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Abstract. In the present work, we consider a new class of impulsive semi-linear differential equations
in an arbitrary Banach space X with non-instantaneous impulses. We prove the existence of a mild
solution to the impulsive differential equation with non-instantaneous impulses by virtue of the theory
of semigroups via techniques of a new fixed point theorem for convex-power condensing operators.
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1 Introduction

In the last few decades, impulsive differential equations have received much attention of researchers
mainly due to their demonstrated applications in various fields of science and engineering. Impulsive
differential equations play an important role in real world problems and are used to describe processes
which are characterized by the development of a sudden change in the system’s state. Such processes

*e-mail address: alkachadda23@gmail.com, alkachaddha03@gmail.com
†e-mail address: dwij.iitk@gmail.com

© 2024 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



20 Alka Chadha and Dwijendra N. Pandey, J. Nonl. Evol. Equ. Appl. 2024 (2024) 19–36

have been investigated in various fields such as biology, physics, control theory, population dynamics,
medicine and many others. Impulsive differential equations are an appropriate model to hereditary
phenomena for which a delay argument arises in the modelling equations. For more details concerning
impulsive differential equations, we refer to the monographs [3, 10] and the papers [4, 7, 8, 9, 12, 14,
20] and the references given therein.

In this paper, our purpose is to study the existence of solutions for a class of abstract differential
equations with non-instantaneous impulses of the form

x′(t) = −Ax(t) + f

(
t, x(t),

∫ t

0
h(t, τ)x(τ) dτ,

∫ t

0
p(t, τ)x(τ) dτ

)
,

t ∈ (si, ti+1], i = 0, 1, · · · , δ, δ ∈ N,
(1.1)

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, · · · , δ, (1.2)

x(0) = x0 +K(x), (1.3)

where −A : D(A) ⊂ X → X is a closed and bounded operator which is densely defined in the
Banach space X . We assume that −A generates a semigroup of strongly continuous linear operators
{T (t)}t≥0 defined in the Banach space (X, ∥ · ∥), x0 ∈ X , 0 = t0 = s0 < t1 ≤ s1 ≤ t2 <
· · · < tδ ≤ sδ < tδ+1 = b and gi ∈ C((ti, si] × X;X) for all i = 1, · · · , δ. The function
f ∈ C([0, b]×X3;X) is an appropriate function and K is a mapping from some space of functions
to be specified later.

For convenience, we set

(Hx)(t) =

∫ t

0
h(t, τ)x(τ) dτ,

(Px)(t) =

∫ t

0
p(t, τ)x(τ) dτ,

for h ∈ C(D0,R+) and p ∈ C(D′,R+), where D0 = {(t, s) : 0 ≤ s ≤ t ≤ T} and D′ = {(t, s) :
0 ≤ t, s ≤ T}.

In [7], a new class of abstract impulsive differential equations was introduced in which f =
f(t, x(t)) without nonlocal conditions; it was also assumed that impulses are non-instantaneous.
Under the assumptions that the operator A generates a C0-semigroup of bounded linear operators
and f , gi are appropriate functions, the existence of a mild solution to the impulsive system was
established. In this impulsive system, the impulses begin all of a sudden at the points ti and continue
their proceeding on a finite interval [ti, si]. According to the authors of [7], there are many different
inspirations for consideration of such an impulsive system. The hemodynamical equilibrium of a
person is an example of such systems. One can prescribe some intravenous drugs (insulin) in the
case of a decompensation (for example, low or high level of glucose). Since the introduction of the
drugs in the bloodstream and the consequent absorbtion of the body are successive and continuous
processes, we can describe this situation as an impulsive action which start suddenly and stays active
on a finite time interval.

In [17], the generalization of the condensing operators as convex-power condensing operators
was introduced by Sun and Zhang and a new fixed point theorem for convex-power condensing
operator was established. The new fixed point theorem for convex-power condensing operators,
defined by Sun and Zhang, is the generalization of the famous Sadovskii’s fixed point theorem and
Schauder’s fixed point theorem. For more details about the measure of noncompactness we refer to
[1, 2, 5, 6, 9, 11, 13, 16, 17, 18, 19, 22] and the references given therein.
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We divide this paper into three sections as follows. Section 2 gives some basic definition, lemmas
and theorems. Section 3 provides the existence results. The existence of the mild solution and the
positive mild solution by utilizing a fixed point theorem for convex-power condensing operators is
obtained in Section 3. In Section 4, an example is presented.

2 Preliminaries

Let (X, ∥ · ∥) be a real Banach space. By C([0, b];X) we denote the Banach space of all X-
valued continuous functions defined on [0, b], endowed with the norm ∥x∥ = sups∈[0,b] ∥x(s)∥,
where b ∈ R+. Moreover, L1([0, b];X) denotes the Banach space of X-valued Bochner integrable
functions defined on [0, b] endowed with the norm ∥g∥L1 =

∫ b
0 ∥g(t)∥ dt.

The operator −A is the infinitesimal generator of a uniformly continuous semigroup {T (t) :
t ≥ 0} and D(A) denotes the domain of A, which is dense in X . It is clear that D(A) is a Banach
space endowed with the graph norm. The semigroup T (t) is called equicontinuous if the set
{T (t)x : x ∈ K} is equicontinuous at t, 0 < t < ∞, for any bounded subset K ⊂ X . Throughout
the paper, we assume that

(HT) the operator −A generates the equicontinuous semigroup {T (t) : t ≥ 0} and there exists
a positive number M such that ∥T (t)∥ ≤ M for all t ∈ [0, b].

To define mild solutions for the impulsive differential equation (1.1)–(1.3), we consider the following
space PC([0, b];X) which contains all the piecewise continuous functions x : [0, b] → X such that
x(t−i ) and x(t+i ) exist for all i = 1, 2, · · · , δ. We can verify that the space PC([0, b];X) is a Banach
space endowed with norm ||x||PC = supt∈[0,b] ||x(t)||. For a function x ∈ PC([0, b];X), define the
function x̃i ∈ C([ti, ti+1];X), i = 1, · · · , δ, such that

x̃i(t) =

{
x(t) for t ∈ (ti, ti+1],

x(t+i ) for t = ti.

For a set F ⊂ PC([0, b];X) and i ∈ {0, 1, · · · , δ}, we have F̃i = {ũi : u ∈ F} and we have the
following Arzelà–Ascoli-type result.

Lemma 1 ([7]) A set F ⊂ PC([0, b];X) is relatively compact in PC([0, b];X) if and only if each
set F̃i is relatively compact in C([ti, ti+1];X).

Now, we present the following definition of a mild solution.

Definition 1 A piece-wise continuous function x : [0, b] → X is said to be a mild solution for the
system (1.1)–(1.3) if x(0) = x0 +K(x), x(t) = gi(t, x(t)) for all t ∈ (ti, si], i = 1, · · · , δ, and

x(t) = T (t)[x0 +K(x)] +

∫ t

0
T (t− ζ)f(ζ, x(ζ), (Hx)(ζ), (Px)(ζ)) dζ for t ∈ [0, t1] (2.1)

and

x(t) = T (t− si)gi(si, x(si)) +

∫ t

si

T (t− ζ)f(ζ, x(ζ), (Hx)(ζ), (Px)(ζ)) dζ (2.2)

for all t ∈ (si, ti+1] and every i = 1, · · · , δ.
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Now, we give the definition of the Hausdorff measure of noncompactness (MNC).

Definition 2 ([2]) The Hausdorff measure of noncompactness β of a bounded set F in a Banach
space X is the greatest lower bound of those ϵ > 0 for which the set F has a finite ϵ-net in the space
X , i.e.,

β(F ) = inf{ϵ > 0 : F has a finite ϵ-net in X}.

Definition 3 ([2]) The Kuratowski measure of noncompactness α of a bounded subset F of a Banach
space X is given by

α(F ) = inf{ϵ > 0 : F is covered by a finite number of sets with diameter ≤ ϵ}.

The relation between the Kuratowski measure of noncompactness α and the Hausdorff measure
of noncompactness β is given as

β(F ) ≤ α(F ) ≤ 2β(F )

for any bounded subset F ⊂ X .

Next, we discuss some basic properties of measure of noncompactness satisfied by both the
Kuratowski α and the Hausdorff measure of noncompactness β.

Lemma 2 Let X be a real Banach space and let E, F be bounded subset of X . Then, we have the
following results:

(1) β(E) = 0 if and only if E is relatively compact;

(2) β(E) = β(convE) = β(E), where conv(E) and E denotes the convex hull and the closure
of E, respectively;

(3) if E ⊂ F , then β(E) ≤ β(F );

(4) β(E + F ) ≤ β(E) + β(F ), where E + F = {x+ y : x ∈ E, y ∈ F};

(5) β(E ∪ F ) ≤ max{β(E), β(F )};

(6) β(κE) ≤ |κ|β(E) for any κ ∈ R;

(7) if the map Q : D(Q) ⊂ X → Y is Lipschitz continuous with a Lipschitz constant µ, then
βY (QE) ≤ µβ(E) for every bounded set E ⊂ D(Q); here Y is a Banach space.

Definition 4 Let Y be a Banach space. A continuous and bounded map Q : D ⊆ Y → Y is called
β-condensing if β(QF ) < β(F ) for any nonprecompact bounded subset F ⊂ D.

It should not cause any confusion if by β(·) we denote the Hausdorff measure of noncompactness
in X , C([0, b];X) and PC([0, b];X).

Lemma 3 ([2], Darbo–Sadovskii) Let D ⊂ X be a closed, bounded and convex set. If a continuous
map Q : D → D is β-condensing, then there exists a fixed point of the map Q.
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Lemma 4 ([2, 9]) If F is a bounded subset of C([0, b];X), then we have β(F (t)) ≤ β(F ) for every
t ∈ [0, b], where F (t) = {x(t) : x ∈ F} ⊂ X . Furthermore, if F is equicontinuous on [0, b], then
β(F (t)) is continuous on [0, b] and β(F ) = supt∈[0,b] β(F (t)).

Lemma 5 ([9]) If F is a bounded subset of PC([0, b];X), then we have β(F (t)) ≤ β(F ) for every
t ∈ [0, b]. Furthermore, if

(1) F is equicontinuous on [0, t1] and each (tj , sj ], (sj , tj+1], j = 1, · · · , δ;

(2) F is equicontinuous at the points t = t+j , j = 1, · · · , δ,

then β(F ) = supt∈[0,b] β(F (t)).

Lemma 6 ([2]) Suppose F ⊂ C([0, b];X) is a bounded and equicontinuous set. Then β(F (t)) is
continuous and

β

(∫ t

0
F (τ) dτ

)
≤

∫ t

0
β(F (τ)) dτ

for all t ∈ [0, b], where
∫ t
0 F (τ) dτ =

{∫ t
0 x(τ) dτ : x ∈ F

}
.

Lemma 7 Let {xn}∞n=1 be a sequence of functions in L1([0, b];R+). Assume that there exists
γ(t) ∈ L1([0, b];R+) satisfying ∥xn(t)∥ ≤ γ(t) for almost all t ∈ [0, b] and every n ≥ 1. Then we
have

β

({∫ t

0
xn(τ) dτ : n ≥ 1

})
≤ 2

∫ t

0
β
(
{xn(τ)}∞n=1

)
dτ for every t ∈ [0, b].

Lemma 8 ([21, 23]) Assume that 0 < ϵ < 1 and h > 0. Let

S = ϵm + C1
mϵm−1h+ C2

mϵm−2 (h)
2

2!
+ · · ·+ (h)m

m!
, m ∈ N.

Then S = o( 1
ms )(m → +∞), where s > 1 is an arbitrary real number.

In [17], the authors introduced the generalization of the definition of a condensing operator and a
new fixed point theorem for that kind of operators. Firstly, we introduce some notation. Let D ⊂ X
be a bounded, closed and convex set and let Q be a continuous map from D into itself and u0 ∈ D.
For every F ⊂ D, we set

Q(1,u0)(F ) = Q(F ), Q(n,u0)(F ) = Q(conv{Q(n−1,u0)(F ), u0}), n = 2, 3, · · · .

Definition 5 ([17]) Let D ⊂ X be a closed, bounded and convex set. The continuous map Q : D →
D is called convex-power condensing operator, if there exist u0 ∈ D and an integer n0 > 0 such that

β(Q(n0,u0)(F )) < β(F )

for any bounded nonprecompact subset F ⊂ D.
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Lemma 9 ([17]) Let D ⊂ X be a bounded, closed and convex set. If the continuous map Q : D →
D is β-convex-power condensing, then there exists at least one fixed point of the map Q in D.

Lemma 10 If (HT) holds, then the set{∫ t

0
T (t− s)x(s) ds : ∥x(s)∥ ≤ ς(s) for almost every s ∈ [0, b]

}
is equicontinuous for every t ∈ [0, b].

Proof. For 0 ≤ t < t+ ε ≤ b, we get∥∥∥∥∫ t+ε

0
T (t+ ε− τ)x(τ) dτ −

∫ t

0
T (t− τ)x(τ) dτ

∥∥∥∥
≤

∥∥∥∥∫ t

0

(
T (t+ ε− τ)− T (t− τ)

)
x(τ) dτ

∥∥∥∥+

∫ t+ε

t
∥T (t+ ε− τ)x(τ)∥ dτ.

(2.3)

When t = 0, we get that the right-hand side of (2.3) can be made small when ε is small independent
of x. For t > 0 and σ > 0, we have∥∥∥∥∫ t

0
T (t+ ε− τ)x(τ) dτ −

∫ t

0
T (t− τ)x(τ) dτ

∥∥∥∥
≤

∥∥∥∥T (ε+ σ)

∫ t−σ

0
T (t− σ − τ)x(τ) dτ − T (σ)

∫ t−σ

0
T (t− σ − τ)x(τ) dτ

∥∥∥∥
+

∥∥∥∥∫ t

t−σ
T (t+ ε− τ)x(τ) dτ

∥∥∥∥+

∥∥∥∥∫ t

t−σ
T (t− τ)x(τ) dτ

∥∥∥∥.
(2.4)

Since T (t) is strongly continuous and equicontinuous, we deduce that∥∥∥∥[T (ε+ σ)− T (σ)]

∫ t−σ

0
T (t− σ − τ)x(τ) dτ

∥∥∥∥ → 0, (2.5)

as ε → 0, uniformly for x. Since σ is arbitrarily small, the second and the third term of (2.4) tend to
zero when σ → 0.

Then, from (2.3), (2.4), (2.5), we see that
{∫ t

0 T (t − τ)x(τ) dτ : ∥x(τ)∥ ≤ ς(τ) for a.e.
τ ∈ [0, b]

}
is equicontinuous for all 0 ≤ t ≤ b. □

3 Existence results

Here, we establish the existence of a solution to the system (1.1)–(1.3) under some specified condi-
tions on gi by using a noncompact semigroup and a fixed point theorem for convex-power condensing
operators.

Now, we list the following assumptions.

(Hg) The functions gi are compact and continuous and there are positive constants K1 and K2 such
that ∥gi(t, x)∥ ≤ K1∥x∥+K2 for all x ∈ X and t ∈ [0, b].
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(Hf) f : [0, T ]×X ×X ×X → X is a nonlinear function satisfying the Carathéodory conditions,
i.e.:

(i) f(t, ·, ·, ·) : X ×X ×X → X is continuous for a.e. t ∈ [0, b];

(ii) f(·, x,Hx(t), Px(t)) : [0, b] → X is measurable for all x ∈ X;

(iii) there exist a constant function mk ∈ L1([0, b],R+), k > 0, and an increasing continuous
function Ω: R+ → R+ such that

∥f(t, x,Hx, Px)∥ ≤ mk(t)Ω(∥x∥)

for a.e. t ∈ [0, b] and all x ∈ X;

(iv) there exist nonnegative Lebesgue integrable functions Li ∈ L1([0, b];R+), i = 1, 2, 3,
such that

β(f(t, B1(t), B2(t), B3(t))) ≤ L1(t)β(B1(t)) + L2(t)β(B2(t)) + L3β(B3(t))

for any bounded and equicontinuous Bi ⊂ X , i = 1, 2, 3, and for almost every t ∈ [0, b].

(HK) The nonlocal function K : C([0, b];X) → X is continuous and compact, and there exists an
increasing continuous function W : R+ → R+ such that

∥K(x)∥ ≤ W(∥x∥).

(Hk) M
[
MW(k) + Ω(k)∥mk∥L1([0,b]) + kK1 +K2 + ∥x0∥

]
≤ k.

Theorem 1 Assume that (HT), (Hg), (Hf), (HK), (Hk) hold. Then the problem (1.1)–(1.3) has at
least one mild solution on [0, b].

Proof. Define the operator Q : PC([0, b];X) → PC([0, b];X) such that x(0) = x0 + K(x),
Qx(t) = gi(t, x(t)) for t ∈ (ti, si] (i = 1, · · · , δ) and

Qx(t) = T (t)[x0 +K(x)] +

∫ t

0
T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ, t ∈ [0, t1], (3.1)

and

Qx(t) = T (t− si)gi(si, x(si)) +

∫ t

si

T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ (3.2)

for t ∈ (si, ti+1], where i = 1, · · · , δ. To prove the result, we show that there exists a fixed point
of the map Q. At first, we prove the continuity of the map Q on PC([0, b];X). Let {xn}∞n=1 be
a sequence in PC([0, b];X) such that lim

n→∞
xn = x in PC([0, b];X). By the continuity of gi, it is

clear that Q is continuous on (ti, si]. Thus, we have

∥(Qxn)(t)− (Qx)(t)∥

≤ M∥gi(si, xn(si))− gi(si, x(si))∥

+M

∫ t

si

∥f(ζ, xn(ζ), Hxn(ζ), Pxn(ζ))− f(ζ, x(ζ), Hx(ζ), Px(ζ))∥ dζ.

(3.3)
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for t ∈ (si, ti+1]. By the continuity of f and gi, we have

lim
n→∞

gi(ti, xn(ti)) = gi(ti, x(ti)), t ∈ (ti, si], (3.4)

lim
n→∞

f(ζ, xn(ζ), Hxn(ζ), Pxn(ζ)) = f(ζ, x(ζ), Hx(ζ), Px(ζ)), ζ ∈ (si, ti+1]. (3.5)

Therefore, using the Lebesgue dominated convergence theorem and (3.3), (3.4), (3.5), we get

∥Qxn(t)−Qx(t)∥ → 0, as n → ∞,

which implies that Q is continuous on (si, ti+1]. For t ∈ [0, t1], we get

∥(Qxn)(t)− (Qx)(t)∥

≤ M∥K(xn)−K(x)∥

+M

∫ t

0
∥f(ζ, xn(ζ), Hxn(ζ), Pxn(ζ))− f(ζ, x(ζ), Hx(ζ), Px(ζ))∥ dζ.

By the continuity of K and (3.5), we get

∥Qxn(t)−Qx(t)∥ → 0, as n → ∞,

thus Q is continuous on [0, t1]. Hence Q is continuous on [0, b].

Secondly, we claim that Q(Bk) ⊂ Bk, where

Bk(PC) = Bk = {x ∈ PC([0, b];X) : ∥x∥ ≤ k} ⊂ PC([0, b];X)

is the closed and convex ball with the center at the origin and radius k. For any x ∈ Bk ⊂
PC([0, b];X) and t ∈ [0, t1], we get

∥Qx(t)∥ ≤ ∥T (t)[x0 +K(x)]∥+
∫ t

0
∥T (t− ζ)∥ · ∥f(ζ, x(ζ), Hx(ζ), Px(ζ))∥ dζ

≤ M
[
∥x0∥+W(k)

]
+MΩ(k)

∫ t

0
mk(ζ) dζ

≤ M
(
∥x0∥+W(k) + Ω(k)∥mk∥L1[0,b]

)
.

For t ∈ (si, ti+1], we have

∥Qx(t)∥ ≤ ∥T (t− si)∥ · ∥gi(si, x(si))∥+M

∫ t

si

∥f(ζ, x(ζ), Hx(ζ), Px(ζ))∥ dζ

≤ M
(
K1k +K2 +Ω(k)∥mk∥L1[si,ti+1]

)
= M

(
K1k +K2 +Ω(k)∥mk∥L1[0,b]

)
,

which implies that ∥Qx∥PC ≤ M
(
K1k+K2+Ω(k)∥mk∥L1[0,b]

)
for all i = 1, · · · , δ. On the other

hand, by the properties of gi(·), we get

∥Qx(t)∥ ≤ ∥gi(t, x(t))∥ ≤ K1k +K2

for t ∈ (ti, si]. Since M
[
Ω(k)∥mk∥L1[0,b] +K1k +K2 + ∥x0∥ +W(k)

]
≤ k, we conclude that

∥Qx∥PC ≤ k, i.e., Q has values in Bk.

Now, we show the equicontinuity of Q(Bk) on [0, b]. Since gi(·) are compact, it is obvious
that Q(Bk) is equicontinuous on (ti, si]. Assume that t ∈ [0, t1]. For x ∈ Bk, 0 < h < t and
0 ≤ t < t+ h ≤ b, we obtain
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∥(Qx)(t+ h)− (Qx)(t)∥ ≤ ∥[T (t+ h)− T (t)](x0 +K(x))∥

+

∥∥∥∥∫ t+h

0
T (t+ h− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ

−
∫ t

0
T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ

∥∥∥∥.
Using the semigroup property, we have

∥[T (t+ h)− T (t)](x0 +K(x))∥ = ∥T (t)[T (t+ h− t)− T (0)](x0 +K(x))∥
≤ M∥[T (h)− T (0)]∥ × ∥x0 +K(x)∥.

By the uniform continuity of the operator T (·) and Lemma 10, we conclude that Q(Bk) is equicon-
tinuous on [0, t1].

For t ∈ (si, ti+1], we get

∥Qx(t+ h)−Qx(t)∥ ≤ ∥[T (t+ h− si)− T (t− si)]gi(si, x(si))∥

+

∥∥∥∥∫ t+h

0
T (t+ h− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ

−
∫ t

0
T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ

∥∥∥∥.
By the semigroup property and the strong continuity of T (t), we get

∥[T (t+ h− si)− T (t− si)]gi(si, u(si))∥ ≤ M∥[T (h)− T (0)]gi(si, u(si))∥.

Since gi(·) are compact and T (·) is strongly continuous, we infer that Q(Bk) is equicontinuous on
(si, ti+1]. Hence Q(Bk) is equicontinuous on each [0, b].

Set W = convQ(Bk), where conv and conv denotes the convex hull and the closure of the
convex hull, respectively. It is easy to verify that Q maps W into itself and that W is equicontinuous
on the intervals [0, t1], (ti, si], (si, ti+1], i = 1, 2, · · · , δ. Next, we want to show that Q : W → W
is a convex-power condensing operator. We take u0 ∈ W and show that there exists a positive integer
n0 such that for every nonprecompact bounded subset F ⊂ W

β(Q(n0,u0)(F )) < β(F ).

Also, by the fact that∫ b

0
x(s) ds ∈ b conv{x(s) : s ∈ [0, b]}, x ∈ PC([0, b];X),

we get that

β

({∫ t

0
h(t, s)x(s) ds : x ∈ F, t ∈ [0, b]

})
≤ bH0β

(
{x(t) : x ∈ F, t ∈ [0, b]}

)
,

β

({∫ t

0
p(t, s)x(s) ds : x ∈ F, t ∈ [0, b]

})
≤ bP0β

(
{x(t) : x ∈ F, t ∈ [0, b]}

)
,

where H0 = max(t,s)∈D0
|h(t, s)| and P0 = max(t,s)∈D′ |p(t, s)|.



28 Alka Chadha and Dwijendra N. Pandey, J. Nonl. Evol. Equ. Appl. 2024 (2024) 19–36

For t ∈ (si, ti+1], where i = 1, · · · , δ, from Lemmas 2 and 7 we have that for ϵ > 0, there exists
a sequence {xn}∞n=1 ⊂ F such that

β(Q(1,u0)F (t)) = β((QF )(t))

≤ 2β
(
T (t− si)gi(si, {xn}∞n=1)dτ

)
+ 2β

(∫ t

si

T (t− ζ)f
(
ζ, {xn}∞n=1, H{xn}∞n=1, P{xn}∞n=1

)
dζ

)
+ ϵ

≤ 4M

∫ t

si

[
L1(ζ)β(F (ζ)) + L2(ζ)β((HF )(ζ)) + L3β((PF )(ζ))

]
dζ + ϵ

≤ 4Mβ(F )

∫ t

si

[
L1(ζ) + bH0L2(ζ) + bP0L3(ζ)

]
dζ + ϵ

≤
∫ t

si

L(ζ)β(F ) dζ + ϵ,

where L(t) = 4M [L1(t) + bH0L2(t) + bP0L3(t)]. Similarly, using the compactness of K, for
t ∈ [0, t1], we get

β(Q(1,u0)F (t)) ≤
∫ t

0
L(ζ)β(F ) dζ + ϵ.

Therefore, we have that there exists a continuous function φ : [0, b] → R+ such that∫ b

0
|L(s)− φ(s)| ds < γ,

for any γ ∈ (0, 1). Then, we obtain

β(Q(1,u0)F (t)) ≤ β(F )

[∫ t

si

|L(ζ)− φ(ζ)| dζ +
∫ t

si

|φ(s)|ds
]
+ ϵ

≤ [γ + φ̃(t− si)]β(F ) + ϵ, t ∈ (si, ti+1]

and
β(Q(1,u0)F (t)) ≤ [γ + φ̃t]β(F ) + ϵ, t ∈ [0, t1],

where φ̃ = max{|φ(t)| : t ∈ [0, b]}.

Since ϵ > 0 is arbitrary, therefore it follows that

β(Q(1,u0)F (t)) ≤ (c+ d(t− si))β(F ), t ∈ (si, ti+1],

β(Q(1,u0)F (t)) ≤ (c+ dt)β(F ), t ∈ [0, t1],

where c = γ, d = φ̃.

For t ∈ (ti, si], we get β(Q(1,u0)F (t)) = β((QF )(t)) = β(gi(t, F (t))) = 0 by the fact that gi
are compact.

Furthermore, in view of Lemmas 2 and 7, for t ∈ (si, ti+1] we have that there exists a sequence
{yn}∞n=1 ⊂ conv{Q(1,u0)F, u0} such that
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β((Q(2,u0)F )(t)) = β((Qconv{Q(1,u0)F, u0})(t))

≤ 2β(T (t− si)gi(si, {yn}∞n=1))

+ 2β

(∫ t

si

T (t− ζ)f(ζ, {yn}∞n=1, H{yn}∞n=1, P{yn}∞n=1) dζ

)
+ ϵ

≤ 4M

∫ t

si

β(f(ζ, {yn}∞n=1, H{yn}∞n=1, P{yn}∞n=1) dζ + ϵ

≤
∫ t

si

L(ζ)β(conv{Q(1,u0)F, u0}(ζ)) dζ + ϵ

≤
∫ t

si

[c+ d(ζ − si)]β(F )dζ + ϵ

≤
∫ t

si

|L(ζ)− φ(ζ)|(c+ d(ζ − si))β(F )dζ

+

∫ t

si

|L(ζ)|(c+ d(ζ − si))β(F )dζ + ϵ

≤
(
c2 + 2cd(t− si) +

(d(t− si))
2

2!

)
β(F ) + ϵ.

Thus, by the mathematical induction, we deduce that for any positive integer n,

β((Q(n,u0)F )(t)) ≤
(
an + C1

na
n−1d(t− si) + C2

na
n−2 (d(t− si))

2

2!
+ · · ·

· · ·+ (d(t− si))
n

n!

)
β(F )

for t ∈ (si, ti+1]. Similarly, for t ∈ [0, t1], we obtain

β((Q(n,u0)F )(t)) ≤
(
an + C1

na
n−1(dt) + C2

na
n−2 (dt)

2

2!
+ · · ·+ (dt)n

n!

)
β(F ).

Therefore, by Lemma 5, we conclude that

β((Q(n,u0)F )) ≤
(
an + C1

na
n−1(db) + C2

na
n−2 (db)

2

2!
+ · · ·+ (db)n

n!

)
β(F ) for all t ∈ [0, b].

From Lemma 8, we get that there exists a positive integer n0 such that(
an0 + C1

n0
an0−1(db) + C2

n0
an0−2 (db)

2

2!
+ · · ·+ (db)n0

n0!

)
= q < 1.

Since β((Q(n0,u0)F )) ≤ qβ(F ) and q < 1, we infer that there exists at least one fixed point of the
map Q in W which is just a mild solution of the system (1.1)–(1.3). This completes the proof of the
theorem. □

In the next result, we show the existence of a mild solution to the system (1.1)–(1.3) under
Lipschitz conditions imposed on gi and K. We prove the required result with the help of Darbo–
Sadovskii’s fixed point theorem.
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Here, we replace the condition (Hg) by (Hg′), and (HK) by (HK′):

(Hg′) gi are Lipschitz continuous functions for all i = 1, · · · , δ, i.e., there exist positive constants
Lgi such that

∥gi(t, u)− gi(t, v)∥ ≤ Lgi∥u− v∥

for all u, v ∈ X;

(HK′) the nonlocal function K : C([0, b];X) → X is Lipschitz continuous, i.e., there exists a constant
LK > 0 such that

∥K(x)−K(y)∥ ≤ LK∥x− y∥ for all x, y ∈ X;

(HB) maxi=1,··· ,δ
[
MLK +MLgi + 4Mb(L1 + bH0L2 + bP0L3)

]
< 1.

Theorem 2 Suppose that the assumptions (HT), (Hf), (Hg′), (HK′), (HB) are fulfilled. Then, the
impulsive system (1.1)–(1.3) has a mild solution on the interval [0, b].

Proof. Consider the map Q : PC([0, b];X) → PC([0, b];X) defined as x(0) = x0 + K(x),
Qx(t) = gi(t, x(t)) for t ∈ (ti, si], i = 1, · · · , δ, and

Qx(t) = T (t)(x0 +K(x)) +

∫ t

0
T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ, t ∈ [0, t1],

and

Qx(t) = T (t− si)gi(si, x(si)) +

∫ t

si

T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ

for t ∈ (si, ti+1], where i = 1, · · · , δ. By the proof of Theorem 1, we infer that the map Q : Bk →
Bk is continuous. Now, we prove that Q is a β-condensing operator on Bk.

For x, y ∈ Bk, we have

∥gi(t, x)− gi(t, y)∥ ≤ Lgi∥x− y∥, t ∈ (ti, ti+1], i = 0, · · · , δ. (3.6)

Thus, using Lemma 2 (7), we conclude that

β(gi(t, Bk)) ≤ Lgiβ(Bk).

Let
∫ t
0 T (t− ζ)f(ζ, x(ζ), Hx(ζ), Px(ζ)) dζ = Q′x(t). By Lemmas 4 and 6, for t ∈ (si, ti+1], we

get

β(Q′Bk) = sup
t∈(si,ti+1]

β((Q′Bk)(t))

≤ sup
t∈(si,ti+1]

2

∫ t

si

β(T (t− ζ)f(ζ,Bk(ζ), (HBk)(ζ), (PBk)(ζ))) dζ

≤ sup
t∈(si,ti+1]

4M

∫ t

si

(L1 + bH0L2 + bP0L3)β(Bk(ζ)) dζ

≤ 4Mb
[
L1 + bH0L2 + bP0L3

]
β(Bk).
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Therefore, for t ∈ (si, ti+1], we have

β(Q(Bk(t))) = β

(
T (t− si)g(si, Bk(si))

+

∫ t

si

T (t− ζ)f(ζ,Bk(ζ), (HBk)(ζ), (PBk)(ζ)) dζ

)
≤

[
MLgiβ(Bk) + 4Mb(L1 + bH0L2 + bP0L3)

]
β(Bk)

≤ max
i=1,··· ,δ

{[
MLgi + 4Mb(L1 + bH0L2 + bP0L3)

]
β(Bk)

}
.

For t ∈ [0, t1], we get

β(Q(Bk(t))) = β

(
T (t)(x0 +K(x)) +

∫ t

0
T (t− ζ)f(ζ,Bk(ζ), (HBk)(ζ), (PBk)(ζ)) dζ

)
≤

[
MLK + 4Mb(L1 + bH0L2 + bP0L3)

]
β(Bk)

and for t ∈ (ti, si], we have

β((QBk)) ≤ max
i=1,··· ,δ

β(gi(t, Bk(t))) ≤ max
i=1,··· ,δ

Lgiβ(Bk).

By the assumption (HB), we have that maxi=1,··· ,δ
[
MLK+MLgi+4Mb(L1+bH0L2+bP0L3)

]
<

1. Therefore, we conclude that β(QBk) < β(Bk) for t ∈ [0, b]. This shows that the solution map
Q is β-condensing in Bk. Thus, by Darbo–Sadovskii’s fixed point theorem, Q has a fixed point
in Bk. The fixed point of the map Q is a mild solution for the impulsive system (1.1)–(1.3) with
non-instantaneous impulses. □

Next, we will show the existence of a positive mild solution to the system (1.1)–(1.3).

Let X be a real Banach space partially ordered by a cone P of X , i.e., for any x1, x2 ∈ X ,
x1 ≤ x2 if and only if x2 − x1 ∈ P .

We assume that the operator T (t)(t ≥ 0) is a C0-semigroup on X , and T (t)(t ≥ 0) is called a
positive C0-semigroup on X if T (t)x ≥ 0 for any x ≥ 0. Now we make the following assumptions:

(Hf′1) The function f : [0, b]× P × P × P → P satisfies Carathéodory-type conditions:

(v) f is uniformly continuous on [0, b]×P ×P ×P and there exist nonnegative continuous
functions Nn(t), n = 1, 2, and j(t) : [0, b] → P such that

f(t, u, v, w) ≤ N1(t)u+N2(t)v + j(t)

for any t ∈ [0, b] and u, v, w ∈ P;

(vi) there exist constants Li > 0, i = 1, 2, 3, such that

β(f(t,D1(t), D2(t), D3(t))) ≤ L1β(D1(t)) + L2β(D2(t)) + L3β(D3(t))

for any equicontinuous and bounded sets Dn ⊂ C([0, b];P), n = 1, 2, 3, and t ∈ [0, b].

(HK1) The nonlocal function K : C([0, b];P) → P is continuous and compact, and there exists
a constant LK > 0 such that ∥K(y)∥ ≤ LK for any y ∈ C([0, b];P).
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(Hg2) The functions gi are compact and continuous and there are positive constants Lgi such that
∥gi(t, x)∥ ≤ Lgi for all x ∈ P and t ∈ [0, b].

Theorem 3 Let X be a real Banach space and let P be a normal cone in X . Assume that −A is the
generator of an equicontinuous positive C0-semigroup, x0 ≥ 0 and the conditions (Hf′1), (HK1),
(Hg2) are satisfied. Then there exists a mild solution in PC([0, b];P) of the system (1.1)–(1.3).

Proof. We consider the operators Q as in (3.1)–(3.2) and Q̃, defined by

(Q̃x)(t) =

∫ t

0
T (t− ζ)[N1(ζ)x(ζ) +N2(ζ)(Hx)(ζ)] dζ,

where Hx(t) =
∫ t
0 h(t, τ)x(τ) dτ and t ∈ [0, t1]. For t ∈ (si, ti+1], i = 1, · · · , δ, we set

(Q̃x)(t) =

∫ t

si

T (t− ζ)[N1x(ζ) +N2(ζ)(Hx)(ζ)] dζ.

Now, we show that r(Q̃) = 0, where r(·) denotes the spectral radius of a bounded linear operator.
By the definition of Q̃, for any t ∈ [0, t1], we have

∥(Q̃x)(t)∥ =

∥∥∥∥∫ t

0
T (t− ζ)[N1(ζ)x(ζ) +N2(ζ)(Hx)(ζ)] dζ

∥∥∥∥
≤ MN∗(1 + bH0)t∥x∥PC ,

where N∗ = max
{
maxζ∈[0,b]N1(ζ),maxζ∈[0,b]N2(ζ)

}
. Similarly, for t ∈ (si, ti+1], i = 1, · · · , δ,

we have

∥(Q̃x)(t)∥ =

∥∥∥∥∫ t

si

T (t− ζ)[N1x(ζ) +N2(ζ)(Hx)(ζ)] dζ

∥∥∥∥
≤ MN∗(1 + bH0)(t− si)∥x∥PC .

Further,

∥(Q̃2x)(t)∥ ≤ MN∗
∫ t

0

[
∥Q̃x(s)∥+

∫ s

0
h(s, ζ)u(ζ) dζ

]
ds

≤ (MN∗)2
∫ t

0

[
(1 + bH0)s∥x∥PC +H0

∫ s

0
(1 + bH0)ζ∥x∥PC dζ

]
ds

≤ (MN∗)2(1 + bH0)∥x∥PC

[
t2

2
+H0b

t2

2

]
≤ (MN∗(1 + bH0))

2 t
2

2!
∥x∥PC .

Similarly, for t ∈ (si, ti+1], we have

∥(Q̃2x)(t)∥ ≤ (MN∗(1 + bH0))
2 (t− si)

2

2!
∥x∥PC .

By the mathematical induction, for any positive integer n, we get

∥(Q̃nx)(t)∥ ≤ (MN∗(1 + bH0))
n t

n

n!
∥x∥PC , t ∈ [0, t1],
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and for t ∈ (si, ti+1], i = 1, · · · , δ, we have

∥(Q̃nx)(t)∥ ≤ (MN∗(1 + bH0))
n (t− si)

n

n!
∥x∥PC .

Hence, we obtain

∥(Q̃nx)∥PC ≤ (MN∗(1 + bH0))
n b

n

n!
∥x∥PC .

Thus, ∥Q̃n∥ ≤ (MN∗(1 + bH0))
n bn

n! . Therefore, we get r(Q̃) = limn→∞ ∥Q̃n∥1/n = 0.

Let 0 < MN∗(1 + bH0) < G−1, where G is the normal constant of G. Hence, we get that there
is an equivalent norm ∥ · ∥∗ in X such that ∥Q̃∥∗ ≤ r(Q̃) +MN∗(1 + bH0) = MN∗(1 + bH0),
where ∥Q̃∥∗ means the operator norm of Q̃ with respect to the norm ∥ · ∥∗.

Consider M∗ = supt∈[0,b]{∥T (t)∥∗},

r∗ ≥ max
i=1,··· ,δ

{
GM∗[∥x0∥∗ + LK + b∥j(t)∥∗

](
1−G(MN∗(1 + bH0))

)−1
,

GM∗[Lgi + b∥j(t)∥∗
](
1−G(MN∗(1 + bH0))

)−1
}
,

where ∥x∥∗ = maxt∈[0,b] ∥x(t)∥∗, and Br∗(P) = {x ∈ PC([0, b];P) : ∥x∥∗PC ≤ r∗}. Since f
is uniformly continuous, from the definition of the map Q, it follows that for any u ∈ Br∗(P),
(Qx)(t) ≥ 0 and

(Qx)(t) ≤ T (t)(x0 +K(x)) +

∫ t

0
T (t− ζ)

[
N1(ζ)x(ζ) +N2(ζ)(Hx)(ζ) + j(ζ)

]
dζ

≤ T (t)(x0 + LK) +

∫ t

0
T (t− ζ)

[
N1(ζ)x(ζ) +N2(ζ)(Hx)(ζ)

]
dζ

+

∫ t

0
T (t− ζ)j(ζ) dζ, t ∈ [0, t1],

and

Qx(t) ≤ T (t)Lgi +

∫ t

si

T (t− ζ)
[
N1(ζ)x(ζ) +N2(ζ)(Hx)(ζ)

]
dζ +

∫ t

0
T (t− ζ)j(ζ) dζ

for all t ∈ (si, ti+1], i = 1, · · · , δ. Since P is a normal cone, we get

∥(Qx)(t)∥∗ ≤ G

(
∥T (t)(x0 +K(x))∥∗ + ∥(Q̃x)(t)∥∗ +

∥∥∥∥∫ t

0
T (t− ζ)j(ζ) dζ

∥∥∥∥∗)

≤ G

(
M∗(∥x0∥∗ + LK) + ∥Q̃∥∗∥x∥∗PC +

∫ b

0
∥T (t− ζ)∥∗∥j(ζ)∥∗ dζ

)
≤ GM∗(∥x0∥∗ + LK) +GMN∗(1 + bH0)r

∗ +GbM∗∥j∥∗ ≤ r∗

for t ∈ [0, t1], and for t ∈ (si, ti+1]

∥Qx(t)∥∗ ≤ GM∗Lgi +GMN∗(1 + bH0)r
∗ +GbM∗∥j∥∗ ≤ r∗.

Therefore, we deduce that Q : Br∗(P) → Br∗(P). Let B̃ = conv(Br∗(P)). Then B is a bounded
convex closed set in PC([0, b];X) and Q : B → B. Thus, similarly to the proof of Theorem 1, we
can show that Q is a convex-power condensing operator. Thus, we get the required result by using
the convex-power condensing fixed point theorem. □
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4 Application

Let us consider the following impulsive problem

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + F

(
t, u(t, x),

∫ t

0
h(t, τ, x)u(τ, x) dτ,

∫ t

0
p(t, τ, x)x(τ, x) dτ

)
,

(t, x) ∈
N⋃
i=1

[si, ti+1]× [0, π],

(4.1)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (4.2)

u(0, x) = u0 +K(u), x ∈ [0, π], (4.3)

u(t, x) = Gi(t, u(t, x)), x ∈ [0, π], t ∈ (ti, si], (4.4)

where 0 = t0 = s0 < t1 ≤ s1 < · · · < tδ ≤ sδ < tδ+1 = b are fixed numbers, u0 ∈ X ,
F ∈ C([0, b] × X × X × X,X), K : C([0, b], X) → X and Gi ∈ C((ti, si] × X,X) for all
i = 1, · · · , δ.

We consider X = L2[0, π] and the operator A defined by A = u′′ with the domain

D(A) = {x ∈ X : x, x′ are absolutely continuous and x′′ ∈ X , x(0) = x(π) = 0}.

It is well-known from [15] that A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0,
and that an analytic semigroup is equicontinuous. This means that A satisfies the assumption (HT).

To convert the problem (4.1)–(4.4) into the abstract form (1.1)–(1.3), we introduce the functions
f : [0, b] ×X3 → X and gi : (ti, si] ×X → X such that f(t, y)(x) = F (t, y(x), Hy(x), Py(x))
and gi(t, y)(x) = Gi(t, y(x)).

Thus, the results of the earlier sections which guarantee the existence of a mild solution and a
positive solution may be applied with appropriate functions f and gi and K(u) satisfying suitable
conditions.
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