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1 Introduction and preliminaries

The notion of almost automorphy was discovered by the American mathematician S. Bochner in
1955 while he was studying problems related to differential geometry ([4]). The study of almost
automorphy on (semi-)topological groups starts presumably with the papers of W. A. Veech [28, 29],
which were published during the period 1965–1967. For more details about almost automorphic
functions on semi-topological groups we refer the reader to [7, Section 4].

Suppose that F : Rn → X is a continuous function, where (X, ∥ · ∥) is a complex Banach space.
Then, we say that the function F (·) is almost automorphic if and only if for every sequence (bk) in
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Rn there exist a subsequence (ak) of (bk) and a mapping G : Rn → X such that

lim
k→∞

F
(
t+ ak

)
= G(t) and lim

k→∞
G
(
t− ak

)
= F (t), (1.1)

pointwisely for t ∈ Rn. The range of an almost automorphic function F (·) is relatively compact
in X , and the limit function G(·) is bounded on Rn but not necessarily continuous on Rn. If the
convergence of limits appearing in (1.1) is uniform on compact subsets of Rn (resp., the whole space
Rn), then we say that the function F (·) is compactly almost automorphic (resp., almost periodic). It
is well-known that an almost automorphic function F (·) is compactly almost automorphic if and
only if F (·) is uniformly continuous. For more details about almost periodic functions, almost
automorphic functions, various generalizations and applications we refer the reader to the research
monographs and articles [2, 3, 9, 10, 13, 14, 15, 18, 24, 30]; see especially [7, 19] and the lists of
references quoted therein.

Various classes of multi-dimensional almost automorphic functions have been analyzed by
A. Chávez et al. in the above-mentioned paper [7]. This research study has recently been continued
in [21] and [22], where we have analyzed the Stepanov classes and the Weyl classes of multi-
dimensional almost automorphic functions, respectively. (Let us recall that in the one-dimensional
setting the notion of Stepanov almost automorphy was introduced by V. Casarino [8] in 2000 and
later reconsidered by G. M. N’Guérékata and A. Pankov [17] in 2008, while the notion of Weyl
almost automorphy was introduced by S. Abbas [1] in 2012.) The main aim of this study is to
introduce and analyze the multi-dimensional Besicovitch almost automorphic functions as well as to
present certain applications in the analysis of the existence and uniqueness of the Besicovitch almost
automorphic type solutions for various classes of abstract Volterra integro-differential equations and
partial differential equations. Some classes of Besicovitch almost automorphic functions introduced
here seem to be new even in the one-dimensional setting. On the other hand, this is probably the
first research article which seeks for spatially Besicovitch almost automorphic solutions of (abstract)
PDEs.

The organization and main ideas of this paper can be briefly described as follows. The main part of
the paper is Section 2, in which we analyze various notions of multi-dimensional Besicovitch almost
automorphy in Lebesgue spaces with variable exponent. In Definition 2.1, we introduce the notion
of Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphy, weak Besicovitch-(F, ϕ, p(u),R,B)-
multi-almost automorphy, Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphy of type 1 and
weak Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphy of type 1. Proposition 2.2 states
that any Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphic function F (·; ·) is Besicovitch-
(R,B, ϕ,F)-Bp(·)-normal, where F(l) ≡ F(l, 0). Proposition 2.5 continues our analysis from
[22, Proposition 2.10]. After that, in Definition 2.6, we introduce the notions of Besicovitch-
(F, ϕ, p(u),R,B,WB,R)-multi-almost automorphy and the Besicovitch-(F, ϕ, p(u),R,B,PB,R)-
multi-almost automorphy, and explain how these notions can be introduced for all other classes of
functions from Definition 2.1. In Proposition 2.8, we consider the pointwise products of Besicovitch-
(F, ϕ, p(u),R,B,PB,R)-multi-almost automorphic functions with the scalar Besicovitch almost
automorphic functions of a similar type. A composition principle for Besicovitch-(F, ϕ, p,R,B)-
multi-almost automorphic functions of type 1 is deduced in Theorem 2.10.

Some applications of our results to abstract Volterra integro-differential equations and partial
differential equations are provided in Section 3. It is worth noticing that in Definition 3.1 we introduce
the class of Besicovitch-(F, ϕ, p(u),R, w)-multi-almost automorphic type functions, in which we
aim to control the growth order of the limit function F ∗(·) by the weight function w(·). This idea
seems to be completely new and not explored elsewhere even in the one-dimensional setting. The
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notion introduced in Definition 3.1 plays a fundamental role in Proposition 3.2, where we investigate
the invariance of Besicovitch almost automorphy under the actions of infinite convolution products,
and Theorem 3.3, where we investigate the convolution invariance of multi-dimensional Besicovitch
almost automorphy. Because of a certain similarity with our previous investigations of the existence
and uniqueness of Besicovitch almost periodic solutions of abstract nonautonomous differential
equations of first order and the classical wave equation, we have skipped here some irrelevant details
concerning the existence and uniqueness of Besicovitch almost automorphic solutions for these
classes of PDEs ([20]). The final conclusions and remarks about the introduced classes of functions
are given in Section 4. In addition to the above, we also provide many useful comments, illustrative
examples and propose some open problems. It is also worth noting that we give some new definitions,
observations and examples regarding multi-dimensional Weyl almost automorphic type functions.

We use the standard notation throughout the paper. We assume henceforth that (X, ∥ · ∥),
(Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z) are complex Banach spaces. By L(X,Y ) we denote the Banach algebra
of all bounded linear operators from X into Y , with L(X,X) being denoted L(X). If A is a closed
linear operator on X , then its domain and range are denoted by D(A) and R(A), respectively. We
assume henceforth that B is any collection of non-empty subsets of X such that for each x ∈ X
there exists B ∈ B such that x ∈ B; R denotes a general non-empty collection of sequences in Rn.
For further information concerning the Lebesgue spaces with variable exponents Lp(x) we refer the
reader to the research monograph [11] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka, as
well as to [12, 19] and [26]. We will only note here that P(Rn) denotes the space of all Lebesgue
measurable functions p : Rn → [1,∞].

We need to recall the following definitions.

Definition 1.1 ([7, Definition 2.1]) Suppose that F : Rn ×X → Y is a continuous function. Then,
we say that the function F (·; ·) is (R,B)-multi-almost automorphic if and only if for every B ∈ B and
every sequence (bk) ∈ R there exist a subsequence (bkl) of (bk) and a function F ∗ : Rn ×X → Y
such that

lim
l→+∞

F
(
t+ bkl ;x

)
= F ∗(t;x)

and

lim
l→+∞

F ∗(t− bkl ;x
)
= F (t;x),

pointwisely for all x ∈ B and t ∈ Rn. If the convergence in the above-limit equations is uniform
with respect to the sets B of collection B, for a fixed number t ∈ Rn, then we say that the function
F (·; ·) is uniformly (R,B)-multi-almost automorphic.

Definition 1.2 ([20, Definition 2.11]) Suppose that F : Rn × X → Y , ϕ : [0,∞) → [0,∞) and
F: (0,∞) → (0,∞) are given. Then, we say that the function F (·; ·) is Besicovitch-(R,B, ϕ,F)-
Bp(·)-normal if and only if for every set B ∈ B and for every sequence (bk)k∈N in R there exists a
subsequence (bkm)m∈N of (bk)k∈N such that for any ϵ > 0 an integer m0 ∈ N can be found so that
for all m,m′ ≥ m0 we have

lim sup
t→+∞

F(t) sup
x∈B

[
ϕ
(
∥F (t+ bkm ;x)− F (t+ bkm′ ;x)∥Y

)]
Lp(t)(At)

< ϵ,

where At = {t ∈ Rn : |t| ≤ t} for t > 0; here, |t| denotes the Euclidean norm of the point t ∈ Rn.
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2 Multi-dimensional Besicovitch almost automorphy in Lebesgue
spaces with variable exponent

The main aim of this section is to introduce and analyze various classes of multi-dimensional
Besicovitch almost automorphic functions in Lebesgue spaces with variable exponent. Unless
stated otherwise, we will always assume henceforth that Ω := [−1, 1]n ⊆ Rn, p ∈ P(Rn) and
F : (0,∞)× Rn → (0,∞).

We start by introducing the following notion.

Definition 2.1 Suppose that F : Rn × X → Y is a given function. Let for every B ∈ B and
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkm = (b1km , b

2
km

, · · ·, bnkm)) of (bk)
and a function F ∗ : Rn × X → Y such that for each x ∈ B, l > 0 and t ∈ Rn we have
ϕ(F (t+ u+ bkm ;x)− F ∗(t+ u;x)) ∈ Lp(u)(lΩ : Y ), ϕ(F ∗(t+ u− bkm ;x)− F (t+ u;x)) ∈
Lp(u)(lΩ : Y ), as well as:

(i) lim
m→+∞

lim sup
l→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F (t+u+bkm ;x)−F ∗(t+u;x)∥Y

)]
Lp(u)(lΩ)

= 0 (2.1)

and

lim
m→+∞

lim sup
l→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F ∗(t+u−bkm ;x)−F (t+u;x)∥Y

)]
Lp(u)(lΩ)

= 0, (2.2)

pointwise for all x ∈ B and t ∈ Rn, or

(ii) lim
m→+∞

lim inf
l→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F (t+ u+ bkm ;x)− F ∗(t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0

and

lim
m→+∞

lim inf
l→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F ∗(t+ u− bkm ;x)− F (t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0,

pointwise for all x ∈ B and t ∈ Rn, or

(iii) lim
l→+∞

lim sup
m→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F (t+ u+ bkm ;x)− F ∗(t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0

and

lim
l→+∞

lim sup
m→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F ∗(t+ u− bkm ;x)− F (t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0,

pointwise for all x ∈ B and t ∈ Rn, or

(iv) lim
l→+∞

lim inf
m→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F (t+ u+ bkm ;x)− F ∗(t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0

and

lim
l→+∞

lim inf
m→+∞

F(l, t) sup
x∈B

[
ϕ
(
∥F ∗(t+ u− bkm ;x)− F (t+ u;x)∥Y

)]
Lp(u)(lΩ)

= 0,

pointwise for all x ∈ B and t ∈ Rn.
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If (i) (resp., (ii), (iii) or (iv)) holds, then we say that the function F (·; ·) is Besicovitch-
(F, ϕ, p(u),R,B)-multi-almost automorphic (resp., weakly Besicovitch-(F, ϕ, p(u),R,B)-multi-
almost automorphic, Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphic of type 1 or weakly
Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphic of type 1). By AAB

F,ϕ,p(u)
(R,B) (Rn ×X : Y )

(resp., w-AABF,ϕ,p(u)
(R,B) (Rn×X :Y ), AABF,ϕ,p(u),1

(R,B) (Rn×X :Y ) and w-AABF,ϕ,p(u),1
(R,B) (Rn×X :Y ))

we denote the collection of all Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphic
(resp., weakly Besicovitch-(F, ϕ, p(u),R,B)-multi-almost automorphic, Besicovitch-
(F, ϕ, p(u),R,B)-multi-almost automorphic of type 1 and weakly Besicovitch-(F, ϕ, p(u),R,B)-
multi-almost automorphic of type 1) functions F : Rn ×X → Y .

Trivially, if the requirements in (i) (resp., (iii)) of Definition 2.1 hold, then the requirements in
(ii) (resp., (iv)) of Definition 2.1 hold as well. The notion introduced in [19, Definition 8.3.17 and
Definition 8.3.32] is a special case of the notion introduced in Definition 2.1. The interested reader
may simply clarify some sufficient conditions ensuring that the spaces introduced in Definition 2.1 are
translation invariant or have a linear vector structure with the usual operations (see also the items [20,
(i)–(iv)] clarified at the beginning of the second section). An analogue of [20, Proposition 2.13] holds
in our new framework.

The case ϕ(x) ≡ x, p(u) ≡ p ∈ [1,∞) and F(l, t) ≡ l−n/p is the most important; we then say
that the function F : Rn ×X → Y is (weakly) Besicovitch p-(R,B)-multi-almost automorphic (of
type 1). If, in addition to the above, the collection B consists of bounded subsets of X , then the notion
of Besicovitch p-(R,B)-multi-almost automorphy is equivalent with the notion of Besicovitch-(R,B)-
Bp-normality, since, in this case, an extension of the well-known result of J. Marcinkiewicz [25]
holds (see [20, Theorem 2.5]) and the equations (2.1)–(2.2) hold for arbitrary t ∈ Rn if and only
the equations (2.1)–(2.2) hold with t = 0 (the value of the limit superior in these equations does
not depend on t ∈ Rn; see the proof of [20, Proposition 3.3]). Furthermore, these two notions are
equivalent in the case when ϕ(x) ≡ xα for some α ∈ (0, 1]. If we replace all the operations lim sup
and lim inf in Definition 2.1 with the classical limits, then we obtain the corresponding notion of
Weyl p-almost automorphy (of type 1).

If the function F : Rn×X → Y is Besicovitch p-(R,B)-multi-almost automorphic, for example,
and R denotes the collection of all sequences in Rn, then we omit the term “R” from the notation.
Furthermore, if X = {0}, then we omit the term “B” from the notation. This particularly means that
the function F : Rn → Y is Besicovitch-p-almost automorphic if and only if F (·) is Besicovitch-p-R-
multi-almost automorphic with R being the collection of all sequences in Rn. In [22, Theorem 2.9],
we constructed an example of a Weyl (Besicovitch)-p-almost automorphic function which is not
Besicovitch-p-bounded and therefore not Besicovitch-p-almost periodic (p ≥ 1). Further on, if
p = 1, then we say that the function F (·) is Besicovitch almost periodic, automorphic, etc.

The proof of following result is not difficult and can be omitted.

Proposition 2.2 Suppose that the function F (·; ·) is Besicovitch-(F, ϕ, p(u),R,B)-multi-almost
automorphic, and F(l) ≡ F(l, 0). Then, the function F (·; ·) is Besicovitch-(R,B, ϕ,F)-Bp(·)-
normal.
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We continue by providing the following illustrative examples. (The first one is in support of our
recent investigation of Weyl almost automorphy [22].)

Example 2.3 (based on the example of D. Brindle [5, Example 2.2]) Let l∞ denote the Banach
space of all bounded numerical sequences, equipped with the supremum norm. Consider the function
f : R → l∞ given by f(t) := (e−|t|/k)k∈N for t ∈ R. We know that this function is uniformly
continuous, bounded, slowly oscillating and has no mean value so that f(·) is not Besicovitch almost
periodic (for the notion and more details see [19, Example 9.0.20]). On the other hand, we can
simply prove that the function f(·) is not Stepanov almost automorphic. In fact, if we assume the
contrary, then the function f(·) needs to be almost automorphic (see, e.g., [19, Lemma 2.3.4]),
since it is uniformly continuous. This is not the case, because we can use the sequence (bk ≡ k) in
the corresponding definition of almost automorphy with t = 0 in order to conclude that for each
ϵ ∈ (0, e−1) there exists an integer k0 ∈ N such that

sup
k∈N

∣∣e−l/k − e−m/k
∣∣ < ϵ, l,m ∈ N.

If we plug k = k0 = l here, then we obtain∣∣e−1 − e−m/k0
∣∣ ≤ sup

k∈N

∣∣e−l/k − e−m/k
∣∣ < ϵ,

which gives a contradiction, since the first term tends to e−1 as m → +∞. Moreover, we can
simply prove that the function f(·) is Weyl-p-almost automorphic for any finite real exponent p ≥ 1.
Actually,, for every sequence (bk) in R we can take the same subsequence (bkm) = (bk) and the limit
function f∗ ≡ f in the corresponding definition, since the function f(·) is slowly oscillating and
bounded. It can be also proved that the function f(·) is Weyl-p-almost automorphic of type 1 (jointly
Weyl-p-almost automorphic; see [22, Definition 2.5] for the notion) for any finite real exponent p ≥ 1,
since for any sequence (bk) tending to plus or minus infinity we can take the limit function f∗ ≡ 0 in
the corresponding definition. (The situation is much simpler for bounded sequences (bk), when we
can take an appropriate translation of the function f(·) as the limit function f∗(·).) This example
is important because for the vector-valued function f(·) the limit limt→+∞ t−1

∫ t
0 f(s) ds does not

exist in l∞, but limt→+∞ t−1
∫ t
0 ∥f(s)∥ds = 0.

Example 2.4

(i) Suppose that ω ∈ Rn \ {0}, ϕ(0) = 0 and a continuous function F : Rn → Y is ω-periodic, i.e.,
F (t+ ω) = F (t) for all t ∈ Rn. Let R denote the collection of all sequences in the set ω · Z. Then,
the function F (·) is Besicovitch-(F, ϕ, p(u),R)-multi-almost automorphic (resp., weakly Besicovitch-
(F, ϕ, p(u),R)-multi-almost automorphic, Besicovitch-(F, ϕ, p(u),R)-multi-almost automorphic of
type 1 and weakly Besicovitch-(F, ϕ, p(u),R)-multi-almost automorphic of type 1).

(ii) Let p(·) ≡ p ∈ [1,∞). Then, it is very simple to construct an example of an ω-periodic continu-
ous function F : Rn → Y which is not weakly Besicovitch-(F, ϕ, p,R)-multi-almost automorphic
of type 1. Suppose, for simplicity, that ϕ(x) ≡ x, n = 2, Y := C, and F(·; ·) is arbitrary. Suppose,
further, that F0 : {(x, y) ∈ R2 : 0 ≤ x + y ≤ 2} → [0,∞) is any continuous function such that
F0(x, y) = F0(x+ 1, y + 1) for every (x, y) ∈ R2 with x+ y = 0.

Assume also that a sequence (ak) in N and a sequence (rk) in (0,∞) satisfy limk→+∞ ak =
limk→+∞ rk = +∞, ak + 3rk < ak+1 − 3rk+1 for all k ∈ N, and the value of the function F0(·; ·)
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on the projection of the rectangle ak + [−rk, rk]
2 to the strip {(x, y) ∈ R2 : 0 ≤ x + y ≤ 2} is

greater or equal than k.

After that, we extend the function F0(·; ·) to a continuous (1, 1)-periodic function defined on the
whole space R2 in the usual way. Then, it can be simply shown that for each l > 0 we have

lim
k→+∞

∫
[−l,l]2

∣∣F (x+ ak, y)
∣∣p dx dy = +∞.

This implies the required conclusion with R being the collection of all sequences in {(k, 0) : k ∈ N}.

The following result, extending [22, Proposition 2.10], can be also formulated in the multi-
dimensional setting.

Proposition 2.5 Suppose that p ≥ 1, σ > 0, F(l) ≡ l−σ and f ∈ Lp
loc(R : X). Moreover, assume

that there exist a strictly increasing sequence (lk) of positive real numbers tending to plus infinity, a
sequence (bk) of real numbers and a positive real number ϵ0 > 0 such that for every k ∈ N and for
every subsequence of (bkm) of (bk) we have

lim
m→+∞

l−σ
k

∫ bkm+lk

bkm−lk

∥∥f(x)∥∥p dx = +∞. (2.3)

Then, the function f(·) is not Besicovitch-(F, x, p)-almost automorphic of type 1.

Proof. Suppose that the function f(·) is Besicovitch-(F, x, p)-almost automorphic of type 1. Let
ϵ > 0 be arbitrary. Then, there exist a subsequence (bkm) of (bk), a function f∗ ∈ Lp

loc(R : X) and a
finite real number l0 > 0 such that for every l ≥ l0 an integer ml ∈ N can be found so that for any
integer m ≥ ml we have

l−σ

∫ l

−l

∥∥f(x+ bkm
)
− f∗(x)

∥∥p dx < ϵ.

Let k ∈ N be such that lk ≥ l0. Then, due to (2.3), we have

ϵ > l−σ
k

∫ lk

−lk

∥∥f(x+ bkm
)
− f∗(x)

∥∥p dx

≥ l−σ
k 21−p

[∫ lk

−lk

∥∥f(x+ bkm
)∥∥p dx−

∫ lk

−lk

∥∥f∗(x)
∥∥p dx

]

= l−σ
k 21−p

[∫ lk+bkm

−lk+bkm

∥∥f(x)∥∥p dx−
∫ lk

−lk

∥∥f∗(x)
∥∥p dx

]
→ +∞, m → +∞.

This ends the proof. □

We can simply reformulate [22, Example 3.6] in our new framework, as well as the conclusions
established in [22, Proposition 3.7 and Proposition 3.8]. Further on, the convergence of limits in
Definition 2.1 is pointwise for any x ∈ B and t ∈ Rn. For our further work, it will be important to
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note that we can impose further requirements about the convergence of limits in Definition 2.1 and
consider, in such a way, several new classes of multi-dimensional Besicovitch almost automorphic
type functions. For example, consider the class AAB

F,ϕ,p(u)
(R,B) (Rn × X : Y ) and assume that for

each B ∈ B and (bk = (b1k, b
2
k, · · ·, bnk)) ∈ R we have that WB,(bk) : B → P (P (Rn)) and

PB,(bk) ∈ P (P (Rn ×B)). Then, we can introduce the following notion (cf. also [7, Definition 2.2]
and the example following it).

Definition 2.6 We say that a function F : Rn ×X → Y is

(a) Besicovitch-(F, ϕ, p(u),R,B,WB,R)-multi-almost automorphic if and only if (2.1)–(2.2) hold
pointwisely for all x ∈ B and t ∈ Rn, as well as that for each x ∈ B the convergence in t is
uniform for any element of the collection WB,(bk)(x);

(b) Besicovitch-(F, ϕ, p(u),R,B,PB,R)-multi-almost automorphic if and only if (2.1)–(2.2) hold
pointwisely for all x ∈ B and t ∈ Rn, as well as that the convergence in (2.1)–(2.2) is uniform
in (t;x) for any set of the collection PB,(bk).

We similarly define the WB,R- and PB,R-classes of multi-dimensional Besicovitch almost periodic
functions from the parts (ii)–(v) of Definition 2.1. We can also introduce the corresponding classes
of Weyl almost automorphic functions considered in [22]; we only need to replace the operations
lim sup and lim inf in Definition 2.1 with the usual limits. In connection with Definition 2.6 and
the above observations, we will present the following example (cf. also [7, Example 5] and [21,
Example 2.4]).

Example 2.7 Suppose that φ : R → C is an almost automorphic function, and (T (t))t∈R ⊆
L(X,Y ) is an operator family which is strongly locally integrable and not strongly continuous
at zero. Suppose, further, that there exist a finite real number M ≥ 1 and a real number γ ∈ (0, 1)
such that ∥∥T (t)∥∥

L(X,Y )
≤ M

|t|γ
, t ∈ R \ {0}.

Let also R be the collection of all sequences in ∆2 ≡ {(t, t) : t ∈ R} and let B be the collection of
all bounded subsets of X . Define

F (t, s;x) := e
∫ t
s φ(τ) dτT (t− s)x, (t, s) ∈ R2, x ∈ X,

and assume that for each bounded subset B of X and for each sequence (bk = (bk, bk)) in R the
collection PB,(bk) consists of all sets of the form {(t, s) ∈ R2 : |t − s| ≤ L} × B, where L > 0.
Define

F ∗(t, s;x) := e
∫ t
s φ∗(r) drT (t− s)x, (t, s) ∈ R2, x ∈ X.

If the function φ(·) is almost periodic, then it is not difficult to show, with the help of the computation
established in [7, Example 5], that the function F (·, ·; ·) is Stepanov (Ω, 1)-(R,B,PB,R)-multi-
almost automorphic; see [21] for the notion. But, this is no longer possible if the function φ(·) is
almost automorphic but not almost periodic. If this is the case, then we can simply prove that the
function F (·, ·; ·) is Weyl-(F, x, 1,R,B, PB,R)-multi-almost automorphic of type 1, since for each
fixed real number l > 0 we have

lim
m→+∞

∫
[−l,l]2

sup
x∈B

∥∥F (t+ u1 + bkm , s+ u2 + bkm ;x
)
− F ∗(t+ u1, s+ u2;x

)∥∥
Y
du1 du2 = 0,

which follows from an application of the dominated convergence theorem and a simple calculation.
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Now, we will state and prove the following result for the class of Besicovitch-
(F, ϕ, p(u),R,B, PB,R)-multi-almost automorphic functions. The same result holds for the
Besicovitch-(F, ϕ, p(u),R,B,WB,R)-multi-almost automorphic functions, and the interested reader
may try to formulate this result for the functions introduced in parts (iii)–(iv) of Definition 2.1.

Proposition 2.8 Suppose that p, q, r ∈ [1,∞), 1/r = 1/p+1/q, F1(l, t) ≡ l−n/p, F2(l, t) ≡ l−n/q,
F(l, t) ≡ l−n/r, and ϕ(x) ≡ xα for some real number α > 0. If for each sequence in R any its
subsequence also belongs to R, the function F1 : Rn → C is Besicovitch-(F, ϕ, p,R,B, PB,R)-
multi-almost automorphic (resp., weakly Besicovitch-(F1, ϕ, p,R,B, PB,R)-multi-almost automor-
phic), F2 : Rn → Y is Besicovitch-(F, ϕ, q,R,B, PB,R)-multi-almost automorphic (resp., weakly
Besicovitch-(F1, ϕ, q,R,B, PB,R)-multi-almost automorphic), and for each set B ∈ B there exist
finite real numbers l0 > 0 and mB > 0 such that

sup
t∈Rn;x∈B

∥[ϕ(|F1(t+ ·)|)]∥Lp(lΩ) ≤ mBl
n/p, l ≥ l0,

and
sup

t∈Rn;x∈B
∥[ϕ(∥F2(t+ ·)∥Y )]∥Lq(lΩ) ≤ mBl

n/q, l ≥ l0,

(resp., there exists a strictly increasing sequence (lk) of positive real numbers tending to plus infinity
such that

sup
t∈Rn;x∈B; k∈N

∥[ϕ(|F1(t+ ·)|)]∥Lp(lkΩ) ≤ mBl
n/p
k

and
sup

t∈Rn;x∈B; k∈N
∥[ϕ(∥F2(t+ ·)∥Y )]∥Lq(lkΩ) ≤ mBl

n/q
k ),

then the function F : Rn × X → Y given by F (t;x) := F1(t;x)F2(t;x), t ∈ Rn,
x ∈ X , is Besicovitch-(F, ϕ, r,R,B, PB,R)-multi-almost automorphic (resp., weakly Besicovitch-
(F, ϕ, r,R,B, PB,R)-multi-almost automorphic).

Proof. We will consider the Besicovitch-(F, ϕ, p,R,B, PB,R)-multi-almost automorphic functions
only. Let (bk) ∈ R and B ∈ B be given. Since for every sequence in R any its subsequence also
belongs to R, we can extract a subsequence (bkm) of (bk) such that

lim
m→+∞

lim sup
l→+∞

F1(l) sup
x∈B

[
ϕ
(
|F1(t+ u+ bkm ;x)− F ∗

1 (t+ u;x)|
)]

Lp(lΩ)
= 0, (2.4)

lim
m→+∞

lim sup
l→+∞

F1(l) sup
x∈B

[
ϕ
(
|F ∗

1 (t+ u− bkm ;x)− F1(t+ u;x)|
)]

Lp(lΩ)
= 0 (2.5)

as well as

lim
m→+∞

lim sup
l→+∞

F2(l) sup
x∈B

[
ϕ
(
∥F2(t+ u+ bkm ;x)− F ∗

2 (t+ u;x)∥Y
)]

Lq(lΩ)
= 0 (2.6)

and

lim
m→+∞

lim sup
l→+∞

F2(l) sup
x∈B

[
ϕ
(
∥F ∗

2 (t+ u− bkm ;x)− F2(t+ u;x)∥Y
)]

Lq(lΩ)
= 0. (2.7)
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Our assumption simply implies that for each set B ∈ B there exist finite real numbers l′0 > 0 and
m′

B > 0 such that

sup
t∈Rn;x∈B

∥[ϕ(|F ∗
1 (t+ ·)|)]∥Lp(lΩ) ≤ m′

Bl
n/p, l ≥ l′0,

and
sup

t∈Rn;x∈B
∥[ϕ(∥F ∗

2 (t+ ·)∥Y )]∥Lq(lΩ) ≤ m′
Bl

n/q, l ≥ l′0.

Keeping in mind these estimates and the equality 1/r = 1/p+ 1/q, the required first limit equality
follows from (2.4)–(2.6), the existence of a finite real number cα > 0 such that

ϕ
(∥∥F1(t+ u+ bkm ;x)F2(t+ u+ bkm ;x)− F ∗

1 (t+ u;x)F ∗
2 (t+ u;x)

∥∥
Y

)
≤ cα

[
ϕ
(∣∣F1(t+ u+ bkm ;x)− F ∗

1 (t+ u;x)
∣∣) · ϕ(∥∥F2(t+ u+ bkm ;x)

∥∥
Y

)
+ ϕ

(∣∣F ∗
1 (t+ u;x)

∣∣) · ϕ(∥∥F2(t+ u+ bkm ;x)− F ∗
2 (t+ u;x)

∥∥
Y

)]
, t ∈ Rn,

and the Hölder inequality. The second limit equality can be proved analogously, by using (2.5) and
(2.7). □

Example 2.9 It is worth noting that Proposition 2.8 can be applied to construct multi-dimensional
almost automorphic functions of the form F (t) := F1(t1) ·F2(t2) · ... ·Fn(tn), t = (t1, ..., tn) ∈ Rn,
where all functions Fj(·) are Besicovitch-p-almost automorphic in a certain sense (see also [19,
Example 8.1.6] and [20, Example 2.8]).

We close this section by stating and proving a composition principle for Besicovitch-
(F, ϕ, p,R,B)-multi-almost automorphic functions of type 1, which continues our analysis from
[7, Theorem 2.20] and [20, Theorem 2.10]. We consider here the Besicovitch-p-almost automorphy
of the multi-dimensional Nemytskii operator W : Rn ×X → Z given by

W (t;x) := G(t;F (t;x)), t ∈ Rn, x ∈ X, (2.8)

where F : Rn ×X → Y and G : Rn × Y → Z.

Theorem 2.10 Suppose that 1 ≤ p, q < +∞, α > 0, p = αq, F(t) ≡ t−n/p, ϕ(x) ≡ xζ for
some real number ζ > 0. Moreover, asssume that F (·; ·) is Besicovitch-(F, ϕ, p,R,B)-multi-almost
automorphic of type 1 and such that for every B ∈ B and (bk) ∈ R the subsequence (bkm) of (bk)
and the function F ∗ : Rn ×X → Y from Definition 2.1 satisfy F ∗(t;x) ∈

⋃
s∈Rn F (s;x), t ∈ Rn,

x ∈ X . Define B′ :=
⋃

t∈Rn F (t;B) for each set B ∈ B, and B′ := {B′ : B ∈ B}. Assume that
for every sequence from R any its subsequence also belongs to R.

(i) Suppose that G : Rn × Y → Z is uniformly (R,B′)-almost automorphic and there exists a
finite real constant a > 0 such that∥∥G(t; y)−G(t; y′)

∥∥
Z
≤ a

∥∥y − y′
∥∥α
Y
, t ∈ Rn, y, y′ ∈ Y. (2.9)

Then, the function W (·; ·), given by (2.8), is Besicovitch-(Fp/q, ϕ, q,R,B)-multi-almost auto-
morphic of type 1.



BESICOVITCH MULTI-DIMENSIONAL AA FUNCTIONS AND APPLICATIONS 45

(ii) By AABF,ϕ,q,1,a,α
(R,B′) (Rn×Y :Z) we denote the class of all functions G1∈AABF,ϕ,q,1

(R,B′) (R
n×Y :Z)

such that for each set B′ ∈ B′ there exists a sequence of uniformly (R,B′)-multi-almost
automorphic functions (Gk

1(·; ·)) such that (2.9) holds with the function G(·; ·) replaced
therein by the function Gk

1(·; ·) for all k ∈ N, as well as that for each ϵ > 0 there exist a
sufficiently large real number l0 > 0 and an integer k0 ∈ N such that for every l ≥ l0 and
k ≥ k0 we have

sup
t∈Rn; y∈B′

F(t, l)p/q
(∫

[−l,l]n

∥∥Gk(t+ u; y)−G(t+ u; y)
∥∥ζq
Z

du

)1/q

< ϵ.

If G ∈ AABF,ϕ,q,1,a,α
(R,B′) (Rn×Y : Z), then the function W (·; ·) is Besicovitch-(Fp/q, ϕ, q,R,B)-

multi-almost automorphic of type 1.

Proof. Let the set B ∈ B and the sequence (bk) ∈ R be given. By definition, there exist a
subsequence (bkm) of (bk) and a function F ∗ : Rn × X → Y such that the requirements of
Definition 2.1 (iii) hold and F ∗(t;x) ∈

⋃
s∈Rn F (s;x), t ∈ Rn, x ∈ X . Since we have assumed

that for every sequence from R any its subsequence also belongs to R, we may assume that the
limit function G∗ : Rn × Y → Z satisfies the corresponding limit equations pointwisely for t ∈ Rn,
uniformly on the set B′, and with the functions F (·; ·) and F ∗(·; ·) replaced therein with the functions
G(·; ·) and G∗(·; ·), respectively. Using (2.9) and the first limit equation for G(·; ·) and G∗(·; ·), we
get that ∥∥G∗(t; y)−G∗(t; y′)

∥∥
Z
≤ a∥x− y∥αY , t ∈ Rn, y, y′ ∈ B′. (2.10)

In order to see that the function W (·; ·) is Besicovitch-(Fp/q, ϕ, q,R,B)-multi-almost automorphic
of type 1, we first observe that for every t ∈ Rn, x ∈ B and m ∈ N we have (here, we designate
(τm := bkm))∥∥G(t+ τm;F

(
t+ τm;x

))
−G∗(t;F ∗(t;x))

∥∥
Z

≤
∥∥G(t+ τm;F

(
t+ τm;x

))
−G(t+ τm;F ∗(t;x))

∥∥
Z

+
∥∥G(t+ τm;F ∗(t;x))−G∗(t;F ∗(t;x))

∥∥
Z

≤ a
∥∥F (t+ τm;x

)
− F ∗(t;x)

∥∥α
Y
+
∥∥G(t+ τm;F ∗(t;x))−G∗(t;F ∗(t;x))

∥∥
Z
.

Since x ∈ B and F ∗(t;x) ∈ B′ for all t ∈ Rn, we simply deduce the required conclusion from an
elementary argument involving the fact that for every fixed real number l > 0, we have

lim
m→+∞

∫
[−l,l]n

sup
y∈B′

∥∥G(t+ u+ τm; y
)
−G(t+ u; y)

∥∥αq
Z

du = 0, t ∈ Rn,

which, in turn, follows from a simple application of the dominated convergence theorem. Keeping in
mind (2.10) and the estimate∥∥G∗(t− τl;F

∗(t− τl;x
))

−G(t;F (t;x))
∥∥
Z

≤
∥∥G∗(t− τl;F

∗(t− τl;x
))

−G∗(t− τl;F (t;x))
∥∥
Z

+
∥∥G∗(t− τl;F (t;x))−G(t;F (t;x))

∥∥
Z
, l ∈ N,

the proof of the second limit equation is quite analogous. This proves the first part of the theorem.
The second part of the theorem follows from the first part and a simple approximation argument. □

Before we switch to the next section, let us only note that an analogue of Theorem 2.10 can be
formulated, under certain extra conditions, for the functions spaces introduced in Definition 2.6;
see [7, Theorem 2.20] for more details.
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3 Applications to abstract Volterra integro-differential eqautions

The main aim of this section is to furnish some applications of our results to abstract Volterra
integro-differential equations and partial differential equations.

1. In this issue, we will first continue our analysis of the invariance of Besicovitch almost
periodicity under the actions of an infinite convolution product

t 7→ F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R; (3.1)

as mentioned in the first application of [20, Section 4], this result can be also given in the multi-
dimenisonal setting and applied to a wide class of abstract (degenerate) Volterra integro-differential
equations without initial conditions. For example, we can apply this result in the analysis of the
existence and uniqueness of Besicovitch-p-almost automorphic type solutions of the fractional
Poisson heat equation in Lp(Rn), and a class of abstract fractional differential equations with the
higher-order elliptic operators in the Hölder spaces ([18]).

We assume that for the operator family (R(t))t>0 ⊆ L(X,Y ) there exist finite real constants
M > 0, β ∈ (0, 1] and γ > 1 such that

∥∥R(t)
∥∥
L(X,Y )

≤ M
tβ−1

1 + tγ
, t > 0. (3.2)

Before stating our result, we need to introduce the following notion, which can be constituted in
a much more general situation for the classes introduced in Definition 2.1.

Definition 3.1 Suppose that the function F : Rn → X is Besicovitch-(F, ϕ, p(u),R)-multi-almost
automorphic (resp., Besicovitch-(F, ϕ, p(u),R,WR)-multi-almost automorphic and Besicovitch-
(F, ϕ, p(u),R, PR)-multi-almost automorphic). Let w : R → (0,∞). Then, we say that F (·) is
Besicovitch-(F, ϕ, p(u),R, w)-multi-almost automorphic (resp., Besicovitch-(F, ϕ, p(u),R,WR, w)-
multi-almost automorphic and Besicovitch-(F, ϕ, p(u),R, PR, w)-multi-almost automorphic) if and
only if for each sequence (bk) ∈ R the growth of the corresponding limit function F ∗ : R → X from
Definition 2.1 can be controlled by w, that is, there exists a finite real number M > 0 such that
∥F ∗(t)∥ ≤ Mw(|t|), t ∈ Rn.

The idea of controlling the growth order of the limit function F ∗(·) by the weight function w(·)
seems to be new within the theory of almost automorphic functions, and it is generally applicable
in the analysis of many other classes of (generalized) almost automorphic functions known in the
existing literature.

Now, we are ready to formulate the following analogue of [20, Proposition 4.1, Proposition 4.2].

Proposition 3.2 Suppose that the operator family (R(t))t>0 ⊆ L(X,Y ) satisfies (3.2). Moreover,
assume that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, ap ≥ 1, αp(β − 1)/(αp − 1) > −1 if αp > 1,
and β = 1 if αp = 1. If b ∈ [0, γ − β), w(t) := (1 + |t|)b, t ∈ R, the function f : R → X is
Besicovitch-(t−a, xα, p,R, w)-multi-almost automorphic (resp., Besicovitch-(t−a, xα, p,R,WR, w)-
multi-almost automorphic and Besicovitch-(t−a, xα, p,R, PR, w)-multi-almost automorphic) and
there exists a finite real constant M ′ > 0 such that ∥f(t)∥Y ≤ M ′w(t), t ∈ R, then the
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function F (·), given by (3.1), is continuous, Besicovitch-(t−a, xα, p,R, w)-multi-almost auto-
morphic (resp., Besicovitch-(t−a, xα, p,R,WR, w)-multi-almost automorphic and Besicovitch-
(t−a, xα, p,R, PR, w)-multi-almost automorphic) and there exists a finite real constant M ′′ > 0 such
that ∥F (t)∥Y ≤ M ′′w(t), t ∈ R.

Proof. We will consider the class of Besicovitch-(t−a, xα, p,R, w)-multi-almost automorphic
functions only. Since we assumed that there exists a finite real constant M ′ > 0 such that
∥f(t)∥Y ≤ M ′w(t), t ∈ R, the function F (·) is well-defined and there exists a finite real con-
stant M ′′ > 0 such that ∥F (t)∥Y ≤ M ′′w(t), t ∈ R. The continuity of F (·) can be shown using
the argument contained in the proof of [20, Proposition 4.2]. Let a sequence (bk) ∈ R be given.
Then, there exist a subsequence (bkm) of (bk), a function f∗ : R → X and a finite real constant
M > 0 such that ∥f∗(t)∥ ≤ Mw(t), t ∈ R, and the equations (2.1)–(2.2) hold with the prescribed
parameters, and the meaning clear. Define F ∗ : R → Y by F ∗(t) :=

∫ t
−∞R(t− s)f∗(s) ds, t ∈ R.

Then, it is clear that F ∗(·) is well-defined as well as that there exists a finite real constant M ′′′ > 0
such that ∥F ∗(t)∥ ≤ M ′′′w(t), t ∈ R. In order to see that the estimate (2.2) holds for the functions
F (·) and F ∗(·), take any real number ζ ∈ ((1/(αp)) + b, (1/(αp)) + γ − β). Then, we can argue
as in the computation carried out in the proof of [20, Proposition 4.1]. For any t ∈ R we have

1

2lap

∫ l

−l

∥∥F (s+ bkm
+ t)− F ∗(s+ t)

∥∥αp ds

≤ 1

2lap

∫ l

−l

∣∣∣∣∣
∫ 0

−∞
∥R(−z)∥ ·

∥∥F (s+ bkm
+ t+ z)− F ∗(s+ t+ z)

∥∥ dz

∣∣∣∣∣
αp

ds

≤ M

2lap

∫ l

−l

∣∣∣∣∣
∫ 0

−∞

|z|β−1(1 + |z|)ζ

(1 + |z|γ)
· (1 + |z|)−ζ

∥∥F (s+ bkm
+ t+ z)− F ∗(s+ t+ z)

∥∥ dz

∣∣∣∣∣
αp

ds

≤ M1

2lap

∫ l

−l

∫ 0

−∞

1

(1 + |z|αζ)p
∥∥F (s+ bkm

+ t+ z)− F ∗(s+ t+ z)
∥∥αp dz ds

=
M1

2lap

∫ l

−l

∫ l

z−s

1

(1 + |z − s|αζ)p
∥∥F (bkm

+ t+ z)− F ∗(t+ z)
∥∥αp dsdz

+
M1

2lap

∫ −l

−∞

∫ l

−l

1

(1 + |z − s|αζ)p
∥∥F (bkm

+ t+ z)− F ∗(t+ z)
∥∥αp dsdz

≤ M1

lap

∫ l

−l

∥∥F (bkm + t+ z)− F ∗(t+ z)
∥∥αp dz ·

∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
M1

2lap

∫ −3l

−∞

∫ l

−l

1

(1 + |z − s|αζ)p
∥∥F (bkm

+ t+ z)− F ∗(t+ z)
∥∥αp dsdz

+
M1

2lap

∫ 3l

−3l

∫ l

−l

1

(1 + |z − s|αζ)p
∥∥F (bkm + t+ z)− F ∗(t+ z)

∥∥αp dsdz

≤ M1

lap

∫ l

−l

∥∥F (bkm
+ t+ z)− F ∗(t+ z)

∥∥αp dz ·
∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
M1

lap

∫ 3l

−3l

∥∥F (bkm + t+ z)− F ∗(t+ z)
∥∥αp dz ·

∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
cM1l

2lap

∫ −3l

−∞

1

(1 + |z/2|αζ)p
∥∥F (bkm

+ t+ z)− F ∗(t+ z)
∥∥αp dz;

here, we have used the Hölder inequality, the Fubini theorem and an elementary change of variables
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in the double integral. The estimate (2.2) for the functions F (·) and F ∗(·) can be proved analogously.
This completes the proof. □

It is worth noting that Proposition 3.2 can be reformulated for all other classes of one-dimensional
Besicovitch almost automorphic type functions introduced in Definition 2.1, but not for multi-
dimensional Weyl almost automorphic functions considered in [22], since it is not clear how one can
prove the existence of the right limits (classical ones) in the equations from Definition 2.1. Using the
method proposed in the proofs of [18, Theorem 3.7.1] and Proposition 3.2, we can study the existence
and uniqueness of Besicovitch-p-almost automorphic solutions for a class of abstract nonautonomous
differential equations of first order; see also [20, Theorem 4.5].

2. Concerning the convolution invariance of multi-dimensional Besicovitch almost automorphy,
the notion introduced in Definition 3.2 again plays a crucial role. We need to control the growth
order of limit functions in order to obtain any relevant result. The conclusions established in this
application can be also formulated for all other classes of functions introduced in Definition 2.1.

We will consider first the actions of the Gaussian semigroup

F 7→ (G(t)F )(x) ≡
(
4πt
)−n/2

∫
Rn

e−|y|2/4tF (x− y) dy, t > 0, x ∈ Rn. (3.3)

Assume that there exist two finite real numbers b ≥ 0 and c > 0 such that |F (x)| ≤ c(1 +
|x|)b ≡ cw(x), x ∈ Rn. Moreover, assume that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1 and
1/(αp) + 1/q = 1. Also, let F (·) be Besicovitch-(t−a, xα, p,R, w)-multi-almost automorphic,
where R is a general collection of sequences in Rn. Let us fix a real number t0 in (3.3). Then, the
mapping x 7→ (G(t0)F )(x), x ∈ Rn, is well-defined and has the same growth as the inhomogeneity
F (·). Writing the term e−|y|2/4t0 as e−|y|2/8t0 · e−|y|2/8t0 and applying the Hölder inequality, we
may conclude that the function F (·) is Besicovitch-(t−a, xα, p,R, w)-multi-almost automorphic;
see, e.g., the argument given in the fourth application of [20, Section 4].

We can similarly prove the following analogue of [20, Theorem 4.6] (see also [22, Theorem 3.9
and Theorem 3.13]).

Theorem 3.3 Suppose that b ≥ 0, α > 0, a > 0, 1 ≤ p < +∞, αp ≥ 1 and 1/(αp) +
1/q = 1. Moreover, assume that f : Rn → Y is Besicovitch-(t−a, xα, p,R, w)-multi-almost au-
tomorphic (resp., Besicovitch-(t−a, xα, p,R,WR, w)-multi-almost automorphic and Besicovitch-
(t−a, xα, p,R, PR, w)-multi-almost automorphic), where w(t) ≡ (1 + |t|)b, t ∈ R. If there
exist two functions h1 : Rn → C and h2 : Rn → C such that h = h1h2, h1 ∈ Lq(Rn) and
|h1(·)|α[1 + | · |]ζ ∈ Lp(Rn) with ζ = max(bα, a), then the function F (·), given by

F (x) ≡
∫
Rn

h(x− y)f(y) dy, x ∈ Rn,

is Besicovitch-(t−a, xα, p,R, w)-multi-almost automorphic (resp., Besicovitch-(t−a, xα, p,
R,WR, w)-multi-almost automorphic and Besicovitch-(t−a, xα, p,R, PR, w)-multi-almost
automorphic).

The notion introduced in Definition 3.2 is important if we want to reconsider the fifth and sixth
application of [20, Section 4]. We will only note that the analysis of the existence and uniqueness of
Besicovitch-p-almost automorphic type solutions of the wave equation whose solutions are given
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by the famous d’Alembert formula (the Kirchhoff formula, the Poisson formula) can be carried out
in almost the same way as in the almost periodic case, and the same conclusions can be achieved.
The analysis of the existence and uniqueness of Besicovitch-p-almost automorphic type solutions
connected with the use of evolution systems considered in the above-mentioned sixth application
of [20, Section 4] and the final application of [19, Section 6.3, pp. 426–428] can be carried out as in
the almost periodic case as well.

The notion introduced in Definition 3.2 is also important if we want to reconsider the application
from [7, Example 1], given directly before Subsection 1.1 of that paper. More precisely, suppose that
A generates a strongly continuous semigroup (T (t))t≥0 on a Banach space X whose elements are
certain complex-valued functions defined on Rn. Under some assumptions, the function

u(t, x) =
(
T (t)u0

)
(x) +

∫ t

0
[T (t− s)f(s)](x) ds, t ≥ 0, x ∈ Rn,

is a unique classical solution of the abstract Cauchy problem

ut(t, x) = Au(t, x) + F (t, x), t ≥ 0, x ∈ Rn; u(0, x) = u0(x),

where F (t, x) := [f(t)](x), t ≥ 0, x ∈ Rn. In many concrete situations (for example, this holds for
the Gaussian semigroup on Rn), we have the existence of a kernel (t, y) 7→ E(t, y), t > 0, y ∈ Rn,
which is integrable on any set [0, T ]× Rn (T > 0) and satisfies the condition

[T (t)f(s)](x) =

∫
Rn

F (s, x− y)E(t, y) dy, t > 0, s ≥ 0, x ∈ Rn.

If a real number t0 > 0 is fixed and the above requirement holds, then we observed in [6, Example 0.1]
that the almost periodic behaviour of the function x 7→ ut0(x) ≡

∫ t0
0 [T (t0 − s)f(s)](x) ds, x ∈ Rn,

depends on the almost periodic behaviour of the function F (t, x) in the space variable x. The
argument given there is applicable not only for almost periodicity but also for almost automorphy and
various generalizations of these concepts provided that the exponent p(·) has a constant value 1. For
example, if the function F (t, x) is Besicovitch-(F, x, 1,R, 1)-multi-almost automorphic with respect
to the variable x ∈ Rn, uniformly in the variable t on compact subsets of [0,∞), the solution ut0(·)
will be Besicovitch-(F, x, 1,R, 1)-multi-almost automorphic as well; see, e.g., the computations
carried out in [19, pp. 402–403] for more details. In connection with the abstract Cauchy problems
considered above, we can also recommend the research article [16], where G. M. N’Guérékata
investigated the existence and uniqueness of almost automorphic mild solutions for certain classes of
abstract semilinear differential equations.

3. Without going into full details, we will only note that Theorem 2.10 can be applied in the
analysis of the existence and uniqueness of bounded, continuous, Besicovitch-(F, ϕ, p,R,B)-multi-
almost automorphic of type 1 solutions for a various classes of abstract (fractional) semilinear Cauchy
problems; here, B = B′ can be chosen to be the collection consisting of all bounded subsets of the
Banach space X and p ≥ 1 is any finite real exponent (α = 1). See also the third application of [20,
Section 4] for more details.
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4 Conclusions and final remarks

In this paper, we have introduced and investigated various classes of multi-dimensional Besicovitch
almost automorphic type functions. We have presented many illustrative examples and certain
applications to abstract Volterra integro-differential equations, working with general Lebesgue spaces
with variable exponents.

Concerning certain drawbacks and possibilities for further investigations of multi-dimensional
Besicovitch almost automorphic type functions, we want to mention first that, besides the classes
of functions introduced above, we can also consider some other classes. For example, in parts (i)
and (ii) of Definition 2.1 we can replace limm→+∞ with lim infm→+∞, while in parts (iii) and
(iv) of Definition 2.1 we can replace liml→+∞ with lim inf l→+∞; the notion introduced in [19,
Definition 8.3.18 and Definition 8.3.28] can be extended only if we use the function ϕ(·) in the
analysis. We have not considered these topics here. Also, we have not studied the integration
and differentiation of multi-dimensional Besicovitch (Weyl) almost automorphic type function and
multi-dimensional Besicovitch (Weyl) almost automorphic type functions with values in nonlocally
convex spaces (cf. [23] for some results obtained in the almost periodic setting).

Concerning some open problems, we would like to recall first that we asked in [22, Question 5.1]
whether for a given real exponent p ≥ 1 we can find a Weyl p-almost automorphic function
f : R → Y of type 1 which is not Weyl p-almost automorphic. The same question can be raised for
Besicovitch almost automorphic type functions. Moreover, in [22, Question 5.3] we asked whether
an almost automorphic function f : R → Y is automatically Weyl-p-almost automorphic. It is also
not clear whether an almost automorphic function is Besicovitch-p-almost automorphic for some
finite real exponent p ≥ 1. Recall only that any Stepanov-p-almost automorphic function f : R → Y
is Weyl-p-almost automorphic of type 1, which shows the full importance of this class of Weyl almost
automorphic type functions.
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[18] M. Kostić, Almost periodic and almost automorphic type solutions to integro-differential
equations, Walter de Gruyter, Berlin, 2019.
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