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1 Introduction

The discrete nonlinear Schrödinger equation (DNLS) is a mathematical model that describes the
behavior of waves in discrete systems with nonlinear interactions. This equation is of great interest
in various fields, including condensed matter physics, optics, and nonlinear dynamics. In partic-
ular, when a complex potential is introduced into the DNLS equation, it gives rise to intriguing
phenomena and opens up new avenues for exploring wave propagation in structured environments.

The presence of a complex potential in the DNLS equation introduces additional complexities
and nonlinearity, leading to rich dynamics and novel phenomena. The complex potential can arise
from various sources, such as an external field or a spatially varying refractive index in optics. It can
significantly influence the propagation characteristics of waves, including wave localization, soliton
formation, and wave scattering.
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Understanding the properties and dynamics of the DNLS equation is crucial for gaining insights
into the behavior of discrete wave systems and exploring nonlinear effects in different physical
systems. For instance, we mention nonlinear wave transmission in discrete media, propagation of
localized pulses in coupled waveguides and optical fibers, and modeling Bose-Einstein condensates
(see, e.g., [6, 9, 10] and references therein).

Research activity in this area mainly focuses on the so-called ”breathers”, which are standing
waves. The profile function of such a wave solves an appropriate stationary DNLS equation. Most
works in this direction deal with (discrete) translation-invariant DNLS on a one-dimensional lat-
tice and employ perturbation techniques, two-dimensional discrete-time dynamical systems, and
numerical simulation (see, e.g., [4–6] and references therein).

On the other hand, a series of papers [2, 13–17, 20–24] employs the theory of critical points of
smooth functionals to investigate breathers for the DNLS equation with diverse nontrivial potentials.
Additionally, we highlight the noteworthy contribution made in the paper [19].

The initial value problem (IVP) associated with the DNLS equation with a complex potential
deals with determining the evolution of the wave function over time when its initial configuration is
known. In other words, given the initial values of the wave function and its derivative at a specific
time, the IVP seeks to find a solution that satisfies the DNLS equation with the given complex
potential. The DNLS equation with a complex potential on a one-dimensional lattice can be written
as:

i(dψn/dt) +Anψn +Bn|ψn|2ψn + Cnψn+1 +Dnψn−1 = 0,

where ψn is the complex-valued wave function at the discrete lattice site n, and An, Bn, Cn, and
Dn represent the coefficients associated with the linear and nonlinear interactions between adjacent
lattice sites.

In [25] we investigated the weighted ℓ2 solution of the following initial value problem for the
time-dependent d-dimensional discrete nonlinear Schrödinger equation

iu̇ = −∆u+Wu− f(n, u) + b(t, n), (1.1)

u(0, n) = u0(n) , (1.2)

where the potential W = V + iδ is a complex function of

n = (n1, n2, . . . , nd) ∈ Zd ,

u̇ stands for the time derivative and −∆ is the d-dimensional discrete Laplacian defined by

∆u(n) = u(n1 − 1, n2, . . . , nd) + u(n1, n2 − 1, . . . , nd) + · · ·+ u(n1, n2, . . . , nd − 1)

− 2du(n1, n2, . . . , nd)

+ u(n1 + 1, n2, . . . , nd) + u(n1, n2 + 1, . . . , nd) + · · ·+ u(n1, n2, . . . , nd + 1).

Note that if δ(n) is negative for all n ∈ Zd, the part δ of the potential represents dissipation
effects. Additionally, our Assumption (iii) below allows the nonlinearity to contain a dissipative
term. This DNLS (1.1) is the space discretization of the nonlinear Schrödinger equation in continu-
ous media.

A limited number of papers [7, 8, 11, 12] are dedicated to equations of the form (1.1). Specifi-
cally, the paper [12] delves into the initial value problem for the DNLS equation with a zero potential
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and power nonlinearity on a one-dimensional lattice with a weighted ℓ2 initial value. The principal
outcome establishes global well-posedness in weighted ℓ2 spaces with power weights.

In [7] and [8], the authors explore the DNLS with V = 0 and δ = const. The primary findings
include global well-posedness in the conservative (δ = 0) and dissipative (δ < 0) scenarios. Ad-
ditionally, attractors’ existence is demonstrated in weighted ℓ2 spaces in the conservative case, on
one-dimensional and multidimensional lattices, respectively. The paper [11] investigates the well-
posedness in weighted spaces for the DNLS on a one-dimensional lattice, focusing on the case when
W = V is a general real potential and b = 0.

In the work presented in [25], we extended our previous results to the multidimensional case,
accommodating a sufficiently general potentialW that may not be necessarily bounded. This exten-
sion includes scenarios with a weighted ℓ2 initial value. Furthermore, in the subsequent paper [26],
we utilized the integral equation, which defines the mild solution of the DNLS as established in [25].
This application allowed us to establish the existence of a global solution for the DNLS featuring
a weighted ℓp initial value when 1 ≤ p < 2. This was achieved by leveraging the previously ob-
tained global solutions in the ℓ2 setting, as documented in [25]. The focus of the current paper is to
demonstrate the existence of a global solution for the DNLS with a weighted ℓp initial value when
2 < p < ∞. To the best of our knowledge, there has been no exploration by other mathematicians
into the initial value problem for the DNLS with a weighted ℓp initial value. Since ℓp is not a Hilbert
space like ℓ2 when p ̸= 2, we cannot rely on the features of a Hilbert space to prove our main results
on ℓp global solutions. Instead, we employ alternative methods.

The organization of this paper is structured as follows: Section 2 provides readers with a concise
review of some preliminaries on the semigroup theory of abstract differential equations for their
convenience. In Section 3, we revisit the local weighted ℓp well-posedness result and the global
weighted ℓp(1 ≤ p ≤ 2) well-posedness result established in [26]. Section 4 is dedicated to proving
the existence of weighted ℓp global solutions when 2 < p <∞.

2 Semigroup theory and abstract initial value problem

We treat (1.1) as an abstract differential equation of the form

u̇ = Au+N(t, u) (2.1)

in a complex Banach space. We always assume that A is a closed operator in a Banach space E
with the domain D(A), and N : [0,∞)×E → E is continuous. Let us provide a reminder of some
elementary facts related to such equations.

A family U(t), t ∈ [0,∞), of bounded linear operators inE is a strongly continuous semigroup
of operators if

(1) U(t)v is a continuous function on [0,∞) with values in E for every v ∈ E;

(2) U(0) = I is the identity operator in E;

(3) U(t+ s) = U(t)U(s) for all t, s ∈ [0,∞).

If the family U(t) is defined for all t ∈ R and satisfies (1)-(3) above on the whole real line, we
say that U(t) is a strongly continuous group of operators.
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If U(t) is a strongly continuous semigroup of operators, then its generator A is defined by

Av = lim
t→0+

t−1(U(t)− I)v, (2.2)

where the domain D(A) consists of those v ∈ E for which the limit in (2.2) exists.

The following result is well known (see, e.g., [3, 18]).

Proposition 2.1 If A is a generator of a strongly continuous semigroup in a Banach space E and B
is a bounded linear operator in E, then A+B is a generator of a strongly continuous semigroup.

If A is a bounded linear operator, then it generates a one-parameter group etA. In general, if A
is a generator of a strongly continuous semigroup, we still use the same exponential notation etA

for the semigroup generated by A.

Now we discuss the abstract initial value problem for equation (2.1), with initial data

u(0) = u0 ∈ E. (2.3)

If A is a bounded operator, then it is sufficient to consider classical solutions, i.e. continuously
differentiable functions with values in E that satisfy (2.1) and (2.3). In general, when the operator
A is unbounded, we consider mild solutions to (2.1) and (2.3).

A continuous function u on [0, T ] with values inE is a mild solution of the initial value problem
(2.1) and (2.3) if it satisfies the following integral equation

u(t) = etAu0 +

∫ t

0
e(t−s)AN(s, u(s)) ds. (2.4)

In the case when the operator A is bounded, these are classical solutions.

We need the following well-known result (see. e.g., [1, 18]).

Proposition 2.2 Let A be a generator of a strongly continuous semigroup in a Banach space E,
and N(t, u) : [0,∞) × E → E be continuous in t and locally Lipschitz continuous in u with the
Lipschitz constant being bounded on bounded intervals of t. That is, for any T > 0 and R > 0,
there exists C = C(T,R) > 0 such that

max
0≤t≤T

∥N(t, w)−N(t, w′)∥ ≤ C∥w − w′∥ (2.5)

whenever ∥w∥ ≤ R and ∥w′∥ ≤ R.

(a) For every u0 ∈ E, there exists a unique local mild solution of the initial value problem (2.1)
and (2.3) defined on the maximal interval [0, τmax).

(b) If τmax <∞, then limt↗τmax ∥u(t)∥ = ∞.

(c) The solution u(t) depends continuously on u0 in the topology of uniform convergence on
bounded closed subintervals of [0, τmax).
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(d) Assume, in addition, that the map N : [0,∞) × E → E is locally Lipschitz continuous, i.e.,
for any T > 0 and R > 0, there exists C = C(T,R) > 0 such that

∥N(t, w)−N(t′, w′)∥ ≤ C(|t− t′|+ ∥w − w′∥) (2.6)

whenever t ∈ [0, T ], t′ ∈ [0, T ], ∥w∥ ≤ R and ∥w′∥ ≤ R. If u0 ∈ D(A), then the mild
solution of the initial value problem (2.1) and (2.3) is a classical solution.

Remark 2.1 Assumption (2.5) implies automatically that N is bounded on bounded sets.

Remark 2.2 If N(t, u) is globally Lipschitz continuous in u, i.e. there exists a constant C =
C(T ) > 0 such that

max
0≤t≤T

∥N(t, w)−N(t, w′)∥ ≤ C∥w − w′∥, for all w,w′ ∈ E, (2.7)

then the initial value problem (2.1) and (2.3) possesses a unique global mild solution defined on
[0,∞). Moreover, the solution u(t) depends continuously on u0 in the topology of uniform conver-
gence on bounded closed subintervals of [0,∞).

Remark 2.3 Let N(t, u) be of the form

N(t, u) =M(u) + f(t) .

Then assumption (2.6) holds if and only if M and f are locally Lipschitz continuous on E and
[0,∞), respectively.

3 Reviews on local solution and global solution

3.1 Local solution

We review local solution to the equation (1.1) under the following assumptions:

(i) The complex potential W = V + iδ is such that both V and δ are real-valued functions on
Zd, and

δ = sup{δ(n)|n ∈ Zd} <∞ .

(ii) The nonlinearity f : Zd × C → C satisfies the following conditions:

1. f(n, 0) = 0,

2. f(n, z) = o(z) as z → 0 uniformly with respect to n ∈ Zd,

3. f is uniformly locally Lipschitz continuous, that is, for every R > 0, there exists a
constant C = C(R) independent of n ∈ Zd such that

|f(n, z)− f(n, z′)| ≤ C|z − z′|

for all n ∈ Zd whenever |z| ≤ R and |z′| ≤ R.
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(iii) The nonlinearity f(n, z) is of the form f(n, z) = g(n, |z|)z, where g(n, r) is a function and
its imaginary part is nonnegative.

Let Θ = (θn)n∈Zd be a sequence of positive numbers (weights). The space ℓpΘ(Z
d) consists of

all two-sided sequences of complex numbers such that the norm

∥u∥ℓpΘ = (
∑
n∈Zd

|u(n)θn|p)1/p

is finite. We notice that u ∈ ℓpΘ(Z
d) if and only if uΘ ∈ ℓp(Zd) and

∥u∥ℓpΘ = ∥uΘ∥ℓp .

Therefore for 1 ≤ p < q ≤ ∞ we have

∥u∥ℓqΘ ≤ ∥u∥ℓpΘ

and
ℓpΘ(Z

d) ⊂ ℓqΘ(Z
d).

We always assume that the weight Θ is regular in the sense that:

(iv) The sequence Θ is bounded below by a positive constant, and there exists a constant c0 ≥ 1
such that

c−1
0 ≤ θn+ei

θn
≤ c0

for all n ∈ Zd and i = 1, · · · , d, where ei ∈ Zd has 1 at the i-th component and 0 elsewhere.

From Assumption (iv), we obtain
∥u∥ℓp ≤ C∥u∥ℓpΘ , (3.1)

which implies that ℓpΘ(Z
d) is densely and continuously embedded into ℓp(Zd) and C is defined by

C = max
n∈Zd

1/θn.

Setting Θ0 as the constant weight with unit components, we have that

ℓpΘ0
(Zd) = ℓp(Zd).

From the perspective of functional analysis, Assumption (iv) means that the space ℓpΘ(Z
d) is trans-

lation invariant. More precisely, let Si and Ti be the operators defined by

(Siw)(n) = w(n− ei), (Tiw)(n) = w(n+ ei), i = 1, · · · , d.

To understand the equation (1.1) in the framework of evolution equations, we interpret it as an
evolution equation of the form (2.1), where A = −iH and H is the Schrödinger operator defined as

H = −∆+W (3.2)
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and the operator N is given by

N(t, u)(n) = i f(n, u(t, n))− i b(t, n). (3.3)

To establish a precise interpretation, we need to analyze certain properties of the Schrödinger
operator H in the space ℓpΘ(Z

d). First, we observe that the operator (of multiplication by)
−iW = −iV + δ is a diagonal operator. Since V is real and δ(n) ≤ δ for all n ∈ Zd, the
operator −iW generates a strongly continuous semigroup in ℓpΘ(Z

d) given by

(e−itWu)(n) = e−iV (n)teδ(n)tu(n), n ∈ Zd .

The domain of this operator in ℓpΘ(Z
d) is defined as

DΘ = {u ∈ ℓpΘ(Z
d) : Wu ∈ ℓpΘ(Z

d)}, (3.4)

where we use the notation D to represent the domain of the operator W in ℓp(Zd). It is clear that
DΘ ⊂ D.

Based on Proposition 2.1, we derived the following lemma in [26].

Lemma 3.1 The operator A = −iH is a generator of strongly continuous group etA in the space
ℓpΘ(Z

d). Moreover, there exist two constants M ≥ 1 and ω such that for all t ≥ 0

∥etA∥ ≤Meωt. (3.5)

We define the operator N(t, u) as follows

N(t, u)(n) = if(n, u(n))− ib(t, n).

Then the equation (1.1) can be expressed in the form of equation (2.1). The following local well-
posedness result is proved in [26].

Theorem 3.1 (1) Under Assumptions (i), (ii) and (iv), if b ∈ C([0,∞), ℓpΘ(Z
d)), then for every

u0 ∈ ℓpΘ(Z
d), problem (1.1) and (1.2) has a unique local mild solution u ∈ C([0, T ], ℓpΘ(Z

d))
for some T > 0.

(2) The mild solution u(t) ∈ C([0, T ], ℓpΘ(Z
d)) of problem (1.1) and (1.2) obtained in part (1) is

a classical solution if one of the following conditions holds

(a) u0 ∈ ℓpΘ(Z
d) and W is bounded;

(b) u0 ∈ D(A) = DΘ and b : [0,∞) → ℓpΘ(Z
d) is locally Lipschitz continuous.

3.2 Existence of global solutions in the case 1 ≤ p < 2

In this case, since we have the inclusion ℓpΘ(Z
d) ⊂ ℓ2Θ(Zd), we established the existence of a global

ℓ2 solution by applying Theorem 3.1 in [25]. Utilizing this result, we proved the following theorem
in [26].
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Theorem 3.2 (1) Under assumptions (i), (ii), (iii), and (iv), if δ ≤ 0 and b ∈
C([0,∞), ℓpΘ(Z

d))
⋂
L1([0,∞), ℓ2(Zd)), then for every u0 ∈ ℓpΘ(Z

d), problem (1.1) and
(1.2) has a unique global mild solution u ∈ C([0,∞), ℓpΘ(Z

d)) which continuously depends
on u0 in the topology of uniform convergence on bounded closed subintervals of [0,∞).
Moreover, for any t ≥ 0

∥u(t)∥ℓpΘ ≤ (∥u0∥ℓpΘ +B(ω + CM, t))e(ω+CM)t , (3.6)

where

B(ω + CM, t) =

∫ t

0
e−(ω+CM)s ∥b(s)∥ℓpΘ ds,

C is the Lipschitz constant independent of t, ω and M are the constants in Lemma 3.1.

(2) The global mild solution u(t) ∈ C([0,∞), ℓpΘ(Z
d)) of problem (1.1) and (1.2) obtained in

(1) is a classical solution if one of the following conditions holds

(a) u0 ∈ ℓpΘ(Z
d) and W is bounded;

(b) u0 ∈ D(A) = DΘ and b : [0,∞) → ℓpΘ(Z
d) is locally Lipschitz continuous.

4 Global solution in the case 2 < p < ∞

In [26], we proved the following theorem in the case 2 < p <∞.

Theorem 4.1 (1) Under assumptions (i), (ii), (iii), and (iv), if δ ≤ 0, b ∈
C([0,∞), ℓpΘ(Z

d))
⋂
L1([0,∞), ℓ2(Zd)), and in addition

Θ−1 ∈ ℓq, q = 2 +
4

p− 2
, (4.1)

then for every u0 ∈ ℓpΘ(Z
d), problem (1.1) and (1.2) has a unique global mild solution u ∈

C([0,∞), ℓpΘ(Z
d)) which continuously depends on u0 in the topology of uniform convergence

on bounded closed subintervals of [0,∞). Moreover, for any t ≥ 0

∥u(t)∥ℓpΘ ≤ (∥u0∥ℓpΘ +B(ω + CM, t))e(ω+CM)t , (4.2)

where

B(ω + CM, t) =

∫ t

0
e−(ω+CM)s ∥b(s)∥ℓpΘ ds,

C is the Lipschitz constant independent of t, ω and M are the constants in Lemma 3.1.

(2) The global mild solution u(t) ∈ C([0,∞), ℓpΘ(Z
d)) of problem (1.1) and (1.2) obtained in

(1) is a classical solution if one of the following conditions holds

(a) u0 ∈ ℓpΘ(Z
d) and W is bounded;

(b) u0 ∈ D(A) = DΘ and b : [0,∞) → ℓpΘ(Z
d) is locally Lipschitz continuous.

However, the condition (4.1) in the theorem made it impossible to obtain the existence of a
global ℓp solution as a particular case of Theorem 4.1. In this section, we will try a different way to
prove the existence of a global ℓp solution without the technical condition (4.1). Actually, we will
prove the following theorem.
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Theorem 4.2 (1) Under assumptions (i), (ii), (iii), and (iv), if b ∈ C([0,∞), ℓpΘ(Z
d)), then

for every u0 ∈ ℓpΘ(Z
d), problem (1.1) and (1.2) has a unique global mild solution u ∈

C([0,∞), ℓpΘ(Z
d)) which continuously depends on u0 in the topology of uniform convergence

on bounded closed subintervals of [0,∞). Moreover, for any t ≥ 0

∥u(t)∥ℓpΘ ≤ (∥u0∥ℓpΘ +B(δ̄ + 2dc0, t))e
(δ̄+2dc0)t , (4.3)

where

B(δ̄ + 2dc0, t) =

∫ t

0
e−(δ̄+2dc0)s ∥b(s)∥ℓpΘ ds,

δ̄ and c0 are constants in assumption (i) and (iv) respectively.

(2) The global mild solution u(t) ∈ C([0,∞), ℓpΘ(Z
d)) of problem (1.1) and (1.2) obtained in

(1) is a classical solution if one of the following conditions holds

(a) u0 ∈ ℓpΘ(Z
d) and W is bounded;

(b) u0 ∈ D(A) = DΘ and b : [0,∞) → ℓpΘ(Z
d) is locally Lipschitz continuous.

Let u0 ∈ ℓpΘ, 2 < p <∞, ℓ2Θ ⊂ ℓpΘ is densely embedded.
For each positive integer k we define

χk(n) =

{
1, when |n| ≤ k,

0, otherwise.

Let
u0k = u0χk ∈ ℓ2Θ ⊂ ℓpΘ,

then we have
lim
k→∞

||u0k − u0||ℓpΘ = 0.

For each u0k ∈ ℓ2Θ, there is a global classical solution uk (see [24]), that is,

uk ∈ C1
([
0,∞

)
, ℓ2Θ

)
⊂ C1

([
0,∞

)
, ℓpΘ

)
.

We will show that the sequence {uk} converges to a global mild solution in an appropriately
selected function space (defined later).

Let

N(t, u)(n) = if(n, u(t, n))− ib(t, n).

For each k ≥ 1

u̇k(n) = (−iH)uk(n) +N(t, uk)(n), for all n ∈ Zd. (4.4)

p > 2 implies p/2 > 1, for each n ∈ Zd, we rewrite

|uk(n)|p =
[
|uk(n)|2

] p
2
=
[
uk(n) · uk(n)

] p
2
. (4.5)
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Lemma 4.1 Assume that assumptions (i), (ii), and (iii) are satisfied and b ∈ C([0,∞), ℓpΘ(Z
d)).

If u0 ∈ ℓpΘ(Z
d), then there exists a constant C̄ = δ̄+2dc0, such that for each k, the global solution

uk ∈ C1([0,∞), ℓpΘ(Z
d)) satisfies

∥uk(t)∥ℓpΘ ≤ eC̄t
(
∥u0k∥ℓpΘ +B(C̄, t)

)
(4.6)

for each t ≥ 0.

Proof. Taking the derivative of (4.5) and using the chain rule we obtain

d

dt
|uk(n)|p =

p

2

[
|uk(n)|2

] p
2
−1 d

dt

(
uk(n)uk(n)

)
=
p

2

∣∣uk(n)∣∣p−2(
u̇k(n)uk(n) + uk(n)u̇k(n)

)
=
p

2

∣∣uk(n)∣∣p−2
2Re

(
u̇k(n)uk(n)

)
= p

∣∣uk(n)∣∣p−2
Re

(
u̇k(n)uk(n)

)
= Re

[
p
∣∣uk(n)∣∣p−2

uk(n)u̇k(n)
]
.

Multiplying (4.4) by p
∣∣uk(n)∣∣p−2

uk(n), and taking the real part we obtain

d

dt
|uk(n)|p = Re

[
p|uk(n)|p−2uk(n)[(−iH)uk(n)] + p|uk(n)|p−2uk(n)N(t, uk)(n)

]
= Re

[
p|uk(n)|p−2uk(n)[(−i(−∆+W ))uk(n)]

+ p|uk(n)|p−2uk(n)
(
if(n, uk(t, n))− ib(t, n)

)]
= Re

[
p|uk(n)|p−2uk(n)[(i∆uk(n)− iWuk(n)] + p|uk(n)|p−2uk(n)

(
if(n, uk(t, n)

)
− p|uk(n)|p−2uk(n)ib(t, n)

]
.

From assumption (i) we have
−iW = −iV + δ,

and from assumption (iii) we have

f(n, uk) = g(n, |uk|)uk(n) = (Re g + iIm g)uk(n).

Hence

d

dt
|uk(n)|p = Re

[
p|uk(n)|p−2uk(n)[(i∆uk(n)− iV (n)uk(n) + δ(n)uk(n)]

+ p|uk(n)|p−2uk(n)
(
i(Re g + iIm g)uk(n)

)
− p|uk(n)∥p−2uk(n)ib(t, n)

]
= Re

[
p|uk(n)|p−2uk(n)[(i∆uk(n)− iV (n)uk(n) + δ(n)uk(n)]

+ p|uk(n)|p−2|uk(n)|2
(
iRe g − Im g)

)
− p|uk(n)|p−2uk(n) ib(t, n)

]
,
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∆uk(n) =
d∑

j=1

[
uk(n+ ej) + uk(n− ej)

]
− 2duk(n), (4.7)

i∆uk(n) · uk(n) = i

d∑
j=1

[
uk(n+ ej) + uk(n− ej)

]
uk(n)− i2d|uk(n)|2, (4.8)

δ(n)uk(n)uk(n) = δ(n)|uk(n)|2. (4.9)

Use (4.8) and (4.9),

d

dt
|uk(n)|p = Re

[
p|uk(n)|p−2

(
i

d∑
j=1

[
uk(n+ ej) + uk(n− ej)

]
uk(n)

− i2d|uk(n)|2 − iV |uk(n)|2 + δ|uk(n)|2
)

+ p|uk(n)|p
(
iReg − Img

)
− p|uk(n)|p−2uk(n)ib(t, n)

= pδ(n)|uk(n)|p − p|uk(n)|p−2Im
d∑

j=1

[
uk(n+ ej)uk(n)

+ uk(n− ej)uk(n)
]
− p|uk(n)|p

(
Img

)
+ p|uk(n)|p−2Im(ukb)

]
.

Multiplying both sides by θpn, and by assumption (iii), Img ≥ 0, implies −p|uk(n)|p(Img) ≤ 0.
Thus by assumption (i) we have:

d

dt
|uk(n)|pθpn ≤ pδ̄ |uk(n)|pθpn − p|uk(n)|p−2Im

d∑
j=1

[
uk(n+ ej)θ

p
nuk(n)

+ uk(n− ej)θ
p
nuk(n)

]
+ p|uk(n)|p−2Im(ukb)θ

p
n.

Notice that the weighted ℓp space was defined as follows:

u ∈ ℓpΘ ⇐⇒ uΘ ∈ ℓp, ∥u∥ℓpΘ = ∥uΘ∥ℓp .

Taking summation over n ∈ Zd, we obtain

d

dt

( ∑
n∈Zd

|uk(n)θn|p
)
≤ pδ̄

∑
n∈Zd

|uk(n)θn|p

− pIm
d∑

j=1

∑
n∈Zd

|uk(n)|p−2uk(n)
[
uk(n+ ej)θ

p
n

+ uk(n− ej)θ
p
n

]
+ p|uk(n)|p−2Im(uk(n)b(t, n)θ

p
n).

Since
Im(uk(n)b(t, n)) ≤ |uk(n)b(t, n)| = |uk(n)||b(t, n)|,

we have

d

dt
∥uk∥pℓpΘ ≤ pδ̄∥uk(n)∥pℓpΘ + p

d∑
j=1

∑
n∈Zd

|uk(n)θn|p−1|uk(n+ ej)θn+ej |
θn

θn+ej

+ p

d∑
j=1

∑
n∈Zd

|uk(n)θn|p−1|uk(n− ej)θn−ej |
θn

θn−ej

+ p|uk(n)θn|p−1|b(t, n)||θn|.
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Since b(t, n) ∈ ℓpΘ, for all t ≥ 0 and Θ is a regular weight by assumption (iv), then by Hölder’s
inequality we obtain:

d

dt
∥uk(t)∥pℓpΘ ≤ pδ̄∥uk(t)∥pℓpΘ + 2dc0p∥uk(t)∥pℓpΘ + p∥uk(t)∥p−1

ℓpΘ
∥b(t)∥ℓpΘ

= (pδ̄ + 2dc0p)∥uk(t)∥pℓpΘ + p∥uk(t)∥p−1
ℓpΘ

∥b(t)∥ℓpΘ .

We set

w(t) =∥uk(t)∥ℓpΘ ,

then by the chain rule, we obtain

dw

dt
≤ (δ̄ + 2dc0)w(t)+∥b(t)∥ℓpΘ .

Let C̄ = δ̄ + 2dc0, and using Grönwall’s inequality we obtain :

∥uk(t)∥ℓpΘ ≤ eC̄t
(
∥u0k∥ℓpΘ +B(C̄, t)

)
□

For any fixed T > 0 we introduce the following Banach space

XT ≡ C
(
[0, T ], ℓpΘ

)
∥u(t, n)∥XT

= sup
0≤t≤T

∥u(t)∥ℓpΘ <∞.

Since b ∈ C
(
[0,∞), ℓpΘ

)
, we have b ∈ XT and uk ∈ XT by Lemma 4.1 for any k and T > 0.

Since the sequence {u0k} is convergent to u0 in ℓpΘ, then {u0k} is bounded in ℓpΘ.

Since B(C̄, t) and ec̄t are continuous in t, then from Lemma 4.1 we know

max
k

∥uk∥XT
<∞,

which means the sequence {uk} is bounded in XT , for any T > 0.

Since ℓpΘ ⊂ ℓp ⊂ ℓ∞ , and ∥u∥ℓ∞ ≤ ∥u∥ℓp ≤ C∥u∥ℓpΘ for all 1 ≤ p <∞. Then

max
k

sup
0≤t≤T

sup
n∈Zd

∣∣uk(t, n)∣∣ = max
k

sup
0≤t≤T

∥uk(t)∥ℓ∞ ≤ max
k

sup
0≤t≤T

∥uk(t)∥ℓp

≤ Cmax
k

sup
0≤t≤T

∥uk(t)∥ℓpΘ = Cmax
k

∥uk∥XT
≡ R(T ) <∞.

Lemma 4.2 Assume that assumptions (i), (ii), (iii), and (iv) are satisfied, then for any T > 0,
there exists ũT ∈ XT such that uk → ũT in XT . Furthermore, for any T1 < T2 we have

ũT2

∣∣∣
[0,T1]

= ũT1 ,

which means we can define the limit function ũ ∈ C
(
[0,∞), ℓpΘ

)
such that

ũ
∣∣∣
[0,T ]

= ũT

and uk → ũ in XT for any T > 0.
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Proof. Since

u̇k(t, n) = (−iH)uk(t, n) +N(t, uk(t, n)),

u̇m(t, n) = (−iH)um(t, n) +N(t, um(t, n)),

then
d

dt
[um(t, n)− uk(t, n)] = (−iH)[um(t, n)− uk(t, n)] + [N(t, um(t, n))−N(t, uk(t, n))]

= (−iH)[um(t, n)− uk(t, n)] + i[f(n, um(t, n))− f(n, uk(t, n))].

Using local Lipschitz condition:

max
n

∣∣∣f(n, z1)− f(n, z2)
∣∣∣ ≤ CR|z1 − z2| if |z1|, |z2| < R

and

max
k

sup
0≤t≤T

sup
n∈Zd

∣∣∣uk(t, n)∣∣∣ ≤ R(T ) <∞,

we have ∣∣∣f(n, um(t, n))− f(n, uk(t, n))
∣∣∣ ≤ CR(T )

∣∣∣um(t, n)− uk(t, n)
∣∣∣ (4.10)

uniformly with respect to n,m, k and t ∈ [0, T ].

Let

vmk(t, n) = um(t, n)− uk(t, n), (4.11)

multiplying by p|vmk(t, n)|p−2vmk(t, n) and taking the real part we obtain

d

dt
|vmk(t, n)|p ≤ Re

[
p|vmk(t, n)|p−2vmk(t, n)(−iHvmk(t, n))

]
+Re

[
p|vmk(t, n)|p−2vmk(t, n)(i[f(n, um(t, n))− f(n, uk(t, n))]

]
≤ p|vmk(t, n)|p−2Re

[
vmk(t, n)(i∆− iW )vmk(t, n)

]
+ pCR(T )|vmk(t, n)|p.

From the proof of Lemma 4.1 we have

Re
[
vmk(t, n)(i∆− iW )vmk(t, n)

]
= pδ(n)|vmk(t, n)|p

− p|vmk(t, n)|p−2Im

d∑
j=1

[
vmk(t, n+ ej)vmk(t, n)

+ vmk(t, n− ej)vmk(t, n)
]
.

Multiplying both sides by θpn we get

d

dt
|vmk(t, n)|pθpn ≤ pδ(n)θpn|vmk(t, n)|p + pCR(T )|vmk(t, n)|pθpn

− p|vmk(t, n)|p−2Im

d∑
j=1

[
vmk(t, n+ ej)vmk(t, n)θ

p
n

+ vmk(t, n− ej)vmk(t, n)θ
p
n

]
.
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Taking summation over n ∈ Zd for both sides and by assumption (i) we obtain:

d

dt
∥vmk(t)∥pℓpΘ ≤ pδ̄∥vmk(t)∥pℓpΘ + pCR(T )∥vmk(t)∥pℓpΘ

+ p

d∑
j=1

∑
n∈Zd

|vmk(t, n)θn|p−1
∣∣vmk(t, n+ ej)θn+ej

∣∣ θn
θn+ej

+ p

d∑
j=1

∑
n∈Zd

|vmk(t, n)θn|p−1
∣∣vmk(t, n− ej)θn−ej

∣∣ θn
θn−ej

.

Θ is a regular weight by assumption (iv), and by Hölder inequality we obtain:

d

dt
∥vmk(t)∥pℓpΘ ≤ pδ̄∥vmk(t)∥pℓpΘ + 2pdc0∥vmk(t)∥pℓpΘ + pCR(T )∥vmk(t)∥pℓpΘ

≤ p
(
δ̄ + 2dc0 + CR(T )

)
∥vmk(t)∥pℓpΘ .

Let C̃ = δ̄ + 2dc0 + CR(T ) and w(t) = ∥vmk(t)∥ℓpΘ , then by the chain rule we obtain

d

dt
w(t) ≤ C̃w(t).

By Grönwall’s inequality we obtain for any 0 ≤ t ≤ T

∥vmk(t)∥ℓpΘ ≤ eC̃t∥vmk(0)∥ℓpΘ ,

∥um(t)− uk(t)∥ℓpΘ ≤ eC̃t∥um(0)− uk(0)∥ℓpΘ ,

∥um − uk∥XT
≤ max{1, eC̃T }∥u0m − u0k∥ℓpΘ .

Therefore {uk} is a Cauchy sequence inXT which implies uk → ũT inXT for some ũT ∈ XT .
Since for T2 > T1 > 0 we have

XT2

∣∣∣
[0,T1]

= XT1 ,

by the uniqueness of the limit of the sequence {uk} in XT , we have

ũT2

∣∣∣
[0,T1]

= ũT1 .

Therefore we can define the limit function ũ ∈ C
(
[0,∞), ℓpΘ

)
such that

ũ
∣∣∣
[0,T ]

= ũT

and uk → ũ in XT for any T > 0. □

Lemma 4.3 Assume that assumptions (i), (ii), (iii), and (iv) are satisfied and b ∈
C([0,∞), ℓpΘ(Z

d)), then for any T > 0, ũ defined in Lemma 4.2 is the mild solution for the ini-
tial value problem (1.1) and (1.2) on [0, T ], that means ũ satisfies

ũ(t) = e−itHu0 +

∫ t

0
e−i(t−s)HN(s, ũ(s)) ds.
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Proof. Since for 0 ≤ t ≤ T , and for each k we have

uk(t) = e−itHu0k +

∫ t

0
e−i(t−s)HN(s, uk(s)) ds,

by the definition of ũ in Lemma 4.2 we know

uk → ũ in XT for any T > 0,

and by Lemma 3.1
∥e−itHu0k − e−itHu0∥ℓpΘ ≤Meωt∥u0k − u0∥ℓpΘ ,

which implies

lim
k→∞

∥e−itHu0k − e−itHu0∥XT
≤M max{1, eωT } lim

k→∞
∥u0k − u0∥ℓpΘ = 0.

Thus letting k → ∞ we obtain

ũ(t) = e−itHu0 + lim
k→∞

∫ t

0
e−i(t−s)HN(s, uk(s)) ds.

Therefore in order to prove Lemma 4.3 we only need to prove

lim
k→∞

∫ t

0
e−i(t−s)HN(s, uk(s)) ds =

∫ t

0
e−i(t−s)HN(s, ũ(s)) ds.

To this end we notice that

N(s, uk(s))−N(s, ũ(s)) = i[f(n, uk(s))− f(n, ũ(s))]

and for any T > 0, there exists a constant CR(T ) > 0 (see the proofs in previous lemmas) such that
for any 0 ≤ s ≤ T ∣∣∣f(n, uk(s))− f(n, ũ(s))

∣∣∣ ≤ CR(T )|uk(s)− ũ(s)|.

Thus for any T > 0,

max
0≤t≤T

∥∥∥∫ t

0
e−i(t−s)HN(s, uk(s)) ds−

∫ t

0
e−i(t−s)HN(s, ũ(s)) ds

∥∥∥
ℓpΘ

= max
0≤t≤T

∥∥∥∫ t

0
e−i(t−s)Hi[f(n, uk(s))− f(n, ũ(s))] ds

∥∥∥
ℓpΘ

≤ max
0≤t≤T

∫ t

0
Meω(t−s)∥f(n, uk(s))− f(n, ũ(s))∥ℓpΘ ds

≤M max{1, eωT }CR(T )

∫ T

0
∥uk(s)− ũ(s)∥ℓpΘ ds

≤M max{1, eωT }CR(T )T sup
0≤s≤T

∥uk(s)− ũ(s)∥ℓpΘ

→ 0 as k → ∞.

Therefore ũ satisfies the following equation

ũ = e−itHu0 +

∫ t

0
e−i(t−s)HN(s, ũ(s)) ds,

which implies ũ(0) = u0. Therefore, ũ is a mild solution to the initial value problem (1.1) and (1.2)
for any T > 0. □
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Proof of Theorem 4.2

(1) From Lemma 4.3, we know ũ is a mild solution to initial value problem(1.1) and (1.2) on
[0, T ] for any T > 0. By Theorem 3.1 there is a unique local mild solution on [0, τmax). By the
uniqueness of the local solution, we have ũ(t) = u(t) on [0, T ] which implies T < τmax. Therefore,
τmax = ∞ since T > 0 is arbitrary. By Lemma 4.1, we have for each k

∥uk(t)∥ℓpΘ ≤ eC̄t
(
∥u0k∥ℓpΘ +B(C̄, t)

)
,

where C̄ = δ̄ + 2dc0. Let k → ∞ we obtain (4.3).

(2) The proof follows from a similar reasoning in [25].
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