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1 Introduction

The concept of (ω, c)–periodic functions was introduced by E. Alvaraz et al. [3], as a variant of
Bloch periodicity [9], which contains among others the class of periodic and antiperiodic functions.
This type of functions was motivated by the Mathieu’s equation

y′′(t) + [a− 2q cos(2t)]y(t) = 0

arising in seasonally forced population dynamics modeling. In recent years, several authors have
been interested in periodic functions and their applications. In 2019, J. R. Wang, L. Ren and
Y. Zhou [17] studied (ω, c)–periodic solutions for time varying impulsive differential equations.
In 2020 G. Mophou and G. M. N’Guérékata [15] studied an existence result of (ω, c)–periodic
mild solutions to some fractional differential equations. In 2021 M. Kéré, G. M. N’Guérékata and
E. R. Oueama [11] studied an existence result of (ω, c)–almost periodic mild solutions to some frac-
tional differential equations. For more results of periodic functions, see [3, 10, 13, 1, 2, 14, 12, 6].

Recently in 2019, E. Alvarez, S. Castillo and M. Pinto [4] extended the concept to the one of
(ω, c)–asymptotically periodic functions, see also [9]. A continuous function f is said to be (ω, c)–
asymptotically periodic if it can be written as f = g + h where g is a (ω, c)–periodic function and
h is c–asymptotic. This new concept attracted authors like J. Larrouy and G. M. N’Guérékata [13].
They did an excellent work on (ω, c)–periodic and asymptotically (ω, c)–periodic mild solutions
to fractional Cauchy problems. In their paper, they established some new properties of (ω, c)–
periodic and asymptotically (ω, c)–periodic functions and studied the existence and uniqueness of
mild solutions of these types to semilinear fractional differential equations.

In 2013, J. Q. Zhao, Y. K. Chang and G. M. N’Guérékata studied the asymptotic behavior of
mild solutions to semilinear fractional differential equations (3.1)–(3.2) in Banach space [18].
In our paper, we consider the following equations:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0,

u(0) = u0,

where A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type on a complex
Banach space X, u0 ∈ X, f : R+ × X,X is asymptotically (ω, c)–periodic in t ∈ R+ and Dα

t (·)
(1 < α < 2) stands for the Riemann–Liouville fractional derivative.

The main purpose is to study the existence and uniqueness of (ω, c)–asymptotically periodic
mild solution. For this, we use two tools, namely the Banach fixed point principle and the well-
known alternative theorem of Leray–Schauder. Theorems 3.2 and 3.3 are our main results.

2 Preliminaries

In what follows, we assume that (X, ∥.∥) and (Y, ∥.∥) are two complex Banach spaces, and we
will denote by C(R,X) the collection of all continuous functions from R into X, and BC(R,X)
the collection of all bounded continuous functions from R into X. The space BC(R,X) equipped
with the sup norm defined by ∥f∥∞ := supt∈R ∥f(t)∥ is a Banach space. The notation B(X,Y)
stands for the space of bounded linear operators from X into Y endowed with the uniform operator
topology and we abbreviate to B(X) whenever X = Y.
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Now we recall some definitions, properties about sectorial linear operators and their associated
solution operators and some notions of (ω, c)–asymptotically periodic functions.

2.1 Sectorial linear operators and their associated solution operator

A closed and linear operator A is said to be sectorial if there exist 0 < θ < π
2 , M > 0 and ω̃ ∈ R

such that its resolvent exists outside the sector ω̃ + Sθ := {ω̃ + λ : λ ∈ C, | arg(−λ)| < ω̃} and

∥(λ−A)−1∥ ≤ M

|λ− ω̃|
, λ /∈ ω̃ + Sθ.

Definition 2.1 ([18]): Let 1 < α < 2 and A be a closed and linear operator with domain D(A)
defined on a Banach space X. The operator A is called a generator of a solution operator if there
exist ω̃ ∈ R and a strongly continuous function Eα : R+ → B(X) such that {λα : Reλ > ω̃} ⊂
ρ(A) and λα−1(λαI − A)−1x =

∫∞
0 e−λtEα(t)x dt, Reλ > ω̃, x ∈ X. In this case, Eα(t) is

called the solution operator generated by A.
We note that, if A is sectorial of type ω̃ ∈ R with 0 ≤ θ ≤ π(1 − α

2 ), then A is the generator of a
solution operator given by

Eα(t) :=
1

2πi

∫
ϕ
etλ(λα −A)−1λα−1 dλ

where ϕ is a suitable path lying outside the sector ω̃ + Sθ.

Lemma 2.2 ([5, 18]): Let A : D(A) ⊂ X → X be a sectorial operator in a complex Banach space
X satisfying ω̃ + Sθ := {ω̃ + λ : λ ∈ C, | arg(−λ)| < θ} and

∥(λ−A)−1∥ ≤ M

|λ− ω̃|
, λ /∈ ω̃ + Sθ

for some M > 0, ω̃ < 0 and 0 < θ < π(1− α
2 ) <

π
2 .

Then, there exists C > 0 such that

∥Eα(t)∥B(X) ≤
CM

1 + |ω̃|tα
, t ≥ 0 .

Definition 2.3 ([16]): The derivative of order α of a function u : R+ → R in the sense of Riemann–
Liouville is defined as

Dα
t u(t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
u(s) ds, n− 1 < α < n , n ∈ N.

If 1 < n < 2, then

Dα
t u(t) =

d2

dt2

∫ t

0

(t− s)2−α−1

Γ(2− α)
u(s) ds.

Definition 2.4 ([16]): The integral of order α of a function u : R+ → R in the sense of Riemann-
Liouville is defined as

Iαt u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s) ds.
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Remark 2.5 ([16]): If α ∈ R+
∗ , then the integral of order α of u is also considered as the derivative

of order −α in the sense of Riemann-Liouville :

Iαt u(t) = D−α
t u(t).

2.2 (ω, c)-asymptotically periodic functions

Definition 2.6 ([3]): A function f ∈ C(R,X) is said to be (ω, c)–periodic if there exist c ∈ C\{0}
and ω > 0 such that

f(t+ ω) = cf(t), ∀t ∈ R.

ω is called the cperiod of f .
We denote by Pω,c(X) the collection of all functions f ∈ C(R,X) which are (ω, c)–periodic.
When c = 1, we write Pω(X) instead Pω,1(X) and we say that f is ω–periodic.
We define ct/ω := exp

(
(t/ω) log(c)

)
and we will use the notation c∧(t) := ct/ω and |c|∧(t) :=

|c|t/ω.

The following proposition provides a characterization of (ω, c)–periodic functions.

Proposition 2.7 ([3]): Let c ∈ C \ {0} and ω > 0. A function f ∈ C(R,X) is said to be (ω, c)–
periodic if and only if:

f(t) = c∧(t)u(t), u(t) ∈ Pω(X).

Lemma 2.8 ([13]): Let u ∈ Pω,c(R,X). Then u ∈ P−ω,c−1(R,X).

We will prove the following

Theorem 2.9 Let u ∈ Pω,c(R,X). Then D. α
t u(t) ∈ Pω,c(R,X) if

dn−1

dtn−1

∫ ω

0
(t+ ω − τ)n−α−1u(τ) dτ ∈ R ,

where Dα
t (·) is the Riemann–Liouville fractional derivative.

Proof. We have

Dα
t u(t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
u(s) ds, n− 1 < α < n ,

therefore

Dα
t u(t+ ω) =

1

Γ(n− α)

dn

dtn

∫ t+ω

0
(t+ ω − s)n−α−1u(s) ds.
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Let us use ξ = s− ω. With this notation,

Dα
t u(t+ ω) =

1

Γ(n− α)

dn

dtn

∫ t

−ω
(t− ξ)n−α−1u(ξ + ω) dξ

=
c

Γ(n− α)

dn

dtn

∫ t

−ω
(t− ξ)n−α−1u(ξ) dξ

=
c

Γ(n− α)

dn

dtn

∫ t

0
(t− ξ)n−α−1u(ξ) dξ

+
c

Γ(n− α)

dn

dtn

∫ 0

−ω
(t− ξ)n−α−1u(ξ) dξ

= cDα
t u(t) +

c

Γ(n− α)

dn

dtn

∫ 0

−ω
(t− ξ)n−α−1u(ξ) dξ.

After a change of variable τ = ξ + ω, we obtain

Dα
t u(t+ ω) = cDα

t u(t) +
c

Γ(n− α)

dn

dtn

∫ ω

0
(t+ ω − τ)n−α−1u(τ − ω) dτ.

Using Lemma 2.8, we have

Dα
t u(t+ ω) = cDα

t u(t) +
1

Γ(n− α)

dn

dtn

∫ ω

0
(t+ ω − τ)n−α−1u(τ) dτ.

Since
dn−1

dtn−1

∫ ω

0
(t+ ω − τ)n−α−1u(τ) dτ ∈ R ,

then
1

Γ(n− α)

dn

dtn

∫ ω

0
(t+ ω − τ)n−α−1u(τ) dτ = 0

therefore
Dα

t u(t+ ω) = cDα
t u(t).

Finally, Dα
t u(t) ∈ Pω,c(R,X). □

Lemma 2.10 Let u ∈ Pω,c(R,X). Then Iαt u(t) ∈ Pω,c(R,X) if

dn−1

dtn−1

∫ ω

0
(t+ ω − τ)n+α−1u(τ) dτ ∈ R

where Iαt (·) is the Riemann–Liouville fractional integral.

Proof. We know that Iαt u(t) = D−α
t u(t), therefore

Iαt u(t+ ω) = D−α
t u(t+ ω)

= cD−α
t u(t) +

1

Γ(n+ α)

dn

dtn

∫ ω

0
(t+ ω − τ)n+α−1u(τ) dτ.

Since
dn−1

dtn−1

∫ ω

0
(t+ ω − τ)n+α−1u(τ) dτ ∈ R,
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we have
dn

dtn

∫ ω

0
(t+ ω − τ)n+α−1u(τ) dτ = 0.

Therefore

Iαt u(t+ ω) = cD−α
t u(t)

= c Iαt u(t).

Consequently, Iαt u(t) ∈ Pω,c(R, X). □

We define the following spaces of functions vanishing at infinity:

C0(X) :=
{
h ∈ C(R+,X) : lim

t→∞
h(t) = 0

}
and

C0(Ω,X) :=
{
h ∈ C(R+ × Ω,X) : lim

t→∞
h(t, x) = 0 for all x in any compact subset of Ω

}
.

Definition 2.11 ([4]): A function h ∈ C(R,X) is called c–asymptotic if c∧(−t)h(t) ∈ C0(X), i.e.,

lim
t→∞

c∧(−t)h(t) = 0.

The collection of these functions will be denoted by C0,c(X).

Definition 2.12 ([4]): A function f ∈ C(R,X) is said to be (ω, c)–asymptotically periodic if f =
g + h where g ∈ Pω,c(R,X) and h ∈ C0,c(X). The collection of these functions (with the same
c–period ω for the first component) will be denoted by APω,c(X).

The following proposition provides a characterization of asymptotically (ω, c)–periodic func-
tions.

Proposition 2.13 ([4]): Let f ∈ C(R,X). Then f is (ω, c)–asymptotically periodic if and only if:

f(t) := c∧(t)u(t)

where u ∈ APω(X).

Lemma 2.14 ([4]): Let α ∈ C. Then

1. (f + g) ∈ APω,c(X) and αh ∈ APω,c(X) whenever f, g, h ∈ APω,c(X)

2. If τ ≥ 0 is constant, then fτ (t) = f(t+ τ) ∈ APω,c(X) whenever f ∈ APω,c(X)

3. Let g ∈ Pω,c(X) and h ∈ C0,c(X) such that g, h ∈ C1(R,X). Then the derivative of (f =
g + h) ∈ APω,c(X) belongs to APω,c(X).

Theorem 2.15 ([4]): Let f(t, x) := g(t, x) + h(t, x) where g(t + ω, cx) = cg(t, x) and h ∈
C0,c(X,X). Let us assume the following conditions:
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(1) ht(z) = c∧(−t)h(c∧(t)z) is uniformly continuous for z in any bounded subset of X uniformly
for t ≥ d and ht(z) → 0 as t→ ∞ uniformly in z.

(2) There exists v ∈ BC(R+,R+) such that

∥f(t, u1)− f(t, u2)∥ ≤ v(t)∥u1 − u2∥, ∀ u1, u2 ∈ X, t ∈ R+.

If u ∈ APω,c(X), then f(., u(.)) ∈ APω,c(X).

Theorem 2.16 [4]): APω,c([d,∞)× X,X) is a Banach space with the norm

∥f∥aω,c := sup
t≥d

∥|c|∧(−t)f(t)∥.

In the sequel, we will consider t ∈ R+. Hence we will use ∥f∥aω,c as

∥f∥aω,c := sup
t≥0

∥|c|∧(−t)f(t)∥.

Proposition 2.17 ([13]): Let A : D(A) ⊂ X → X be a sectorial operator of type ω̃ < 0 and θ in
a complex Banach space X. If |c| ≥ 1, then there exists C > 0 depending solely on α and θ such
that:

∥Eα(t)∥aω,c ≤
CM

1 + |ω̃|tα
, t ≥ 0.

Theorem 2.18 ([13, 7]): Assume that A is sectorial of type ω̃ < 0. If f : R+ → X is an (ω, c)–
asymptotically periodic function, then the function

F (t) :=

∫ t

0
Eα(t− ξ)f(ξ) dξ

belongs to APω,c(X).

In what follows, we will need the following results which you can refer to [13]:
Let h : R+ → [1;∞) be a continuous function such that h(t) ≥ 1 for all t ∈ R+ and h(t) → ∞
as t→ ∞. Initially we set Ch(R+,X) for the space consisting of continuous function u : R+ → X
such that ∥u∥h = sup

t∈R+

∥u∥aω,c

h(t) , endowed with the norm ∥u∥h = sup
t∈R+

∥u∥aω,c

h(t) . It turns out to be a

Banach space. We also denote

C0
h(R+,X) :=

{
u ∈ Ch(R+,X) : lim

t→+∞

∥u∥aω,c
h(t)

= 0
}
.

Lemma 2.19 ([18]): A subsetR ⊆ C0
h(R+,X) is a relatively compact set if it verifies the following

conditions:

(1) The set Rb = {u[0,b] : u ∈ R} is relatively compact in C([0, b],X),∀b ∈ R+ .

(2) lim
t→+∞

∥u∥aω,c

h(t) = 0, uniformly for u ∈ R.
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3 Main results

In this section, we mainly deal with the existence of (ω, c)–asymptotically periodic mild solutions
to the following semilinear fractional differential equations:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), 1 < α < 2, t ≥ 0, (3.1)

u(0) = u0 , (3.2)

where A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type ω̃ < 0 on a
complex Banach space X, u0 ∈ X, f ∈ APω,c(R+ × X,X) such that f(t, x) := g(t, x) + h(t, x)
where g ∈ Pω,c(R+×X,X) and h ∈ C0,c(X). Dα

t (·) (1 < α < 2) stands for the Riemann–Liouville
fractional derivative.

Definition 3.1 ([18]): Assume that A generates an integral solution operator Eα. A continuous
function u : R+ → X satisfying the integral equation:

u(t) = Eα(t)u0 +

∫ t

0
Eα(t− s)f(s, u(s)) ds, t ≥ 0,

is called a mild solution on R+ to equations (3.1)–(3.2)

In the sequel, we assume that:

(H1) hτ (z) = c∧(−t)h(c∧(t)z) is uniformly continuous for z in any bounded subset of X uni-
formly for t ≥ d and hτ (z) → 0 as t→ ∞ uniformly in z.

(H2) f ∈ APω,c(R+ × X,X) and there exists a constant Lf > 0 such that:

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥, for all t ∈ R+, x, y ∈ X.

(H3) (Eα(t))t≥0 ⊂ B(X) is a strongly continuous family of linear operators.

Theorem 3.2 Under assumptions (H1)–(H3), if we assume that |c| ≥ 1, then there exists a unique
(ω, c)– asymptotically periodic mild solution to equations (3.1)–(3.2), provided that there is a con-
stant γ :=

CM( π
α
)

|ω̃|
1
α sin( π

α
)
Lf < 1.

Proof. Consider the operator Λ : APω,c(R+ × X,X) → APω,c(R+ × X,X) such that

(Λu)(t) := Eα(t)u0 +

∫ t

0
Eα(t− s)f(s, u(s)) ds, t ≥ 0. (3.3)

According to Theorem 2.15, we clearly have that f(t, u(t)) ∈ APω,c(R+ × X,X). Moreover, by
Theorem 2.18, we have

∫ t
0 Eα(t − s)f(s, u(s)) ds ∈ APω,c(X). Now, from Lemma 2.2 we note

that

∥|c|∧(−t)Eα(t)u0∥ ≤ CM |c|−t/ω

1 + |ω̃|tα
∥u0∥. (3.4)



PERIODIC SOLUTIONS TO FRACTIONAL EQUATIONS 75

Since

lim
t→∞

CM |c|−t/ω

1 + |ω̃|tα
∥u0∥ = 0,

then Eα(t)u0 ∈ C0,c(X) ⊆ APω,c(X) and hence Eα(t)u0 ∈ APω,c(X). Therefore, by Lemma
2.14, we have Eα(t)u0 +

∫ t
0 Eα(t− s)f(s, u(s)) ds ∈ APω,c(X). Finally Λ is well defined.

Let u, v ∈ APω,c(X). Then

∥Λu(t)− Λv(t)∥aω,c = sup
t≥0

{
∥|c|−t/ω

∫ t

0
Eα(t− s)

[
f(s, u(s))− f(s, v(s))

]
ds∥

}
= sup

t≥0

{
∥
∫ t

0
|c|−(t−s)/ωEα(t− s)|c|−s/ω

[
f(s, u(s))− f(s, v(s))

]
ds∥

}
≤ Lf sup

t≥0

{∫ t

0
|c|−(t−s)/ω∥Eα(t− s)∥B(X) × ∥|c|−s/ω(u(s)− v(s))∥ ds

}
≤ CMLf sup

t≥0

{∫ t

0
|c|−(t−s)/ω 1

1 + |ω̃|(t− s)α
ds

}
∥u− v∥aω,c.

On the one hand, if |c| ≥ 1 and 0 ≤ s ≤ t, then |c|−(t−s)/ω ≤ 1.
On the other hand, according to [7], we get∫ t

0

1

1 + |ω̃|(t− s)α
ds =

π
α

|ω̃|
1
α sin(πα)

.

Hence

∥Λu(t)− Λv(t)∥aω,c ≤
CM(πα)

|ω̃|
1
α sin(πα)

Lf∥u− v∥aω,c

≤ γ∥u− v∥aω,c

Therefore when γ < 1, we deduce by the Banach contraction principle that Λ has a unique mild
solution u ∈ APω,c(X). Finally, Problem (3.1)–(3.2) has a unique (ω, c)–asymptotically periodic
mild solution. □

Let us formulate the following assumptions:

(H4) f(t, u) is uniformly continuous on any bounded subset Ω ∈ X uniformly in t ∈ R+ and for
every bounded subset Ω ∈ X, {f(., u) : u ∈ Ω} is bounded in APω,c(Ω,X).

(H5) There exists a continuous nondecreasing function ψ : R+ → R+ such that for all t ∈ R+ and
u ∈ X, ∥f(t, u)∥aω,c ≤ ψ(∥u∥aω,c).

(H6) f is satisfying Theorem 2.15.

Now we establish an existence theorem of (ω, c)–asymptotically periodic mild solution to equa-
tions (3.1)–(3.2) without a Lipschitz condition.

Theorem 3.3 Assume that f ∈ APω,c(R+ × X,X) with |c| ≥ 1, satisfying (H3)–(H6), and the
following additional conditions:
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(1) For each r > 0,
∥u0∥

1 + |ω̃|tα
+ sup

t≥0

{∫ t

0

ψ(rh(s))

1 + |ω̃|(t− s)α
ds

}
<∞

that is

lim
t→∞

1

h(t)

( ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(rh(s))

1 + |ω̃|(t− s)α
ds

})
= 0,

where h is the function given in lemma 2.19 and we set

ϱ(r) = CM
∥∥∥ ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(rh(s))

1 + |ω̃|(t− s)α
ds

}∥∥∥
h
.

(2) For each ε > 0, there is δ > 0 such that for every u, v ∈ C0
h(X), ∥u− v∥h < δ

implies that for all t ∈ R+,

sup
t≥0

{∫ t

0

∥f(s, u(s))− f(s, v(s))∥aω,c
1 + |ω̃|(t− s)α

ds
}
≤ ε

CM
,

(3) For each α, β ∈ R+ and r > 0, the set
{
f(s, h(s)u) : α ≤ s ≤ β, u ∈ C0

h(X), ∥u∥h ≤ r
}

is relatively compact in X.

(4) lim
ξ→∞

ξ
ϱ(ξ) > 1.

Then, equations (3.1)–(3.2) admit one mild solution in APω,c(X).

Proof. We define the nonlinear operator Γ : C0
h(X) → C0

h(X) by

(Γu)(t) := Eα(t)u0 +

∫ t

0
Eα(t− s)f(s, u(s)) ds t ≥ 0.

We will show that Γ has a fixed point in APω,c(Ω,X) by the following steps:

(1) For u ∈ C0
h(X), we have ∥u∥h <∞ and

∥Γu∥aω,c
h(t)

=
1

h(t)
sup
t≥0

{
∥|c|−t/ωEα(t)u0 + |c|−t/ω

∫ t

0
Eα(t− s)f(s, u(s)) ds∥

}
≤ 1

h(t)

[
∥Eα(t)∥aω,c∥u0∥+ sup

t≥0

{∫ t

0
∥Eα(t− s)∥B(X) × ∥f(s, u(s))∥ ds

}]
≤ 1

h(t)

[CM∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

CM

1 + |ω̃|(t− s)α
ψ(∥u∥aω,c) ds

}]
Since

∥u∥h = sup
t≥0

∥u∥aω,c
h(t)

then
∥Γu∥aω,c
h(t)

≤ 1

h(t)
CM

[ ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(∥u∥h.h(s))
1 + |ω̃|(t− s)α

ds
}]

It follows from condition 1. that Γ is well defined.



PERIODIC SOLUTIONS TO FRACTIONAL EQUATIONS 77

(2) For each ε > 0, there is δ > 0 such that for every u, v ∈ C0
h(X), ∥u− v∥h < δ,

we have

∥Γu(t)− Γv(t)∥aω,c = ∥
∫ t

0
Eα(t− s)(f(s, u(s))− f(s, v(s))) ds∥aω,c

≤ sup
t≥0

{∫ t

0
∥|c|−(t−s)/ωEα(t− s)∥ · ∥|c|−s/ω(f(s, u(s))− f(s, v(s))∥ ds

}
≤ sup

t≥0

{∫ t

0
∥Eα(t− s)∥aω,c · ∥f(s, u(s))− f(s, v(s))∥aω,c ds

}
≤ CM sup

t≥0

{∫ t

0

∥f(s, u(s))− f(s, v(s))∥aω,c
1 + |ω̃|(t− s)α

ds
}

Using condition 2., we get
∥Γu(t)− Γv(t)∥aω,c ≤ ε,

which shows that Γ is continuous.

(3) Next we show that Γ is completely continuous. We set Br(X) for the closed unit ball with
centre at 0 and radius r in the space X. ϑ = Γ(Br(C

0
h(R+,X))) and ζ = Γ(u) for u ∈

(Br(C
0
h(R+,X))). First, we will prove that ϑb(t) is a relatively compact subset of X for each

t ∈ [0, b]. In fact, by the continuity of Eα(.) and condition 3. of f , we infer that the set
Z = {Eα(s)f(τ, h(τ)u) : 0 ≤ s, τ ≤ t, u ∈ C0

h(R+,X)), ∥u∥h ≤ r} is relatively compact.
On the other hand, we can get ϑb(t) ∈ Eα(t)u0 + t.c0(Z), where c0(Z) denotes the convex
hull of Z, which establishes our assertion.
Second, we show that the set ϑb is equicontinuous. In fact, we can decompose

ζ(t+ s)− ζ(t) =
[
Eα(t+ s)− Eα(t)

]
u0 +

∫ t+s

0
Eα(t+ s− ξ)f(ξ, u(ξ)) dξ

−
∫ t

0
Eα(t− ξ)f(ξ, u(ξ)) dξ

=
[
Eα(t+ s)− Eα(t)

]
u0 +

∫ t+s

t
Eα(t+ s− ξ)f(ξ, u(ξ)) dξ

+

∫ t

0

[
Eα(t+ s− ξ)− Eα(t− ξ)

]
f(ξ, u(ξ)) dξ

=
[
Eα(t+ s)− Eα(t)

]
u0 +

∫ t+s

t
Eα(t+ s− ξ)f(ξ, u(ξ)) dξ

+

∫ t

0

[
Eα(ξ + s)− Eα(ξ)

]
f(t− ξ, u(t− ξ)) dξ.

Then from (H5) and above decomposition of ζ(t + s) − ζ(t), it follows that the set ϑb is
equicontinuous. Finally, applying condition 1, we have

∥ζ(t)∥aω,c
h(t)

≤ CM

h(t)

[ ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(rh(s))

1 + |ω̃|(t− s)α
ds

}]
→ 0 as t → ∞.

and this convergence is independent of u ∈ Br(C
0
h(R+,X)). Hence, by Lemma 2.19, ϑ is a

relatively compact set in C0
h(R+,X).
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(4) Let uλ(.) be a solution of equation uλ = λΓ(uλ) for some λ ∈ (0, 1). we have,

∥uλ∥aω,c = ∥λΓ(uλ)∥aω,c
≤ ∥Γ(uλ)∥aω,c

≤ CM ×
( ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(∥uλ∥hh(s))
1 + |ω̃|(t− s)α

ds
})
.

Since

ϱ(∥uλ∥h) = CM
∥∥∥ ∥u0∥
1 + |ω̃|tα

+ sup
t≥0

{∫ t

0

ψ(∥uλ∥hh(s))
1 + |ω̃|(t− s)α

ds
}∥∥∥

h
,

then
∥uλ∥aω,c ≤ ϱ(∥uλ∥h)h(t).

Therefore
∥uλ∥h ≤ ϱ(∥uλ∥h)

hence

∥uλ∥h
ϱ(∥uλ∥h)

≤ 1.

and by condition 4, we see that the set {uλ : uλ = λΓ(uλ), λ ∈ (0, 1)} is bounded.

(5) It follows from(H4) and Theorem 2.15 that t 7→ f(t, u(t)) belong to APω,c(Ω,X)
when u ∈ APω,c(Ω,X). Moreover, from Theorem 2.18 and Theorem 3.2, we can deduce
that Γ(APω,c(Ω,X)) ⊂ APω,c(Ω,X). We note that APω,c(Ω,X) is a closed subspace of
C0
h(R+,X), consequently, we can consider

Γ : APω,c(Ω,X) → APω,c(Ω,X).

By assumptions (1)–(3) of Theorem 3.3, we deduce that this map is completely continuous.
Applying the well–know Leray–Schauder alternative theorem (see [8]), we infer that Γ has
a fixed point u ∈ APω,c(X) which is the (ω, c)–asymptotically periodic mild solution to
equations. (3.1)–(3.2).

□

From Theorem 3.3, we can obtain the following interesting corollary.

Corollary 3.4 Let f : R+ × X → X be a function satisfying assumption (H4) and the following
Hölder–type condition:

∥f(t, u)− f(t, v)∥aω,c ≤ ρ∥u− v∥ϑaω,c , 0 < ϑ < 1

for all t ∈ R+ and u, v ∈ X where ρ > 0 is a constant. Moreover, assume the following conditions
are satisfied:

(a) sup
t∈R+

CM
(

∥u0∥
1+|ω̃|tα +

∫ t
0

(h(s))ϑ

1+|ω̃|(t−s)α ds
)
= η <∞,
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(b) For each α, β ∈ R+ and r > 0, the set
{
f(s, h(s)u) : α ≤ s ≤ β, u ∈ C0

h(R+,X),

∥u∥h ≤ r
}

is relatively compact in X,

(c) lim
ξ→∞

ξ
ϱ(ξ) > 1.

Then equations (3.1)–(3.2) admit at least one (ω, c)–asymptotically periodic mild solution.

Proof. Let η1 = ρ and we take ψ(ξ) = η1ξ
ϑ. Then, condition(H5) is satisfied. It follows from (a),

that the function f satisfies (1) in Theorem 3.3. Note that for each ε > 0 there is 0 < δϑ < ε
η×η1

such that for every u, v ∈ C0
h(R+,X), ∥u− v∥h ≤ δ implies that

sup
t∈R+

{∫ t

0

∥f(s, u(s))− f(s, v(s))∥aω,c
1 + |ω̃|(t− s)α

ds
}
≤ ε

CM

for all t ∈ R+. The assumption (3) in Theorem 3.3 can be easily verified by the definition of
ψ. So, from Theorem 3.3 we can conclude that equations (3.1)–(3.2) admit at least one (ω, c)-
asymptotically periodic mild solution. □
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