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Abstract. In this paper, we introduce in a natural way a new class of (ω, c)-periodic functions
and investigate some of their properties. We prove that the set of such functions is a Banach space
under an appropriate norm and provide a composition result. We give also several examples of such
functions.
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1 Introduction

In 2018, Alvarez et al. [2] introduced the concept of (ω, c)-periodic functions by observing the
behavior of any complex values solution x(t) of the so-called Matthieu’s equations

x′′ + ax = 2q cos(2t)x

which fulfills the equality x(t + ω) = cx(t), where t ∈ R, ω > 0 and c is a non zero complex
number.
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This theory has rapidly attracted several researchers including Abadias et al. [1], Baillon et
al. [3], Mophou and N’Guérékata [9]. Other contributions can be found in the following papers:
[1, 2, 5–7, 9, 15] and references therein.

In their papers [6], Larrouy and N’Guérékata investigated more interesting properties of (ω, c)-
periodic and asymptotically (ω, c)-periodic functions and studied solutions of such types of the
following equations:{

cDα
t u(t) = Au(t) + cDα−1

t f(t, u(t)), 1 < α < 2, t ∈ R,
u(0) = 0

(1.1)

and {
cDα

t u(t) = Au(t) + cDα−1
t f(t, u(t− h)), 1 < α < 2, t, h ∈ R+,

u(0) = 0
(1.2)

where cDα
t (·) (1 < α < 2) stands for the Caputo derivative and A is a linear densely defined

operator of sectorial type on a complex Banach space X, and the function f(t, u) is (ω, c)-periodic
or asymptotically (ω, c)-periodic with respect to the first variable.

In [9], Mophou and N’Guérékata investigated further properties of the new concept of (ω, c)-
periodic functions; then they applied the results to study the existence of (ω, c)-periodic mild solu-
tions of the fractional differential equations

Dα
t (u(t)− F1(t, u(t))) = A(u(t)− F1(t, u(t))) +Dα−1

t F2(t, u(t)), t ∈ R,

where 1 < α < 2, A : D(A) ⊆ X → X is a linear densely defined operator of sectorial type
on a complex Banach space X , F1, F2 : R ×X → X are two (ω, c)-periodic functions satisfying
suitable conditions in the second variable. The fractional derivative is understood in the sense of
Riemann-Liouville.

Recently, Khallali et al. studied several classes of (ω, c)-almost periodic type functions with one
and two variables and applied their results to some evolution equations.

On the other hand, Baillon et al. discussed the concept of C(n)-almost periodic functions in
their paper [3]. This class contains functions which are almost periodic as well as their successive
derivatives up to the order n.

Motivated by the papers above, among many others, we will introduce a new class of functions
called C(n) − (ω, c)-periodic functions and study some of their properties. We establish that the
collections of all such functions turns out to be a Banach space, equipped with an appropriate norm
and provide some examples of such functions.

2 Preliminaries

In this paper X = (X, ‖ · ‖) will denote a complex Banach space and B(X) the space of all bounded
linear operators X→ X, endowed with the uniform operator topology.

Definition 2.1 ( [2]) Let ω > 0 and c be a non-zero complex number. A function f ∈ C(R,X) is
said to be (ω, c)-periodic if f(t + ω) = cf(t), ∀t ∈ R. In this case ω is called a c-period of the
function f .
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We denote by P(ω,c)(R,X) the set of all (ω, c)-periodic functions from R to X. When c = 1, we
write Pω(R,X) instead of P(ω,1)(R,X) and we say that f is ω-periodic. When c = −1 we obtain
the class of antiperiodic functions [11].

Using the principal branch of the complex Logarithm, c
t
ω is defined as c

t
ω := exp( tωLog(c)) =

c∧(t) and we will use the notation c∧(t) := c
t
ω .

In [2], Alvarez et al. gave a useful description of the space P(ω,c)(R,X). That is P(ω,c)(R,X) is
a translation-invariant subspace over C of C(R,X). Then for any fixed h > 0 and u ∈ P(ω,c)(R,X),
we have uh(·) := u(· − h) ∈ P(ω,c)(R,X).

Proposition 2.1 ( [2]) Let f ∈ C(R,X). Then, f ∈ P(ω,c)(R,X) if and only if f(t) = c
t
ω u(t),

u(t) ∈ Pω(R,X).

Theorem 2.1 ( [9]) Let f ∈ P(ω,c)(R,X) and A ∈ B(X). Then Af ∈ P(ω,c)(R,X).

We state and prove this basic property which follows naturally from the (ω, c)-periodicity defi-
nition. It will be very useful in the sequel.

Theorem 2.2 ( [2]) P(ω,c)(R,X) is a Banach space with the norm

‖f‖ω,c := sup
t∈[0,ω]

‖|c|∧(−t)f(t)‖.

We note that if f ∈ P(ω,c)(R,X), then ‖f‖ω,c < ∞ and we say that f is c-bounded. The use of
‖f‖ω,c instead of ‖f‖∞ will allow us to handle the (ω, c)-periodicity properties of f (see [2] for
more details).

3 C(n) − (ω, c)-periodic functions

Let f : R −→ X. Denote by C(n)(R,X) (briefly C(n)(X)) the space of all functions R −→ X
which have a continuous nth derivative on R. Let C(n)

b (R,X) (briefly C(n)
b (X)) be the subspace of

C(n)(R,X) consisting of such functions satisfying

sup
t∈R

n∑
i=0

‖f (i)(t)‖ < +∞,

where f (i) denotes the i−th derivative of f and f (0) = f . Clearly C(n)(X) turns out to be a Banach
space with the norm

‖f‖n = sup
t∈R

n∑
i=0

‖f (i)(t)‖

(cf. for instance [3]).
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3.1 Generalities

Definition 3.1 A function f ∈ C(n)(X) is said to be a Cn − (ω, c)-periodic if f, f ′, f (2), · · · , f (n)
are (ω, c)-periodic.

The set of all C(n) − (ω, c)-periodic functions will be denoted by P
(n)
(ω,c)(R,X),(briefly

P
(n)
(ω,c)(X)). P

(0)
(ω,c)(X) = P(ω,c)(X), is the classical space of all (ω, c)-periodic functions.

Example 3.1 Consider the function f(t) = keαt, where α > 0, k and α are non-zero complex
numbers. Then f is C(n) − ( 1α ,e)-periodic for any n = 0, 1, 2, · · · .

Indeed,

f(t+
1

α
) = keα(t+

1
α
) = keαt · e = ef(t),

then f is ( 1α , e)-periodic.

Since f ′(t) = αkeαt = αf(t), we will have

f ′(t+
1

α
) = αf(t+

1

α
) = αef(t) = eαf(t) = ef ′(t).

Therefore f ′ is ( 1α , e)-periodic.

Assume that f (n)(t) is ( 1α , e)-periodic. We have f (n+1)(t) = αn+1keαt. Therefore

f (n+1)(t+
1

α
) = αf (n)(t+

1

α
) = αef (n)(t) = eαf (n)(t) = ef (n+1)(t).

So f (n+1) is ( 1α , e)-periodic. We conclude that f is C(n) − ( 1α , e)-periodic for any n = 0, 1, 2, · · · .

Example 3.2 Consider the function g(x) = cos (αx), where α is a positive real number. Then g is
C(n) − (2πα , 1)-periodic for any n = 0, 1, 2, · · · .

Indeed, g(x) = cos(αx), thus

g(x+
2π

α
) = cos

(
α(x+

2π

α
)

)
= g(x),

therefore g is (2πα , 1)-periodic. Since g′(x) = −α sin(αx) we have

g′(x+
2π

α
) = −α sin

(
α(x+

2π

α
)

)
= g′(x),

therefore g′ is (2πα , 1)-periodic. Similarly, g(n)(x) = αn cos(αx+ n · π2 ), thus

g(n)(x+
2π

α
) = αn cos

(
α(x+

2π

α
) + n · π

2

)
= g(n)(x),

therefore g(n) is (2πα , 1)-periodic. We conclude that g is C(n) − (2πα , 1)-periodic for any n =
0, 1, 2, · · · .
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Proposition 3.1 The set P (n)
(ω,c)(X) equipped with the ‖ · ‖n(ω,c) norm below

‖f‖n(ω,c) =
n∑
i=0

‖f (i)‖(ω,c),

turns out to be a Banach space.

Proof. Consider f, g ∈ P (n)
(ω,c)(X), and λ ∈ C∗.

i)

(f + g)(n)(t+ ω) = (f (n) + g(n))(t+ ω) = f (n)(t+ ω) + g(n)(t+ ω)

= cf (n)(t) + cg(n)(t) = c(f (n) + g(n))(t)

= c(f + g)(n)(t),

therefore f + g is C(n) − (ω, c) -periodic.

ii)

(λf)(n)(t+ ω) = (λf (n))(t+ ω) = λf (n)(t+ ω) = λcf (n)(t)

= c(λf (n))(t) = c(λf)(n)(t),

therefore λf is C(n) − (ω, c) -periodic.

P
(n)
(ω,c)(X) is a vector subspace.

Let’s show that ‖ · ‖n(ω,c) is a norm.

i)

‖f‖n(ω,c) = 0⇔
n∑
i=0

‖f (i)‖(ω,c) = 0⇔ ‖f (i)‖(ω,c) = 0 ∀i ∈ [0, n]

⇔ f (i)(t) = 0 ∀i ∈ [0, n] ⇔ f(t) = 0 ∀t ∈ R.

ii) For f ∈ P (n)
(ω,c)(X), and λ ∈ C∗,

‖λf‖n(ω,c) =
n∑
i=0

‖λf (i)‖(ω,c) =
n∑
i=0

|λ|‖f (i)‖(ω,c) = |λ|
n∑
i=0

‖f (i)‖(ω,c) = |λ|‖f‖n(ω,c).

iii) For f, g ∈ P (n)
(ω,c)(X),

‖f + g‖n(ω,c) =
n∑
i=0

‖f (i) + g(i)‖(ω,c) 6
n∑
i=0

‖f (i)‖(ω,c) +
n∑
i=0

‖g(i)‖(ω,c) = ‖f‖n(ω,c) + ‖g‖
n
(ω,c).



58 M. Koyabanda et al., J. Nonl. Evol. Equ. Appl. 2023 (2023) 53–62

Let us now show thatP (n)
(ω,c)(X) is complete for the norm ‖·‖n(ω,c). Consider (fm)m∈N the Cauchy

sequence for the functions C(n) − (ω, c) -periodic and suppose that fm −→ f when m −→∞.

∀ε > 0, ∃m0 ∈ N, ∀m, p ≥ m0, ‖fm − fp‖n(ω,c) < ε,

but

‖fm − fp‖n(ω,c) =
n∑
i=0

‖f (i)m − f (i)p ‖(ω,c).

So, ∀i we have, ‖f (i)m − f (i)p ‖(ω,c) < ε. Then ∀i, f (i)m is a sequence of Cauchy in P(ω,c)(X) which

is a Banach space, which implies f (i)m → f (i) and f (i) ∈ P(ω,c)(X), ∀i = 0, 1, 2, ..., n. Since

f (i) ∈ P(ω,c)(X), ∀i ∈ [0, n], then f ∈ P (n)
(ω,c)(X). �

Theorem 3.1 Let f ∈ P (n)
(ω,c1)

(X) and g ∈ P (n)
(ω,c2)

(X) then (fg) ∈ P (n)
(ω,c1·c2)(X).

Proof.

(fg)(t+ ω) = f(t+ ω) · g(t+ ω) = c1f(t) · c2g(t) = c1 · c2f(t)g(t) = c1 · c2(fg)(t).

Therefore (fg) is (ω, c1 · c2)-periodic.

It is easy to show that

(fg)′(t+ ω) = c1 · c2(f ′g + fg′)(t) = c1 · c2(fg)′(t),

then (fg)′ is also (ω, c1 · c2)-periodic. Suppose that (fg)(n) is (ω, c1 · c2)-periodic and let us prove
that (fg)(n+1) is also (ω, c1 · c2)-periodic.

Set h = (fg)(n) then h′ = (fg)(n+1), if h = (fg)(n) is (ω, c1 · c2) then h′ = (fg)(n+1) is also
(ω, c1 · c2)-periodic.

h′(t) = lim
ψ→0

h(t+ ψ)− h(t)
ψ

,

h′(t+ ω) = lim
ψ→0

h(t+ ω + ψ)− h(t+ ω)

ψ

= lim
ψ→0

c1 · c2h(t+ ψ)− c1 · c2h(t)
ψ

= c1.c2 lim
ψ→0

h(t+ ψ)− h(t)
ψ

,

h′(t+ ω) = c1 · c2h′(t),

h′ = (fg)(n+1) is (ω, c1 · c2)-periodic. Then (fg) ∈ P (n)
(ω,c1·c2)(X). �

In particular cases:

(a) For c1 = c2 = c , we obtain (fg) ∈ P (n)
(ω,c2)

(X).

(b) for g = f we have the same result.
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3.2 Composition result

Let f be a continuous and bounded function. We recall that, the Nemytskii operator of superposition
is defined by:

NF (ϕ)(t) = F (t, ϕ(t)),

we have the following result:

Theorem 3.2 Let f ∈ C(n)(R× X), then the following assertions are equivalent:

(i) ∀ϕ ∈ P (n)
(ω,c)(X), Nf (ϕ) ∈ P

(n)
(ω,c)(X);

(ii) ∀(t, x) ∈ R× X, f (n)(t+ w, cx) = cf (n)(t, x).

Before establishing the proof of this theorem, we will prove the following very useful lemma.

Lemma 3.1 ∀(t, x) ∈ R× X, ∃ϕ ∈ P (n)
(ω,c)(X) : ϕ(t) = x.

Proof. Let ψ : R −→ X be the function defined by: ψ(t) = c
t
w , we have ψ ∈ P

(n)
(ω,c)(X) and

ψ(0) = 1. Set ϕ(s) = ψ(s − t)x = c
s−t
w · x = xe

s−t
w
Ln(c), where Ln(·) stands for the principal

value of the complex Logarithm. Thenϕ ∈ P (n)
(ω,c)(X) andϕ(t) = x. Indeedϕ′(s) = Ln(c)

w ψ(s−t)x,

ϕ′′(s) =
(
Ln(c)
w

)2
ψ(s− t)x, step by step we have, ϕ(n)(s) =

(
Ln(c)
w

)n
ψ(s− t)x, in addition,

ϕ(n)(s+ w) =

(
Ln(c)

w

)n
ψ(s+ w − t)x =

(
Ln(c)

w

)n
cψ(s− t)x = cϕ(n)(s),

we have just shown that ϕ ∈ P (n)
(ω,c)(X). �

Let us now prove Theorem 3.2.

Proof. (i) ⇒ (ii) Suppose that Nf is C(n) − (ω, c) -periodic (∀n = 1, 2, · · · ). So, N (n)
f is (ω, c)

-periodic. We have

N
(n)
f (ϕ)(t+ w) = cN

(n)
f (ϕ)(t),

f (n)(t+ w,ϕ(t+ w)) = cf (n)(t, ϕ(t)),

f (n)(t+ w, cϕ(t)) = cf (n)(t, ϕ(t)),

if we set x = ϕ(t) then we get f (n)(t+ w, cx) = cf (n)(t, x).

Let us now prove (ii) ⇒ (i). Suppose that ∀(t, x) ∈ R× X, f (n)(t + w, cx) = cf (n)(t, x), by
the lemma above ∀(t, x) ∈ R× X, ∃ϕ ∈ P (n)

(ω,c)(X) such that x = ϕ(t) we have

f (n)(t+ w, cϕ(t)) = cf (n)(t, ϕ(t)),

f (n)(t+ w,ϕ(t+ w)) = cf (n)(t, ϕ(t)),

N
(n)
f (ϕ)(t+ w) = cN

(n)
f (ϕ)(t).

Then N (n)
f (ϕ) ∈ P(ω,c)(X) and Nf (ϕ) is C(n) − (ω, c) -periodic. The proof is completed. �
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Example 3.3 Consider the heat equation

ut(x, t) = uxx(x, t),

where (x, t) ∈ R× R+. Consider continuous and bounded regular solution u(x, t) with u(x, 0) =
f(x). Then it is known that

u(x, t) =
1

2
√
πt

∫ ∞
−∞

e−
(x−s)2

4t f(s)ds.

Fix t0 ∈ R+ and suppose that f(x) is C(n) − (ω, c)-periodic. Then u(x, t0) is also C(n) − (ω, c)-
periodic. Indeed, we can set, u(x, t0) = f ∗ h where h(x) = I[0,+∞)at0(x) and at0(x) =

1
2
√
πt0
e
− x2

4t0 then u(x, t0) ∈ P (n)
(ω,c)(X) according to Theorem 3.2 above.

Example 3.4 Let f be C(n) − (ω, c)-periodic. Then the function Fa(t) :=
∫ t+a
t f(s)ds is C(n) −

(ω, c)-periodic.

The proof is easy as a combination of [9, Theorem 2.7], [7, Theorem 2.14] and an appropriate
change of variable f .

Indeed, Fa(t + w) :=
∫ t+w+a
t+w f(s)ds. Using the change of variable s = σ + w, ds = dσ we

obtain

Fa(t+ w) =

∫ t+a

t
f(σ + w)dσ =

∫ t+a

t
cf(σ)dσ = cFa(t).

Then Fa(t) is (ω, c)-periodic. It is easy to show that

F ′a(t) = f(t+ a)− f(t),
F ′a(t+ w) = f(t+ w + a)− f(t+ w) = cf(t+ a)− cf(t) = cF ′a(t),

F ′′a (t) = f ′(t+ a)− f ′(t),
F ′′a (t+ w) = f ′(t+ w + a)− f ′(t+ w) = cf ′(t+ a)− cf ′(t) = cF ′′a (t),

step by step we have

F (n)
a (t) = f (n−1)(t+ a)− f (n−1)(t),

F (n)
a (t+ w) = f (n−1)(t+ w + a)− f (n−1)(t+ w) = cf (n−1)(t+ a)− cf (n−1)(t) = cF (n)

a (t).

Then f is C(n) − (ω, c)-periodic⇒ Fa(t) is C(n) − (ω, c)-periodic.

Example 3.5 Let u(x, t) be a regular solution in R2 of the wave equation

utt(x, t) = uxx(x, t),

u(x, 0) = f(x), ut(x, 0) = g(x).

Then we have

u(x, t) =
1

2
[f(x+ t) + f(x− t)] + 1

2

∫ x+t

x−t
g(s)ds.

If we assume that f, g are C(n) − (ω, c)-periodic, then for t0 ∈ R+, u(x, t0) will be also C(n) −
(ω, c)-periodic.
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Indeed,

u(x+ w, t0) =
1

2
[f(x+ w + t0) + f(x+ w − t0)] +

1

2

∫ x+w+t0

x+w−t0
g(s)ds.

Using the change of variable s = σ + w, ds = dσ we obtain

u(x+ w, t0) =
1

2
[cf(x+ t0) + cf(x− t0)] +

1

2

∫ x+t0

x−t0
g(σ + w)dσ

=
1

2
c[f(x+ t0) + f(x− t0)] +

1

2
c

∫ x+t0

x−t0
g(σ)dσ

= cu(x, t0).

Then u(x, t0) is (ω, c)-periodic. Similarly,

u′(x, t0) =
1

2

[
f ′(x+ t0) + f ′(x− t0)

]
+

1

2
[g(x+ t0)− g(x− t0)] ,

u′(x+ w, t0) =
1

2

[
f ′(x+ w + t0) + f ′(x+ w − t0)

]
+

1

2
[g(x+ w + t0)− g(x+ w − t0)]

= cu′(x, t0),

...

u(n)(x, t0) =
1

2

[
f (n)(x+ t0) + f (n)(x− t0)

]
+

1

2

[
g(n−1)(x+ t0)− g(n−1)(x− t0)

]
,

u(n)(x+ w, t0) = cu(n)(x, t0).

Then u(x, t0) is C(n) − (ω, c)-periodic.

4 Conclusion

In this note, we introduce in a natural way a new class of (ω, c)-periodic functions which includes
the one presented in the pioneer work [1] and study some of their elementary properties. Our next
step is to apply these results in studying the long term behavior of mild solutions to some abstract
and evolution equations.
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[11] G. M. N’Guérékata, V. Valmorin, Antiperiodic solutions of semilinear integrodifferential equa-
tions in Banach spaces, Applied Mathematics and Computation 218, no. 2 (2012), pp. 11118–
11124.
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[15] R. G. Foko Tiomela, G. M. N’Guérékata, (ω, c) asymptotically periodic solutions to some frac-
tional integrodifferential equations, Journal of fractional calculus and applications 13, no. 2
(2022), pp. 100–115.


	Introduction
	Preliminaries
	  C(n)- (,c) -periodic functions
	Generalities
	Composition result

	Conclusion

