≤ C1∥x∥ and
∥N̂(λ)x∥1 ≤ C2|λ|−α∥x∥1 for every x ∈ D and all λ ∈ Λϑ.

(V5) The operator N̂(λ) : Xα → Xα for λ ∈ Λϑ, 0 < α < 1, and ∥N̂(λ)∥α → 0 as |λ| → ∞
uniformly for λ ∈ Λϑ.

In the following, let r > 0 and θ ∈
(
π
2 , ϑ

)
. We define the sets Λr,θ, Γr,θ, Γi

r,θ (for i = 1, 2, 3) as
follows:

Λr,θ = {λ ∈ C\0 : |λ| > r, | arg(λ)| < θ},
Γ1
r,θ = {teiθ : t ≥ r},

Γ2
r,θ = {reiξ : −θ ≤ ξ ≤ θ},

Γ3
r,θ = {te−iθ : t ≥ r},

and

Γr,θ =
3⋃

i=1

Γi
r,θ

oriented counterclockwise.

Additionally, we define the sets Ω(F ) and Ω(G) as follows:

Ω(F ) = {λ ∈ C : F (λ) = (λI + λN̂(λ)−A)−1 ∈ L(X)},

Ω(G) = {λ ∈ C : G(λ) = (λI + λN̂(λ)−A− B̂(λ))−1 ∈ L(X)}.

Theorem 2.2 [10] Assume that conditions (V1)-(V5) are fulfilled. Then there exists a unique
resolvent operator for Eq.(2.1) defined by

R(t) =


1

2πi

∫
Γr,θ

eλtG(λ) dλ t > 0,

I t = 0.

Moreover, there exist positive constants M,Nα such that ∥R(t)∥ ≤ M and ∥AαR(t)∥ ≤ Nα

tα
for

α ∈ (0, 1) and t > 0.

The following Lemmas are essential in our work.

Lemma 2.1 Assume that (V1)-(V5) hold. Then t 7→ AR(t) is norm continuous (or continuous in
the uniform operator topology) for t > 0.

Proof. By employing the estimation (2.12) in [10, Lemma 2.2], we get the result. □

Lemma 2.2 Let 0 < α < 1. Assume that (V1)-(V5) hold. Then, the map t 7→ AαR(t) is norm
continuous (or continuous in the uniform operator topology) for t > 0.
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Proof. Let x ∈ X and t0 > 0. Keeping in mind the moment formula [19], we know that there
exists a positive constant ϱ such that

∥AαR(t)x−AαR(t0)x∥ ≤ ϱ∥R(t)x−R(t0)x∥1−α∥AR(t)x−AR(t0)x∥α.

Since (R(t))t≥0 is analytic, then by Lemma 2.1, we conclude that the map t 7→ AαR(t) is
continuous in the uniform operator topology on (0,+∞). □

Remark 2.1 In general,R(t) and (−A)α do not commute. However, under the following condition

(N̂(λ)− B̂(λ))(−A)−αx = (−A)−α(N̂(λ)− B̂(λ))x for x ∈ D(A),

this commutation can be achieved. In this paper, we make the assumption that this condition is
always satisfied, ensuring that (−A)α commutes with R(t) for any 0 < α < 1.

2.3 The Kuratowski measure of noncompactness

In this part, we describe briefly the Kuratowski measure of noncompactness. Recall that the Kura-
towski measure of noncompactness is defined by:

β(B) = inf{d > 0;B can be covered by a finite number of sets of diameter less than d}

for each bounded subset B of X .

The following lemmas contain several properties of β(·) that are useful for our purpose.

Lemma 2.3 [1] Let B,C ⊆ X be bounded, Then

(1) β(B) = 0 if and only if B is relatively compact,

(2) β(B) = β(B̄) = β(coB), where coB is the closed convex hull of B,

(3) β(B) ≤ β(C) when B ⊆ C,

(4) β(B + C) ≤ β(B) + β(C),

(5) β(B ∪ C) ≤ max{β(B), β(C)},

(6) β(B(0, r)) ≤ 2r, where B(0, r) = {x ∈ X : ∥x∥ ≤ r}.

By a measure of noncompactness on a Banach space X we mean a map ψ : B(X) → R+which
satisfies conditions (1)−(5) in Lemma 2.3 where B(X) stands for the collection of bounded subsets
of X.

For later use, we recall the following lemmas.

Lemma 2.4 [1] Let G : X −→ X be a Lipschitz continuous map with constant k. Then
β(G(B)) ≤ kβ(B) for any bounded subset B of X.
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Lemma 2.5 [20] Let H ⊆ C([0, a], X) be equicontinuous and x0 ∈ C([0, a], X). Then
co (H ∪ {x0}) is also equicontinuous in C([0, a], X).

Lemma 2.6 [1] Let H ⊂ C([0, a];X) be a bounded set. Then β(H(t)) ≤ β(H) for any t ∈ [0, a],
where H(t) = {u(t) : u ∈ H}. Furthermore if H is equicontinuous on [0, a], then t 7−→ β(H(t))
is continuous on [0, a] and

β(H) = sup{β(H(t)) : t ∈ [0, a]}.

Definition 2.2 A set of functions H ⊆ L1([0, a];X) is said to be uniformly integrable if there exists
a positive function κ ∈ L1 ([0, a];R+)such that ∥h(t)∥ ≤ κ(t) a.e. for all h ∈ H.

Lemma 2.7 [17] If {un}n∈N ⊆ L1([0, a];X) is uniformly integrable, then for each n ∈ N the
function t 7→ β

(
{un(t)}n∈N

)
is measurable and

β

({∫ t

0
un(s) ds

}∞

n=1

)
≤ 2

∫ t

0
β ({un(s)}∞n=1) ds.

Lemma 2.8 [2] Let H be a bounded subset of X. Then for each ε > 0, there exists a sequence
{un}n∈N ⊆ H such that

β(H) ≤ 2β ({un}∞n=1) + ε.

We also need the following elementary result.

Lemma 2.9 [16] For all 0 ≤ m ≤ n, we denote Cm
n =

(
m
n

)
. Let 0 < ϵ < 1, h > 0 and

Sn = ϵn + C1
nϵ

n−1h+ C2
nϵ

n−2h
2

2!
+ · · ·+ hn

n!
, n ∈ N.

Then, limn→∞ Sn = 0.

Now, we introduce the following sets. Let M be a nonempty closed convex subset of X and
K,S :M → X be two nonlinear mappings and x0 ∈ X. For any D ⊆M , we define

F (1,x0)(K,S,D) = {x ∈M : x = Sx+Ky, for some y ∈ D}

and
F (n,x0)(K,S,D) = F (1,x0)

(
K,S, co

(
F (n−1,x0)(K,S,D) ∪ {x0}

))
for n = 2, 3, · · · .

Definition 2.3 [20] Let X be a Banach space, M be a nonempty closed convex subset of X and
ψ a measure of noncompactness on X. Let K,S : M → X be two bounded mappings (i.e. they
take bounded sets into bounded ones) and x0 ∈M. We say that K is a S- convex-power condensing
operator about x0 and n0 w.r.t. ψ if for any bounded set D ⊆M with ψ(D) > 0 we have

ψ
(
F (n0,x0)(K,S,D)

)
< ψ(D).
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The following result is the key for our discussion.

Theorem 2.3 [12] Let X be a Banach space and ψ be a measure of noncompactness on X. Let
M be a nonempty bounded closed convex subset of X. Suppose that K,S : M → X are two
continuous mappings satisfying:

(i) S is a strict contraction,

(ii) Sx+Ky ∈M for all x, y ∈M ,

(iii) there are an integer n and a vector x0 ∈ X such that K is S-power-convex condensing w.r.t.
ψ.

Then S +K has at least one fixed point in M .

3 Existence of mild solutions

In this section, we investigate the existence of mild solutions of the nonlocal integrodifferential
equation (1.1). We start by giving the definition of the so-called mild solution of (1.1).

Definition 3.1 A function u : [0, a] −→ Xα is called a mild solution of Equation (1.1) if

(i) u is continuous on [0, a],

(ii) u(t) = R(t)(u0 + g(u)) +

∫ t

0
R(t− s)f(s, u(s)) ds for t ∈ [0, a].

The hypotheses we need are listed below:

(H1) For each t ∈ [0, a], the function f(t, ·) : Xα −→ X is continuous and for each u ∈ Xα, the
function f(·, u) : [0, a] −→ X is measurable.

(H2) There exist ρ ∈ Lq([0, a];R+), with q = 2−α
1−α , and a continuous nondecreasing function

Ω : R+ −→ R+ such that for each t ∈ [0, a] and u ∈ Xα we have

∥f(t, u)∥ ≤ ρ(t)Ω(∥u∥α).

(H3) There exists C ∈ Lq([0, a];R+) such that for any bounded set D ⊂ Xα and t ∈ [0, a]

β(f(t,D)) ≤ C(t)β(D).

(H4) There exists Lg > 0 such that for all u, v ∈ C([0, a], Xα)

∥g(u)− g(v)∥α ≤ Lg∥u− v∥α.

Now, all of this allows us to state the existence result.
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Theorem 3.1 Assume that (V1)-(V5) and (H1)-(H4) hold. Then the nonlocal problem (1.1) has
at least one mild solution on [0, a] provided that

MLg +Mα lim inf
r→∞

Ω(r)

r

(∫ a

0
e−qsρq(s) ds

) 1
q
< 1, (3.1)

where
Mα = Nα

ea

p
1
p
−α

Γ(1− αp)
1
p with q =

2− α

1− α
, p = 2− α.

Proof. We define the operators S,K : C([0, a];Xα) −→ C([0, a];Xα) as follows

(Su)(t) = R(t) (u0 + g(u)) for t ∈ [0, a],

(Ku)(t) =

∫ t

0
R(t− s)f(s, u(s)) ds for t ∈ [0, a].

Then u is a mild solution for (1.1) if and only if u is a fixed point for the sum S + K. We shall
prove that operators S, K satisfy all conditions of Theorem 2.3. This will be achieved in a series of
lemmas.

Lemma 3.1 K,S are continuous on C([0, a];Xα).

Proof. Let {un}n∈N be a sequence in C([0, a];Xα) such that lim
n→∞

un = u in C([0, a];Xα).

By assumption (H1) we know that for a.e. s ∈ [0, a], we have

lim
n→∞

f (s, un(s)) = f(s, u(s)).

Thus

∥Kun −Ku∥α ≤Mα

(∫ a

0
∥e−sf(s, un(s))− e−sf(s, u(s))∥q ds

) 1
q
,

where Mα = Nα
ea

p
1
p−α

Γ(1 − αp)
1
p . Using the dominated convergence theorem, we deduce the

continuity of K. Assumption (H4) gives the continuity of S. □

Lemma 3.2 S is a strict contraction.

Proof. Let u, v ∈ C([0, a];Xα) and t ∈ [0, a]. By assumption (H4), we have

∥(Su)(t)− (Sv)(t)∥α ≤M∥(g(u)− g(v))∥α ≤ ξ∥u− v∥α,

where ξ = NLg < 1. This proves our claim. □

Lemma 3.3 There is a positive constant r0, such that for all u, v ∈ Br0

Su+Kv ∈ Br0 ,

where Br0 = {u ∈ C([0, a];Xα) : ∥u∥α ≤ r0}.
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Proof. We argue by contradiction. If it is not the case, then, for each r > 0, there exists u, v ∈ Br

such that Su+Kv /∈ Br, that is,

r < ∥(Su) + (Kv)∥α ≤M (∥u0∥α + ∥g(0)∥α + rLg) +MαΩ(r)
(∫ a

0
e−qsρq(s) ds

) 1
q
,

where we have used hypothesis (H2). This implies, when dividing by r, that

1 <
M

r
(∥u0∥α + ∥g(0)∥α) +MLg +Mα

Ω(r)

r

(∫ a

0
e−qsρq(s) ds

) 1
q
.

Taking liminf as r → ∞, we obtain

1 ≤MLg +Mα lim inf
r→∞

Ω(r)

r

(∫ a

0
e−qsρq(s) ds

) 1
q
,

which contradicts the assumption (3.1). □

Lemma 3.4 K is S-power-convex condensing.

Proof. The proof of this lemma will be achieved in three steps. Let D be a subset of Br0 .

Step 1: We claim that K(D) =
{
Ku =

∫ ·

0
R(· − s)f(s, u(s)) ds : u ∈ D

}
is equicontinuous.

For t = 0 and t′ > 0

∥Ku(t′)−Ku(0)∥α ≤
∫ t′

0
∥R(t′ − s)f(s, u(s))∥α ds

≤MαΩ(r0)
(∫ t′

0
e−qsρq(s) ds

) 1
q
.

Since s 7→ e−qsρq(s) is integrable, then

sup
u∈B

∥Ku(t′)−Ku(0)∥α −→ 0, as t′ → 0.

Hence, K(D) is equicontinuous at t = 0.

For 0 < t < t′ ≤ a

∥Ku(t′)−Ku(t)∥α ≤
∫ t′

t
∥R(t′ − s)f(s, u(s))∥α ds

+

∫ t

0
∥(R(t′ − s)−R(t− s))f(s, u(s))∥α ds

≤ NαΩ(r0)

∫ t′

t

ρ(s)

(t′ − s)α
ds

+

∫ t

0
∥Aα

(
R(t′ − s)−R(t− s)

)
∥∥f(s, u(s))∥ds

≤MαΩ(r0)
(∫ t′

t
e−qsρq(s) ds

) 1
q

+Ω(r0)

∫ t

0
∥Aα

(
R(t′ − s)−R(t− s)

)
∥ρ(s) ds

≤ I1 + I2,
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where

I1 =MαΩ(r0)
(∫ t′

t
e−qsρq(s) ds

) 1
q
,

I2 = Ω(r0)

∫ t

0
∥Aα

(
R(t′ − s)−R(t− s)

)
∥ρ(s) ds.

It is obvious that I1 → 0 as t′ → t independently of u ∈ D. Moreover, by Lemma 2.2, we deduce
that I2 → 0 as t′ → t independently of u ∈ D.
Step 2: We shall prove that F (n,0)(K,S,D) is equicontinuous on [0, a] for any integer n ≥ 1. To
achieve this, notice first that for u ∈ F (1,0)(K,S,D) there exists v ∈ D such that u = Su +Kv.
Then, for t, t′ ∈ [0, a], we have∥∥u(t)− u

(
t′
)∥∥

α
=

∥∥Su(t) +Kv(t)− Su
(
t′
)
−Kv

(
t′
)∥∥

α

≤
∥∥Su(t)− Su

(
t′
)∥∥

α
+
∥∥Kv(t)−Kv

(
t′
)∥∥

α

≤ ξ
∥∥u(t)− u

(
t′
)∥∥

α
+
∥∥Kv(t)−Kv

(
t′
)∥∥

α
.

Hence, ∥∥u(t)− u
(
t′
)∥∥

α
≤ 1

1− ξ

∥∥Kv(t)−Kv
(
t′
)∥∥

α
.

Now the equicontinuity of F (1,0)(K,S,D) follows from Step 1. The same reasoning as above
implies that F (2,0)(K,S,D) := F (1,0)

(
K,S, co

(
F (1,0)(K,S,D) ∪{0}), is equicontinuous. By

mathematical induction we can show that F (n,0)(K,S,D) is equicontinuous for all n ≥ 1.
Step 3: We claim that there is an integer n0 such that α

(
F (n0,0)(K,S,D)

)
< α(D). Notice that

for t ∈ [0, a], we have

F (1,0)(K,S,D)(t) =
{
u(t), u ∈ F (1,0)(K,S,D)

}
⊆
{
u(t)− Su(t), u ∈ F (1,0)(K,S,D)

}
+
{
Su(t), u ∈ F (1,0)(K,S,D)

}
.

By using the properties of the measure of noncompactness and properties of S, we get

β
(
F (1,0)(K,S,D)(t)

)
≤ β(K(D)(t)) + ξα

(
F (1,0)(K,S,D)(t)

)
.

Which implies that

β
(
F (1,0)(K,S,D)(t)

)
≤ 1

1− ξ
β(K(D)(t)). (3.2)

On the other hand since K(D) is bounded, then from Lemma 2.8 for each ε > 0, there exists a
sequence {vn}n∈N ⊆ K(D) such that

β(K(D)(t)) ≤ 2β ({vn(t)}∞n=1) + ε ≤ 2β

({∫ t

0
R(t− s)f (s, un(s)) ds

}∞

n=1

)
+ ε,

since s 7→ sup
n≥1

∥R(t− s)f (s, un(s))∥α is integrable on [0, a]. Then Lemma 2.7 implies that

β(K(D)(t)) ≤ 4Nα

∫ t

0

1

(t− s)α
β ({f (s, un(s))}∞n=1) ds+ ε.
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Thus by (H3), we gain

β(K(D)(t)) ≤ 4Nα

∫ t

0

C(s)

(t− s)α
β
(
{un(s)}n∈N

)
ds+ ε

≤ 4Nαβ(D)

∫ t

0

C(s)

(t− s)α
ds+ ε

≤ 4Mαβ(D)
(∫ t

0
Cq(s) ds

) 1
q
+ ε.

From the density of C ([0, a];R+) in Lq ([0, a];R+) and since C ∈ Lq ([0, a];R+), then for

δq < (1−k)q

23q−1Mq
α

there exists φ ∈ C ([0, a];R+) satisfying
∫ a

0
|C(s)−φ(s)|q ds < δq. Consequently

β(K(D)(t)) ≤ 4Mαβ(D)

[
2q−1

∫ t

0
|C(s)− φ(s)|q ds+ 2q−1

∫ t

0
|φ(s)|q ds

] 1
q

+ ε

≤ 4Mαβ(D)2
1− 1

q [δq + τ qt]
1
q + ε,

where τ = sup
0≤s≤a

φ(s). Letting ε→ 0, we get

β(K(D)(t)) ≤ 4Mα2
1− 1

q [δq + τ qt]
1
q β(D).

This means by (3.2) that

β
(
F (1,0)(K,S,D)(t)

)
≤ (λ+ µt)

1
q β(D),

where λ = 23q−1Mq
αδ

q

(1−ξ)q and µ = 23q−1Mq
ατ

q

(1−ξ)q . On the other hand,

F (2,0)(K,S,D)(t)

⊆
{
u(t)− Su(t), u ∈ F (2,0)(K,S,D)

}
+
{
Su(t), u ∈ F (2,0)(K,S,D)

}
⊆

{
Kv(t), v ∈ co

(
F (1,0)(K,S,D) ∪ {0}

)}
+
{
Su(t), u ∈ F (2,0)(K,S,D)

}
.

Referring to Lemmas 2.3 and 2.4, we see that

β
(
F (2,0)(K,S,D)(t)

)
≤ β

(
K

(
co

(
F (1,0)(K,S,D) ∪ {0}

))
(t)

)
+ ξβ

(
F (2,0)(K,S,D)(t)

)
.

Thus

β
(
F (2,0)(K,S,D)(t)

)
≤ 1

1− ξ
β
(
K

(
co

(
F (1,0)(K,S,D) ∪ {0}

))
(t)

)
. (3.3)

Furthermore, from Lemma 2.8, there exists a sequence {wn}n∈N ⊆ co
(
F (1,0)(K,S,D) ∪{0})
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such that

β
(
K

(
co

(
F (1,0)(K,S,D) ∪ {0}

))
(t)

)
≤ 2β

({∫ t

0
R(t− s)f (s, wn(s)) ds

}∞

n=1

)
+ ε

≤ 4Nα

∫ t

0

1

(t− s)α
β ({f (s, wn(s))}∞n=1) ds+ ε

≤ 4Nα

∫ t

0

C(s)

(t− s)α
β
(
co

(
F (1,0)(K,S,D) ∪ {0}

)
(s)

)
ds+ ε

≤ 4Nα

∫ t

0

C(s)

(t− s)α
β
(
F (1,0)(K,S,D)(s)

)
ds+ ε.

By combining (3.2) and (3.3), we obtain

β
(
F (2,0)(K,S,D)(t)

)
≤ 4Nα

(1− ξ)

(∫ t

0
2q−1[|C(s)− φ(s)|q + |φ(s)|q](λ+ µs) ds

) 1
q
β(D) +

ε

(1− ξ)

≤
[
λ(λ+ µt) + µ

(
λt+ µ

t2

2

)] 1
q

β(D) +
ε

(1− ξ)

≤
[
λ2 + 2λµt+

(µt)2

2

] 1
q

β(D) +
ε

(1− ξ)
.

Letting ε→ 0, we gain

β
(
F (2,0)(K,S,D)(t)

)
≤

[
λ2 + 2λµt+

(µt)2

2

] 1
q

β(D).

By mathematical induction, we obtain that for all n ≥ 1

β
(
F (n,0)(K,S,D)(t)

)
≤

[
λn + C1

nλ
n−1µt+ C2

nλ
n−2 (µt)

2

2!
+ · · ·+ (µt)n

n!

] 1
q

β(D).

Using the equicontinuity of F (n,0)(K,S,D) together with Lemma 2.6, we conclude that

β
(
F (n,0)(K,S,D)

)
≤

[
λn + C1

nλ
n−1µa+ C2

nλ
n−2 (µa)

2

2!
+ · · ·+ (µa)n

n!

] 1
q

β(D).

Since 0 < λ < 1 and µa > 0, it follows from Lemma 2.9 that there exists n0 ∈ N such that

β
(
F (n0,0)(K,S,D)

)
< β(D).

Hence K is S-power-convex condensing. This completes the proof of the Lemma. □

Consequently, applying Theorem 2.3 together with Lemmas 3.1, 3.2, 3.3, 3.4, we deduce that
S +K has at least one fixed point in Br0 which is a mild solution of (1.1). □



94 Matloub and Ezzinbi, J. Nonl. Evol. Equ. Appl. 2024 (2024) 81–98

4 Application

We consider the following partial integrodifferential equation with nonlocal condition

∂

∂t

[
v(t, x) +

∫ t

0
(t− s)δe−w(t−s)v(s, x) ds

]
=

∂2

∂x2
v(t, x) +

∫ t

0
e−θ(t−s) ∂

2

∂x2
v(s, x) ds+ f1(t)f2(

∂

∂x
v(t, x)), 0 ≤ x ≤ π, 0 ≤ t ≤ b,

v(t, 0) = v(t, π) = 0, t ∈ [0, b],

v(0, x) = v0(x) +

∫ π

0
γ(x, y)

∂v(t0, y)

∂y
dy, 0 ≤ x ≤ π.

(5.1)
In this system, δ ∈ (0, 1), w, θ are positive constants, 0 < t0 < b and v0 ∈ L2([0, π]). Moreover,
γ : [0, π] × [0, π] −→ R is a C1-function, f1 : [0, b] −→ R is continuous and f2 : R −→ R is a
Lipshitz continuous map with constant k.

In order to write Eq.(5.1) in the abstract form, take X = L2([0, π]) and let A be defined by
D(A) = H2(0, π) ∩H1

0 (0, π),

Au = −u′′.

Then −A generates a strongly continuous semigroup (T (t))t≥0 which is analytic. Hence, by [18,
Theorem 4.6], A is sectorial and (V1) is satisfied. Moreover, A has a discrete spectrum, the eigen-

values are {−n2, n ∈ N∗} with the corresponding normalized eigenvectors en(x) =
(
2
π

) 1
2 sin(nx)

[21]. Finally, we have the following famous properties:

(i) If u ∈ D(A), then Au =
+∞∑
n=1

n2 < u, en > en.

(ii) The operator A
1
2 is given by

D(A
1
2 ) =

{
u ∈ X,

+∞∑
n=1

n < u, en > en ∈ X

}
,

A
1
2u =

+∞∑
n=1

n < u, en > en.

The kernel system B(·) is given by
D(B) = D(A)

(B(t)u)(x) = e−θtu′′(x) for t ∈ [0, b] and x ∈ [0, π],

and the operator N(·) is defined by
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(N(t)u)(x) = tδe−wtu(x) for t ∈ [0, b] and x ∈ [0, π].

In addition, one can see that conditions (V2)−(V5) are satisfied with N̂(λ) =
Γ(δ + 1)

(λ+ w)δ+1
, b(t) =

e−γt and D = C∞
0 ([0, π]), where C∞

0 ([0, π]) is the space of infinitely differentiable functions that
vanish at ξ = 0 and ξ = π. Hence, according to [10], the linear equation (2.1) has an analytic
resolvent operator (R(t))t≥0.

Define the source function f : [0, b]×X 1
2
−→ X by

f(t, u)(x) = f1(t)f2(u
′(x))

and g : C([0, b], X 1
2
) −→ X 1

2
by

g(u)(x) =

∫ π

0
γ(x, y)

∂u(t0)

∂y
(y) dy.

Then our problem can be written in the abstract form (1.1).

Lemma 4.1 [21] If y ∈ X 1
2
, then y is absolutely continuous, y′ ∈ X and

∥y∥ 1
2
=

∥∥y′∥∥ =
∥∥∥A 1

2 y
∥∥∥ .

Let (t, u) ∈ [0, b]×X 1
2
, then we have

∥f(t, u)∥2 =
∫ π

0

∣∣f1(t)f2 (u′(x))∣∣2 dx

= |f1(t)|2
∫ π

0

∣∣f2 (u′(x))∣∣2 dx

≤ |f1(t)|2
∫ π

0

(
k
∣∣u′(x)∣∣+ |f2(0)|

)2
dx

≤ |f1(t)|2
(
k2

∫ π

0

∣∣u′(x)∣∣2 dx+ 2k|f2(0)|
∫ π

0

∣∣u′(x)∣∣ dx+ |f2(0)|2π
)
,

using Cauchy-Schwarz inequality and Lemma 4.1, we obtain

∥f(t, u)∥2 ≤ |f1(t)|2
(
k2∥u∥21

2

+ 2k|f2(0)|
√
π∥u∥ 1

2
+ |f2(0)|2π

)
,

then we get
∥f(t, u)∥ ≤ ρ(t)Ω(∥u∥ 1

2
),

where
ρ(t) = |f1(t)|, Ω(r) = kr + |f2(0)|

√
π.

To prove the continuity of the map f , we need the following Lemma:

Lemma 4.2 [3] Let 1 < p < ∞, Ω an open set in Rn and {fn}n≥0 be a sequence in Lp(Ω).
Suppose that fn −→ f as n −→ +∞ in Lp(Ω). Then there exist a subsequence {fnk

}k≥0 of
{fn}n≥0 and h ∈ Lp(Ω) such that
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(i) fnk
−→ f a.e in Ω.

(ii) |fnk
(x)| ≤ |h(x)|, a.e. in Ω.

Let {un}n≥0 ⊂ X 1
2

such that un −→ u as n→ +∞ in X 1
2
, then u′n −→ u′ as n→ +∞ in X .

Using Lemma 4.2, we deduce that there exist a subsequence {unk
}k≥0 and l ∈ X such that

lim
k→+∞

u′nk
(x) = u′(x),

and ∣∣u′nk
(x)

∣∣ ≤ |l(x)| a.e.

Since h is continuous, then
lim

k→+∞
f2

(
u′nk

(x)
)
= f2

(
u′(x)

)
.

By the Dominated Convergence Theorem, we conclude that

lim
k→+∞

f (t, unk
) = f(t, u).

Since that limit is independent of {unk
}k≥0, we infer that

lim
n→+∞

f (t, un) = f(t, u).

Which proves the continuity of f . Hence, (H1) and (H2) are satisfied.

Furthermore, for any bounded subset D ⊂ X 1
2

we have

β(f(t,D)) ≤ |f1(t)|β(f2(D)) ≤ k|f1(t)|β(D),

where we have applied Lemma 2.4. Thus, (H3) is satisfied with C(·) = k|f1(·)|.

On the other hand, let u, v ∈ C([0, b], X 1
2
). Then, we have

∥g (u)− g(v)∥21
2
= ∥(g(u))′ − (g(v))′∥2

=

∫ π

0

∣∣∣∣∫ π

0

∂

∂x
γ(x, y)

[
∂u(t0)

∂y
(y)− ∂v(t0)

∂y
(y)

]
dy

∣∣∣∣2 dx

≤ π2 sup
(x,y)∈[0,π]×[0,π]

| ∂
∂x
γ(x, y)|2

∫ π

0

∣∣∣∣∂u(t0)∂y
(y)− ∂v(t0)

∂y
(y)

∣∣∣∣2 dy.

This implies that g is Lipschitzian. Hence, (H4) is satisfied.

Proposition 4.1 If Mπ

√
sup

(x,y)∈[0,π]×[0,π]
|∂γ(x, y)

∂x
| + kM 1

2

(∫ b

0
(e−s|f1(s)|)3 ds

)
< 1, then

Eq.(5.1) has at least one mild solution.
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