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Abstract. In this paper, we present the existence and uniqueness criteria of the solutions for a
wide class of nonlinear fractional pantograph differential equations involving Ψ-Caputo fractional
derivative supplemented with periodic conditions. The main tools of our study include Mawhin’s
coincidence theory. An example is constructed to illustrate the application of the obtained findings.

Keywords: Coincidence degree theory, existence, uniqueness, Ψ-Caputo fractional derivative.

2010 Mathematics Subject Classification: 34A08, 34B10, 34B40.

*e-mail address: s.bouriah@univ-chlef.dz
†e-mail address: d.foukrach@univ-chlef.dz
‡e-mail address: benchohra@yahoo.com
§e-mail address: Gaston.NGuerekata@morgan.edu

© 2023 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



2 Soufyane Bouriah et al., J. Nonl. Evol. Equ. Appl. 2023 (2023) 1–18

1 Introduction

Fractional differential equations play a significant role in various fields of science such as physics,
mechanics and engineering (see [19, 20, 28]). Recently, many scholars have explored initial and/or
boundary value problems for different types of fractional differential equations. Some results on this
subject can be found in [1, 2, 10, 11, 12, 13, 14, 16, 17] and the references therein.

Various definitions of fractional derivatives and integrals operators have been proposed by several
mathematicians and engineers [4, 25, 30]. Recently, R. Almeida [5] introduced a new kind of
fractional derivative; namely, the so called Ψ-Caputo fractional derivative. We cite some recent
works in which the authors studied some nonlinear class of fractional differential equations involving
this derivative [6, 7, 15].

Fractional delay differential equations, particularly those of pantograph type, motivated several
mathematicians, physicists and engineers to study them due to the variety of their applications in
physics and engineering [3, 9, 24, 27]. In 2017, Jalilian and Ghasmi [21] studied an initial value
problem of nonlinear fractional integro-differential equation of pantograph type of the form:cDαu(t) = f (t, u(t), u(pt)) +

∫ qt

0
g1(t, s, u(s)) ds+

∫ t

0
g2(t, s, u(s)) ds, t ∈ [0, T ],

u(0) = u0,

where 0 < p, q < 1. The symbol cDα denotes the Caputo fractional derivative of order α ∈ (0, 1].
They obtained their results by using a fixed point approach.

In [29], by applying the fixed point theory, the authors studied the following nonlinear fractional
pantograph equation with nonlocal boundary conditions{

cDw,Ψu(t) = f (t, u(t), u(ηt)) , t ∈ [0, T ], η ∈ (0, 1),

au(0) + bu(T ) = c,

where cDw,Ψ is the Ψ-Caputo factional derivative of order 0 < w < 1 and a, b, c are real constants
with a+ b ̸= 0. However, if a+ b = 0, they have no results by this techniques.

In [8], the authors discussed the existence and uniqueness of solutions for the following equation
with nonlocal conditions{

cD
α;ρy(t) = f (t, y(t), y(pt)) + g (t, y(t), y((1− p)t)) , t ∈ [0, T ],

y(0) = Iβy(ξ), 0 < ξ < T,

where cD
α;ρ denotes the Katugampola fractional derivative in Caputo sense of order α ∈ (0, 1],

p ∈ (0, 1), ρ > 0, and Iβ is the integral operator of order β > 0.

Motivated by the aforesaid research and some well-known results on fractional pantograph
differential equations, this research work investigates the existence and uniqueness results for
the nonlinear fractional pantograph differential equations involving Ψ-Caputo derivative operator
supplemented with periodic conditions of the form:

cDα;Ψ
0+

u(ξ) = F (ξ, u(ξ), u(pξ)) + G (ξ, u(ξ), u((1− p)ξ)) , ξ ∈ J := [0, b], (1.1)

u(0) = u(b), (1.2)
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where cDα;Ψ
0+

denotes the Ψ-Caputo fractional derivative of order 0 < α < 1, p ∈ (0, 1), and
F ,G : J×R×R → R are given continuous functions.

The present paper is organized as follows. In Section 2, we recall some basic notions and essential
preliminary results that will be used in the proofs of our main results. In Section 3, the existence and
uniqueness of periodic solutions for the problem (1.1)–(1.2) are obtained via Mawhin’s coincidence
theory. Finally, an appropriate example is given in Section 4 to illustrate the benefit of our main
findings.

2 Basic concepts

We consider the spaces C(J,R) and Cm(J,R) of continuous and m times continuously differentiable
functions on J, respectively. We endow C(J,R) with the supremum norm ∥ · ∥∞.

Definition 2.1 ([5]) Let J = [0, b], where 0 < b < +∞, be a finite or infinite interval and let α > 0.
Moreover, let u be an integrable function defined on J and let Ψ ∈ C1(J,R) be an increasing and
positive function such that Ψ

′
(ξ) ̸= 0 for all ξ ∈ J. Fractional integrals and fractional derivatives of

a function u with respect to another function Ψ are defined as follows:

Iα;Ψ
0+

u(ξ) :=
1

Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1u(s) ds

and

Dα;Ψ
0+

u(ξ) :=

(
1

Ψ′(ξ)

d

dξ

)n

In−α;Ψ
0+

u(ξ)

=
1

Γ(n− α)

(
1

Ψ′(ξ)

d

dξ

)n ∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))n−α−1u(s) ds,

respectively, where n = [α] + 1.

Lemma 2.2 ([5]) Let α > 0 and β > 0. Then, we have

Iα;Ψ
0+

Iβ;Ψ
0+

u(ξ) = Iα+β;Ψ
0+

u(ξ) for all ξ ∈ J.

Lemma 2.3 ([22]) Let α > 0, ρ > 0 and ξ ∈ J. If u(ξ) = (Ψ(ξ)−Ψ(0))ρ−1, then

Iα;Ψ
0+

u(ξ) =
Γ(ρ)

Γ(α+ ρ)
(Ψ(ξ)−Ψ(0))α+ρ−1 .

Definition 2.4 ([5]) Let n − 1 < α < n with n ∈ N and let u,Ψ ∈ Cn(J,R) be two functions
such that Ψ is increasing and positive with Ψ

′
(ξ) ̸= 0 for any ξ ∈ J. The left Ψ-Caputo fractional

derivative of u of order α is given by

cDα;Ψ
0+

u(ξ) := In−α;Ψ
0+

(
1

Ψ′(ξ)

d

dξ

)n

u(ξ), ξ ∈ J.

In particular, when 0 < α < 1, we have

cDα;Ψ
0+

u(ξ) =
1

Γ(1− α)

∫ ξ

0
(Ψ(ξ)−Ψ(s))−α u

′
(s) ds, ξ ∈ J.
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Theorem 2.5 ([5]) If u ∈ Cn(J,R) and n− 1 < α < n, then

Iα;Ψ
0+

cDα;Ψ
0+

u(ξ) = u(ξ)−
n−1∑
k=0

(Ψ(ξ)−Ψ(0))k

k!

(
1

Ψ′(ξ)

d

dξ

)k

u(0).

In particular, when 0 < α < 1, we have

Iα;Ψ
0+

cDα;Ψ
0+

u(ξ) = u(ξ)− u(0).

Theorem 2.6 ([5]) Let u ∈ C1(J,R) and α > 0. We have

cDα;Ψ
0+

Iα;Ψ
0+

u(ξ) = u(ξ).

Theorem 2.7 ([5]) Let u, υ ∈ Cn(J,R) and α > 0. Then,

cDα;Ψ
0+

u(ξ) = cDα;Ψ
0+

υ(ξ) if and only if u(ξ) = υ(ξ) +

n−1∑
k=0

ck (Ψ(ξ)−Ψ(0))k ,

where ck =
1

k!

(
1

Ψ′(ξ)

d

dξ

)k

(u− υ)(0).

Remark 2.8 Let w ∈ Cn(J,R) and α > 0. Then,

cDα,β;Ψ
0+

w(ξ) = 0 if and only if w(ξ) =
n−1∑
k=0

ck (Ψ(ξ)−Ψ(0))k .

We will present definitions and the coincidence degree theory that are essential in the proofs of
our results (see [18, 23]).

Definition 2.9 We consider the normed spaces X and Y . A Fredholm operator of index zero is a
linear operator L : dom(L) ⊂ X → Y such that

(a) dimkerL = codim imgL < +∞.

(b) imgL is a closed subset of Y .

By Definition 2.9, there exist continuous projectors Q : Y → Y and P : X → X satisfying

imgL = kerQ, kerL = imgP, Y = imgQ⊕ imgL, X = kerP ⊕ kerL.

Thus, the restriction of L to domL ∩ kerP , denoted by LP , is an isomorphism onto its image.
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Definition 2.10 Let Ω ⊆ X be a bounded set and let L be a Fredholm operator of index zero with
domL ∩ Ω ̸= ∅. Then, the operator N : Ω → Y is said to be L-compact in Ω if

(a) the mapping QN : Ω → Y is continuous and QN
(
Ω
)
⊆ Y is bounded,

(b) the mapping (LP)
−1 (Id−Q)N : Ω → X is completely continuous.

Lemma 2.11 ([26]) Let X , Y be Banach spaces, Ω ⊂ X a bounded and symmetric open set with
0 ∈ Ω. Suppose that L : domL ⊂ X → Y is a Fredholm operator of index zero with domL∩Ω ̸= ∅
and N : X → Y is a L-compact operator on Ω. Assume, moreover, that

Lx−Nx ̸= −ζ(Lx+N (−x))

for any x ∈ domL∩ ∂Ω and any ζ ∈ (0, 1], where ∂Ω is the boundary of Ω with respect to X . Then,
there exists at least one solution of the equation Lx = Nx on domL ∩ Ω.

3 Main results

Let the spaces

X =
{
u ∈ C(J,R) : u(ξ) = Iα;Ψ

0+
υ(ξ), where υ ∈ C(J,R)

}
and

Y = C(J,R)

be endowed with the norms

∥u∥X = ∥u∥Y = ∥u∥∞ = sup
ξ∈J

|u(ξ)|.

We give now the definition of the operator L : domL ⊆ X → Y . Set

Lu := cDα;Ψ
0+

u, (3.1)

where
domL = {u ∈ X : cDα;Ψ

0+
u ∈ Y and u(0) = u(b)}.

Lemma 3.1 Let L be the operator given in (3.1). Then,

kerL = {u ∈ X : u(ξ) = u(0), ξ ∈ J}

and

imgL =

{
υ ∈ Y :

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1υ(s) ds = 0

}
.

Proof. By Remark 2.8, we know that the equation Lu = cDα;Ψ
0+

u = 0 in J has a solution of the form

u(ξ) = c0 = u(0), ξ ∈ J.
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Hence,
kerL = {u ∈ X : u(ξ) = u(0), ξ ∈ J} .

For υ ∈ imgL there exists u ∈ domL such that υ = Lu ∈ Y . Using Theorem 2.5, for every ξ ∈ J
we obtain

u(ξ) = u(0) + Iα;Ψ
0+

υ(ξ)

= u(0) +
1

Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1υ(s) ds.

Since u ∈ domL, we have u(0) = u(b). Thus,∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1υ(s) ds = 0.

Furthermore, if υ ∈ Y is such that∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1υ(s) ds = 0,

then for any u(ξ) = Iα;Ψ
0+

υ(ξ), using Theorem 2.6, we get υ(ξ) = cDα;Ψ
0+

u(ξ). Therefore,

u(b) = u(0),

which implies that u ∈ domL. So, υ ∈ imgL. Consequently,

imgL =

{
υ ∈ Y :

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1υ(s) ds = 0

}
.

This completes the proof. □

Lemma 3.2 Let L be defined by (3.1). Then, L is a Fredholm operator of index zero, and the linear
continuous projector operators Q : Y → Y and P : X → X can be written as

Q(υ) =
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1υ(s) ds

and
P(u) = u(0).

Furthermore, the operator L−1
P : imgL → X ∩ kerP can be written by

L−1
P (υ)(ξ) = Iα;Ψ

0+
υ(ξ), ξ ∈ J.

Proof. Obviously, for each υ ∈ Y we have Q2υ = Qυ and υ = Q(υ) + (υ − Q(υ)), where
(υ − Q(υ)) ∈ kerQ = imgL. Using the fact that imgL = kerQ and Q2 = Q, we obtain
imgQ∩ imgL = {0}. So,

Y = imgL⊕ imgQ.

In the same way we get that imgP = kerL and P2 = P . It follows for each u ∈ X that
u = (u− P(u)) + P(u). Hence, X = kerP + kerL. Clearly, we have kerP ∩ kerL = {0}. So,

X = kerP ⊕ kerL.
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Therefore,
dimkerL = dim imgQ = codim imgL.

Consequently, L is a Fredholm operator of index zero.

Now, we will show that the inverse of L|domL∩kerP is L−1
P . Effectively, for υ ∈ imgL, by

Theorem 2.6, we have
LL−1

P (υ) = cDα;Ψ
0+

(
Iα;Ψ
0+

υ
)
= υ. (3.2)

Furthermore, for u ∈ domL ∩ kerP we get

L−1
P (L(u(ξ))) = Iα;Ψ

0+

(
cDα;Ψ

0+
u(ξ)

)
= u(ξ)− u(0), ξ ∈ J.

Using the fact that u ∈ domL ∩ kerP , we infer that

u(0) = 0.

Thus,
L−1
P L(u) = u. (3.3)

Using (3.2) and (3.3) together, we get L−1
P = (L|domL∩kerP)

−1. This completes the demonstration.
□

Let us introduce the following hypothesis.

(A1) There exist nonnegative functions γ1, γ2, η1, η2 ∈ C(J,R+) such that

|F(ξ, u, υ)−F(ξ, ū, ῡ)| ⩽ γ1(ξ)|u− ū|+ η1(ξ)|υ − ῡ|

and
|G(ξ, u, υ)− G(ξ, ū, ῡ)| ⩽ γ2(ξ)|u− ū|+ η2(ξ)|υ − ῡ|

for every ξ ∈ J and u, ū, υ, ῡ ∈ R.

Define N : X → Y by

Nu(ξ) := F (ξ, u(ξ), u(pξ)) + G (ξ, u(ξ), u((1− p)ξ)) , ξ ∈ J and p ∈ (0, 1).

Then, the problem (1.1)–(1.2) is equivalent to the problem Lu = Nu.

Lemma 3.3 Suppose that (A1) is satisfied. Then, for any bounded open set Ω ⊂ X , the operator N
is L-compact.

Proof. For M > 0 we consider the bounded open set Ω = {u ∈ X : ∥u∥X < M}. We split the
proof into three steps.

Step 1: QN is continuous. Let (un)n∈N be a sequence such that un −→ u in Y . Then, for each
ξ ∈ J, we have

|QN (un)(ξ)−QN (u)(ξ)|

⩽
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 |N (un)(s)−N (u)(s)| ds.
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By (A1), we have

|QN (un)(ξ)−QN (u)(ξ)|

⩽
αγ∗1

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 |un(s)− u(s)| ds

+
αη∗1

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 |un(ps)− u(ps)| ds

+
αγ∗2

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 |un(s)− u(s)| ds

+
αη∗2

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 |un((1− p)s)− u((1− p)s)| ds

⩽
α (γ∗1 + γ∗2 + η∗1 + η∗2) ∥un − u∥Y

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1 ds

⩽ (γ∗1 + γ∗2 + η∗1 + η∗2) ∥un − u∥Y ,

where
γ∗1 := ∥γ1∥∞ , γ∗2 := ∥γ2∥∞ , η∗1 := ∥η1∥∞ , η∗2 := ∥η2∥∞ .

Thus, for each ξ ∈ J, we get

|QN (un)(ξ)−QN (u)(ξ)| −→ 0 as n −→ +∞,

and hence
∥QN (un)−QN (u)∥Y −→ 0 as n −→ +∞.

This means that QN is continuous.

Step 2: QN (Ω) is bounded. For ξ ∈ J and u ∈ Ω, we have

|QN (u)(ξ)|

⩽
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|N (u)(s)| ds

⩽
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|F(s, u(s), u(ps))−F(s, 0, 0)|ds

+
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|F(s, 0, 0)|ds

+
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|G(s, u(s), u((1− p)s))− G(s, 0, 0)|ds

+
α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|G(s, 0, 0)| ds

⩽ F∗ + G∗ +
α(γ∗1 + γ∗2)

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u(s)|ds

+
αη∗1

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u(ps)|ds

+
αη∗2

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u((1− p)s)| ds

⩽ F∗ + G∗ + (γ∗1 + γ∗2 + η∗1 + η∗2)M,
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where F∗ := ∥F(·, 0, 0)∥∞ and G∗ := ∥G(·, 0, 0)∥∞. Thus,

∥QN (u)∥Y ⩽ F∗ + G∗ + (γ∗1 + γ∗2 + η∗1 + η∗2)M.

So, QN (Ω) is a bounded subset of Y .

Step 3: L−1
P (Id−Q)N : Ω → X is completely continuous. As we will use the Arzelà–Ascoli

theorem, we have to show that L−1
P (Id−Q)N (Ω) ⊂ X is equicontinuous and bounded. Firstly, for

any u ∈ Ω and ξ ∈ J, we get

L−1
P (Nu(ξ)−QNu(ξ))

= Iα;Ψ
0+

[
F(ξ, u(ξ), u(pξ)) + G(ξ, u(ξ), u((1− p)ξ))

− α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1F(s, u(s), u(ps)) ds

− α

(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1G(s, u(s), u((1− p)s)) ds

]

=
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1F(s, u(s), u(ps)) ds

+
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 G(s, u(s), u((1− p)s)) ds

− (Ψ(ξ)−Ψ(0))α

Γ(α)(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1F(s, u(s), u(ps)) ds

− (Ψ(ξ)−Ψ(0))α

Γ(α)(Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1G(s, u(s), u((1− p)s)) ds.

For all u ∈ Ω and ξ ∈ J, we get

|L−1
P (Id−Q)Nu(ξ)|

⩽
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F(s, u(s), u(ps))−F(s, 0, 0)|ds

+
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F(s, 0, 0)| ds

+
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G(s, u(s), u((1− p)s))− G(s, 0, 0)| ds

+
1

Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G(s, 0, 0)| ds

+
1

Γ(α)

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |F(s, u(s), u(ps))−F(s, 0, 0)|ds

+
1

Γ(α)

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |F(s, 0, 0)|ds

+
1

Γ(α)

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |G(s, u(s), u((1− p)s))− G(s, 0, 0)|ds

+
1

Γ(α)

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |G(s, 0, 0)| ds
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⩽
2(F∗ + G∗)

αΓ(α)
(Ψ(b)−Ψ(0))α +

γ∗1
Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1|u(s)| ds

+
η∗1

Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1|u(ps)| ds

+
γ∗1

Γ(α)

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u(s)| ds

+
η∗1

Γ(α)

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u(ps)|ds

+
γ∗2

Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1|u(s)| ds

+
η∗2

Γ(α)

∫ ξ

0
Ψ

′
(s)(Ψ(ξ)−Ψ(s))α−1|u((1− p)s)|ds

+
γ∗2

Γ(α)

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u(s)| ds

+
η∗2

Γ(α)

∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1|u((1− p)s)|ds

⩽
2 (Ψ(b)−Ψ(0))α

Γ(α+ 1)

[
F∗ + G∗ + (γ∗1 + γ∗2 + η∗1 + η∗2)M

]
.

Therefore,

∥L−1
P (Id−Q)Nu∥X ⩽

2 (Ψ(b)−Ψ(0))α

Γ(α+ 1)

[
F∗ + G∗ + (γ∗1 + γ∗2 + η∗1 + η∗2)M

]
.

This means that L−1
P (Id−Q)N (Ω) is uniformly bounded in X .

It remains to show that L−1
P (Id−Q)N (Ω) is equicontinuous. For 0 < ξ1 < ξ2 ⩽ b and u ∈ Ω,

we have

|L−1
P (Id−Q)Nu(ξ2)− L−1

P (Id−Q)Nu(ξ1)|

⩽
1

Γ(α)

∫ ξ1

0

[
Ψ

′
(s)

∣∣∣(Ψ(ξ2)−Ψ(s))α−1 − (Ψ(ξ1)−Ψ(s))α−1
∣∣∣ |F (s, u(s), u(ps))|

]
ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |F (s, u(s), u(ps))| ds

+
1

Γ(α)

∫ ξ1

0

[
Ψ

′
(s)

∣∣∣(Ψ(ξ2)−Ψ(s))α−1 − (Ψ(ξ1)−Ψ(s))α−1
∣∣∣ |G (s, u(s), u((1− p)s))|

]
ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |F (s, u(s), u(ps))| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α
×

×
∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))| ds



PANTOGRAPH FDEs VIA Ψ-CAPUTO DERIVATIVE 11

⩽
1

Γ(α)

∫ ξ1

0
Ψ

′
(s) (Ψ(ξ1)−Ψ(s))α−1 |F (s, u(s), u(ps))−F (s, 0, 0)| ds

− 1

Γ(α)

∫ ξ1

0
Ψ

′
(s) (Ψ(ξ2)−Ψ(s))α−1 |F (s, u(s), u(ps))−F (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ1

0
Ψ

′
(s)

[
(Ψ(ξ1)−Ψ(s))α−1 − (Ψ(ξ2)−Ψ(s))α−1

]
|F (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |F (s, u(s), u(ps))−F (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |F (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ1

0
Ψ

′
(s) (Ψ(ξ1)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))− G (s, 0, 0)| ds

− 1

Γ(α)

∫ ξ1

0
Ψ

′
(s) (Ψ(ξ2)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))− G (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ1

0
Ψ

′
(s)

[
(Ψ(ξ1)−Ψ(s))α−1 − (Ψ(ξ2)−Ψ(s))α−1

]
|G (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))− G (s, 0, 0)| ds

+
1

Γ(α)

∫ ξ2

ξ1

Ψ
′
(s) (Ψ(ξ2)−Ψ(s))α−1 |G (s, 0, 0)| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α
×

×
∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |F (s, u(s), u(ps))−F (s, 0, 0)| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |F (s, 0, 0)| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α
×

×
∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))− G (s, 0, 0)| ds

+
[(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

Γ(α) (Ψ(b)−Ψ(0))α

∫ b

0
Ψ

′
(s) (Ψ(b)−Ψ(s))α−1 |G (s, 0, 0)| ds

⩽ 2Λ (Ψ(ξ2)−Ψ(ξ1))
α + Λ [(Ψ(ξ1)−Ψ(0))α − (Ψ(ξ2)−Ψ(0))α]

+ Λ [(Ψ(ξ2)−Ψ(0))α − (Ψ(ξ1)−Ψ(0))α]

⩽ 2Λ (Ψ(ξ2)−Ψ(ξ1))
α ,

where

Λ :=
F∗ + G∗ + (γ∗1 + γ∗2 + η∗1 + η∗2)M

Γ(α+ 1)
.

The operator L−1
P (Id−Q)N (Ω) is equicontinuous in X , because the right-hand side of the above

inequality tends to zero as ξ1 → ξ2 and the limit is independent of u. The Arzelà–Ascoli theorem
implies that L−1

P (Id−Q)N (Ω) is relatively compact in X . As a consequence of Steps 1–3, we infer
that N is L-compact in Ω. This completes the demonstration. □
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Lemma 3.4 Assume (A1) and that the condition

(γ∗1 + γ∗2 + η∗1 + η∗2)

Γ(α+ 1)
(Ψ(b)−Ψ(0))α <

1

2
(3.4)

is satisfied. There exists A > 0 such that if

L(u)−N (u) = −ζ[L(u) +N (−u)]

for some u ∈ domL and some ζ ∈ (0, 1], then ∥u∥X ⩽ A.

Proof. Let u ∈ X satisfy

L(u)−N (u) = −ζL(u)− ζN (−u).

Then,

L(u) =
1

1 + ζ
N (u)− ζ

1 + ζ
N (−u).

So, from the definitions of L and N , for any ξ ∈ J we get

Lu(ξ) = cDα;Ψ
0+

u(ξ) =
1

1 + ζ

[
F(ξ, u(ξ), u(pξ)) + G(ξ, u(ξ), u((1− p)ξ))

]
− ζ

1 + ζ

[
F(ξ,−u(ξ),−u(pξ)) + G(ξ,−u(ξ),−u((1− p)ξ))

]
.

By Theorem 2.5, we get

u(ξ) = c0 +
1

ζ + 1

[
Iα;Ψ
0+

(
F(s, u(s), u(ps) + G(s, u(s), u((1− p)s))

)
(ξ)

− ζIα;Ψ
0+

(
F(s,−u(s),−u(ps)) + G(s,−u(s),−u((1− p)s))

)
(ξ)

]
,

where c0 = u(0). Thus, for every ξ ∈ J we obtain

|u(ξ)|

⩽ |c0|+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F (s, u(s), u(ps))| ds

+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F (s,−u(s),−u(ps))| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G (s,−u(s),−u((1− p)s))| ds

⩽ |c0|+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F (s, u(s), u(ps))−F(s, 0, 0)| ds

+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F(s, 0, 0)| ds

+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G (s, u(s), u((1− p)s))− G(s, 0, 0)| ds
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+
1

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G(s, 0, 0)| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F (s,−u(s),−u(ps))−F(s, 0, 0)| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |F(s, 0, 0)| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G (s,−u(s),−u((1− p)s))− G(s, 0, 0)| ds

+
ζ

(ζ + 1)Γ(α)

∫ ξ

0
Ψ

′
(s) (Ψ(ξ)−Ψ(s))α−1 |G(s, 0, 0)| ds

⩽ |c0|+
2(F∗ + G∗) (Ψ(b)−Ψ(0))α

Γ(α+ 1)
+

2 (γ∗1 + γ∗2 + η∗1 + η∗2)

Γ(α+ 1)
(Ψ(b)−Ψ(0))α ∥u∥X .

Thus,

∥u∥X ⩽ |c0|+
2(F∗ + G∗) (Ψ(b)−Ψ(0))α

Γ(α+ 1)
+

2 (γ∗1 + γ∗2 + η∗1 + η∗2)

Γ(α+ 1)
(Ψ(b)−Ψ(0))α ∥u∥X .

Consequently, we deduce that

∥u∥X ⩽
|c0|+

2(F∗ + G∗) (Ψ(b)−Ψ(0))α

Γ(α+ 1)[
1− 2 (γ∗1 + γ∗2 + η∗1 + η∗2)

Γ(α+ 1)
(Ψ(b)−Ψ(0))α

] =: A.

The demonstration is completed. □

Lemma 3.5 If the conditions (A1) and (3.4) are satisfied, then there exists a bounded open set
Ω ⊂ X with

L(u)−N (u) ̸= −ζ[L(u) +N (−u)] (3.5)

for any u ∈ ∂Ω and any ζ ∈ (0, 1].

Proof. In view of Lemma 3.4, there exists a positive constant A such that if

L(u)−N (u) = −ζ[L(u) +N (−u)]

holds for some u and ζ ∈ (0, 1], then ∥u∥X ⩽ A. So, if

Ω := {u ∈ X : ∥u∥X < ϑ} (3.6)

with ϑ > A, we deduce that

L(u)−N (u) ̸= −ζ[L(u)−N (−u)]

for all u ∈ ∂Ω = {u ∈ X : ∥u∥X = ϑ} and ζ ∈ (0, 1]. □

Theorem 3.6 Assume (A1) and (3.4). Then, there exists at least one solution for the problem
(1.1)–(1.2) in domL ∩ Ω.
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Proof. It is clear that the set Ω defined in (3.6) is symmetric, 0 ∈ Ω and X ∩ Ω = Ω ̸= ∅. In
addition, by Lemma 3.5,

L(u)−N (u) ̸= −ζ[L(u)−N (−u)]

for each u ∈ X ∩ ∂Ω = ∂Ω and each ζ ∈ (0, 1]. By Lemma 2.11, the problem (1.1)–(1.2) has at
least one solution in domL ∩ Ω. This completes the demonstration. □

Theorem 3.7 Let (A1) be satisfied. Moreover, we assume that

(A2) there exist constants γ > 0 and η ⩾ 0 such that

|F(ξ, u, υ)−F(ξ, ū, ῡ)| ⩾ γ|u− ū| − η|υ − ῡ|

for every ξ ∈ J and u, ū, υ, ῡ ∈ R.

If
η + γ∗2 + η∗2

γ
+

2 (γ∗1 + γ∗2 + η∗1 + η∗2) (Ψ(b)−Ψ(0))α

Γ(α+ 1)
< 1, (3.7)

then the problem (1.1)–(1.2) has a unique solution in domL ∩ Ω.

Proof. Note that the condition (3.7) is stronger than the condition (3.4). Hence, by Theorem 3.6 we
know that the problem (1.1)–(1.2) has at least one solution in domL ∩ Ω.

Now, we prove its uniqueness. Suppose that the problem (1.1)–(1.2) has two different solutions
u1, u2 ∈ domL ∩ Ω. Then, for each ξ ∈ J we have

cDα;Ψ
0+

u1(ξ) = F (ξ, u1(ξ), u1(pξ)) + G (ξ, u1(ξ), u1((1− p)ξ)) ,

cDα;Ψ
0+

u2(ξ) = F (ξ, u2(ξ), u2(pξ)) + G (ξ, u2(ξ), u2((1− p)ξ))

and
u1(0) = u1(b), u2(0) = u2(b).

Let U(ξ) := u1(ξ)− u2(ξ) for all ξ ∈ J. Then,

LU(ξ) = cDα;Ψ
0+

U(ξ)

= cDα;Ψ
0+

u1(ξ)− cDα;Ψ
0+

u2(ξ)

= F (ξ, u1(ξ), u1(pξ)) + G (ξ, u1(ξ), u1((1− p)ξ))

−F (ξ, u2(ξ), u2(pξ))− G (ξ, u2(ξ), u2((1− p)ξ)) .

(3.8)

Using the fact that imgL = kerQ, we have∫ b

0
Ψ

′
(s)(Ψ(b)−Ψ(s))α−1

[
F(s, u1(s), u1(ps)) + G (s, u1(s), u1((1− p)s))

−F(s, u2(s), u2(ps))− G (s, u2(s), u2((1− p)s))
]
ds = 0.

Since F is a continuous function, there exists ξ0 ∈ [0, b] such that

F(ξ0, u1(ξ0), u1(pξ0)) + G (ξ0, u1(ξ0), u1((1− p)ξ0))−F(ξ0, u2(ξ0), u2(pξ0))

− G (ξ0, u2(ξ0), u2((1− p)ξ0)) = 0.
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In view of (A1) and (A2), we have∣∣u1(ξ0)− u2(ξ0)
∣∣

⩽
1

γ

[
η
∣∣u1(pξ0)− u2(pξ0)

∣∣+ γ∗2
∣∣u1(ξ0)− u2(ξ0)

∣∣+ η∗2
∣∣u1((1− p)ξ0)− u2((1− p)ξ0)

∣∣]
⩽

η + γ∗2 + η∗2
γ

∥∥u1 − u2
∥∥
X .

Hence,

|U(ξ0)| ⩽
η + γ∗2 + η∗2

γ

∥∥U∥∥X . (3.9)

On the other hand, by Theorem 2.5, we have

Iα;Ψ
0+

cDα;Ψ
0+

U(ξ) = U(ξ)− U(0),

which implies that
U(0) = U(ξ0)− Iα;Ψ

0+
cDα;Ψ

0+
U(ξ0),

and therefore
U(ξ) = Iα;Ψ

0+
cDα;Ψ

0+
U(ξ) + U(ξ0)− Iα;Ψ

0+
cDα;Ψ

0+
U(ξ0).

Using (3.9), for every ξ ∈ J, we obtain

|U(ξ)| ⩽
∣∣∣Iα;Ψ0+

cDα;Ψ
0+

U(ξ)
∣∣∣+ |U(ξ0)|+

∣∣∣Iα;Ψ0+
cDα;Ψ

0+
U(ξ0)

∣∣∣
⩽

η + γ∗2 + η∗2
γ

∥∥U∥∥X +
2 (Ψ(b)−Ψ(0))α

Γ(α+ 1)

∥∥∥cDα;Ψ
0+

U
∥∥∥
X
.

(3.10)

By (3.8) and (A1), we find that∣∣∣cDα;Ψ
0+

U(ξ)
∣∣∣ = ∣∣∣(F (ξ, u1(ξ), u1(pξ))−F (ξ, u2(ξ), u2(pξ))

)
+
(
G (ξ, u1(ξ), u1((1− p)ξ))− G (ξ, u2(ξ), u2((1− p)ξ))

)∣∣∣
⩽ (γ∗1 + γ∗2 + η∗1 + η∗2) ∥U∥X .

Then, ∥∥∥cDα;Ψ
0+

U
∥∥∥
X
⩽ (γ∗1 + γ∗2 + η∗1 + η∗2) ∥U∥X . (3.11)

Substituting (3.11) into the right-hand side of (3.10), for every ξ ∈ J we get

|U(ξ)| ⩽
[
η + γ∗2 + η∗2

γ
+

2 (γ∗1 + γ∗2 + η∗1 + η∗2) (Ψ(b)−Ψ(0))α

Γ(α+ 1)

]
∥U∥X .

Therefore,

∥U∥X ⩽

[
η + γ∗2 + η∗2

γ
+

2 (γ∗1 + γ∗2 + η∗1 + η∗2) (Ψ(b)−Ψ(0))α

Γ(α+ 1)

]
∥U∥X .

Hence, by (3.7), we conclude that
∥U∥X = 0.

As a result, for any ξ ∈ J, we get
U(ξ) = 0,

which implies that
u1(ξ) = u2(ξ).

This completes the proof. □
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4 An example

We present an example of a nonlinear fractional differential equation of pantograph type with
Ψ-Caputo derivative operator to illustrate our main result. Let us consider the following equation

cD
1
5
;2ξ

0+
u(ξ) = F (ξ, u(ξ), u(pξ)) + G (ξ, u(ξ), u((1− p)ξ)) , ξ ∈ J,

u(0) = u(1),

where for any ξ ∈ J,

F (ξ, u(ξ), u (pξ)) =
ln (e+

√
ξ)

e2 +
√
ξ + 1

+
e−ξ

3(1 + ξ)
u(ξ) +

ξ

95
√
π
cos u

(
ξ

3

)
,

and

G (ξ, u(ξ), u ((1− p)ξ)) =
eξ

13
+

ξ + 7

17e7
√
π
sin u(ξ) +

e−11−ξ

113
(
1 + u

(
2
3ξ
)) .

Here, J := [0, 1], α = 1
5 , Ψ(ξ) = 2ξ and p = 1

3 .

It is clear that the functions F ,G ∈ C(J × R × R,R). Furthermore, for all ξ ∈ J and
u, u, υ, υ ∈ R, we get

|F (ξ, u, υ)−F (ξ, ū, ῡ)| ⩽ e−ξ

3(1 + ξ)
|u− ū|+ ξ

95
√
π
|υ − ῡ|,

|G (ξ, u, υ)− G (ξ, ū, ῡ)| ⩽ ξ + 7

17e7
√
π
|u− ū|+ e−11−ξ

113
|υ − ῡ|

and
|F (ξ, u, υ)−F (ξ, ū, ῡ)| ⩾ γ|u− ū| − η |υ − ῡ|,

which implies that (A1) and (A2) are satisfied with

γ1(ξ) =
e−ξ

3(1 + ξ)
, γ2(ξ) =

ξ + 7

17e7
√
π
, γ =

e−1

6
,

η1(ξ) =
ξ

95
√
π
, η2(ξ) =

e−11−ξ

113
, η =

1

95
√
π
.

By simple calculations, we get γ∗1 = 1
3 , η∗1 = 1

95
√
π

, γ∗2 = 8
17e7

√
π

, η∗2 = 1
113e11

and

η + γ∗2 + η∗2
γ

+
2 (γ∗1 + γ∗2 + η∗1 + η∗2) (Ψ(b)−Ψ(0))α

Γ(α+ 1)
≈ 0.840359 < 1.

So, by Theorem 3.7, our problem has a unique solution.

5 Conclusions

The existence and uniqueness of periodic solutions for our proposed fractional boundary value
problem has been successfully investigated for the fractional pantograph differential equations with
Ψ-Caputo. Our results extend and complement some existing ones. For example, By setting G ≡ 0,
our problem (1.1) equipped with periodic condition (1.2) traits the case not studied (a+ b = 0) in
[29]. An application example of our problem has been provided to validate our obtained findings.

Acknowledgements. We would like to thank the anonymous referee for his/her meticulous reading
and valuable comments.
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