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1 Introduction

The aim of this paper is to establish the existence of at least one weak solution for the following
nonlocal problem∆2

p(x)u−M
(∫

Ω

|∇u|p(x) dx

p(x)

)
∆p(x)u+ ρ(x)|u|p(x)−2u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

(P fλ )

where Ω ⊂ RN (N ≥ 2) is an open bounded domain with smooth boundary, ∆2
p(x)u is the operator

defined as ∆(|∆u|p(x)−2∆u), p(x) ∈ C(Ω), ρ(x) ∈ L∞(Ω), M : [0,+∞) → R is a continuous
function such that there are two positive constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all

*e-mail address: m abolghasemi@razi.ac.ir
†e-mail address: shahin.moradi86@yahoo.com

© 2022 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



90 M. Abolghasemi and S. Moradi, J. Nonl. Evol. Equ. Appl. 2022 (2022) 89–103

t ≥ 0, N2 ≤ p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) < ∞, λ > 0 and f : Ω × R → R is an
L1-Carathéodory function.

Problems like (P fλ ) are usually called nonlocal problems because of the presence of the integral
over the entire domain; this, in particular, implies that the first equation in (P fλ ) is no longer
a pointwise identity. Such kind of problems can be traced back to the work of Kirchhoff. In [27]
Kirchhoff proposed the equation

ρ
∂2u

∂t2
−
(
ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx

)
∂2u

∂x2
= 0 (1.1)

as an extension of the classical d’Alembert’s wave equation for free vibrations of elastic strings. The
problem (P fλ ) is related to the stationary analogue of the problem (1.1). Kirchhoff’s model takes
into account the changes in length of the string produced by transverse vibrations. Similar nonlocal
problems also model several physical and biological systems where u describes a process which
depends on the average of itself; for example, the population density. In [31] Lions proposed an
abstract framework for the Kirchhoff-type equations. After the work by Lions, various equations of
Kirchhoff-type have been studied extensively; for instance, see [14, 37, 38].

The operator ∆p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian and becomes p-Laplacian
when p(x) ≡ p (a constant). The operator

∆2
p(x)u = ∆(|∆u|p(x)−2∆u)

is called p(x)-biharmonic and becomes p-biharmonic when p(x) ≡ p (a constant). The p(x)-
biharmonic problem is the general form of the p-biharmonic problem. The p(x)-Laplace operator is
not homogeneous. The study of various mathematical problems with variable exponent has received
considerable attention in recent years. These problems arise in nonlinear elasticity theory, the theory
of electrorheological fluids and image processing (see [35, 42]). For background and recent results
on p(x)-Laplacian and p(x)-biharmonic we refer the reader to, respectively, [1, 5, 6, 10, 11, 23, 25]
and [13, 16, 17, 21, 28, 29, 33, 39, 40]. For example, in [29] Kong studied the p(x)-biharmonic
equation with the mountain pass theorem. In [33], Miao obtained the existence of many solutions to
the (p1(x), . . . , pn(x))-biharmonic problem.

Recently, Kirchhoff-type equations involving the p(x)-Laplacian have been investigated; for
instance, see [7, 9, 15, 18, 19, 20, 26]. For example, Chung in [7] using the mountain pass theorem
combined with the Ekeland variational principle, obtained the existence of at least two distinct
non-trivial weak solutions for a class of p(x)-Kirchhoff-type equations with combined nonlinearities.

To the best of our knowledge there are a few results concerning the existence and multiplicity of
solutions to nonlocal elliptic problems involving the p(x)-biharmonic operators. In this regard, in [8]
Dai and Hao considered the nonlocal system

−M
(∫

Ω

|∇u|p(x) dx

p(x)

)
∆p(x)u = λf(x, u) (1.2)

with a Dirichlet boundary condition. When the nonlinear term f(x, u) satisfies the Ambrosetti–
Rabinowitz condition, using the fountain theorem it can be shown that there are multiple solutions
to the problem (1.2). In [32], multiple solutions for the (p(x), q(x)) problems of the Kirchhoff-
type were obtained using Ricceri’s critical point theorem. Very recently, Miao in [34] by means
of Ricceri’s variational theorem and the definition of a general Lebesgue–Sobolev space obtained
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sufficient conditions for the existence of infinite solutions for the perturbed problem (P fλ ). In [24, 30]
the authors discussed the existence of solutions for similar problems to (P fλ ) using variational
methods and critical point theory.

Motivated by the above facts, in the present paper we study the existence of at least one non-trivial
weak solution for the problem (P fλ ) under an asymptotical behaviour of the nonlinear datum at zero
(see Theorems 3.1). Example 3.2 illustrates Theorem 3.1. We also give some remarks on our results.
In Theorem 3.6 we present an application of Theorem 3.1.

Compared to the previous results we give some new assumptions that guarantee the existence of
at least one non-trivial weak solution of the problem (P fλ ). Recent related works are generalized.

The paper is organized as follows. In Section 2, we recall some basic definitions and our main
tool, while Section 3 is devoted to our abstract results.

2 Preliminaries

We shall prove the existence of at least one non-trivial weak solution to the problem (P fλ ) applying
the following version of Ricceri’s variational principle (see [36, Theorem 2.1]) as given by Bonanno
and Molica Bisci in [4].

Theorem 2.1 Let X be a reflexive real Banach space and let Φ,Ψ: X −→ R be two Gâteaux differ-
entiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous
and coercive in X and Ψ is sequentially weakly upper semicontinuous in X . Let Iλ be the functional
defined as Iλ := Φ− λΨ, λ ∈ R, and for every r > infX Φ let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u)−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈
(
0, 1

ϕ(r)

)
, the restriction of the functional Iλ to

Φ−1(−∞, r) admits a global minimum, which is a critical point (precisely a local minimum) of Iλ
in X .

We refer the interested reader to the papers [2, 3, 12, 17, 22] in which Theorem 2.1 was
successfully employed to prove the existence of at least one non-trivial solution for boundary
value problems.

Here and in the sequel, meas(Ω) denotes the Lebesgue measure of the set Ω.

Let Ω be a bounded domain of RN . Set

Lp(x)(Ω) :=

{
u
∣∣∣ u is measurable and

∫
Ω

∣∣u∣∣p(x)
dx < +∞

}
.

We can introduce the norm on Lp(x)(Ω) by

‖u‖Lp(x)(Ω) = inf

{
β > 0

∣∣∣ ∫
Ω

∣∣∣∣uβ
∣∣∣∣p(x)

dx ≤ 1

}
.
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We define also the generalized Lebesgue–Sobolev space Wm,p(x)(Ω) by putting

Wm,p(x)(Ω) =
{
u ∈ Lp(x)(Ω)

∣∣∣ Dγu ∈ Lp(x)(Ω), |γ| ≤ m
}
.

It can be equipped with the norm

‖u‖m,p(x) :=
∑
|γ|≤m

|Dγu|p(x); (2.1)

here, γ is the multi-index and |γ| is its order. The closure of C∞0 (Ω) in Wm,p(x)(Ω) is the space
W

m,p(x)
0 (Ω). It is well-known (see [11]) that both Lp(x)(Ω) and Wm,p(x)(Ω), with the respective

norms, are separable, reflexive and uniformly convex Banach spaces.

Proposition 2.2 (see [11]) Suppose that 1
p(x) + 1

p0(x)
= 1. Then, Lp

0(x)(Ω) and Lp(x)(Ω) are
conjugate spaces and satisfy the Hölder inequality∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p0)−

)
|u|p(x)|v|p0(x), u ∈ Lp(x)(Ω), v ∈ Lp0(x)(Ω).

By X we denote the space W 1,p(x)
0 (Ω) ∩W 2,p(x)(Ω) endowed with the norm

‖u‖ = inf

{
σ > 0

∣∣∣∣∣
∫

Ω

(∣∣∣u
σ

∣∣∣p(x)
+

∣∣∣∣∇uσ
∣∣∣∣p(x)

+

∣∣∣∣∆uσ
∣∣∣∣p(x)

)
dx ≤ 1

}
.

It is known that X is a separable and reflexive Banach space. By [41], ‖ · ‖, ‖ · ‖2,p(·) and ‖∆u‖p(·)
are equivalent norms on X .

Proposition 2.3 (see [40]) When p− > N
2 and Ω ⊂ R is a bounded region, the embedding

X ↪→C(Ω) is compact.

According to Proposition 2.3, there exists a constant c > 0 that depends on p(·), N and Ω such
that for all u ∈ X we have

‖u‖∞ = sup
x∈Ω
|u(x)| ≤ c‖u‖. (2.2)

Throughout the paper, we also assume that f : Ω × R → R is an L1-Carathéodory function,
which means that

(a) t 7→ f(x, t) is measurable for every t ∈ R,

(b) x 7→ f(x, t) is continuous for a.e. x ∈ Ω,

(c) for every ε > 0 there exists a function lε ∈ L1(Ω) such that sup|t|≤ε |f(x, t)| ≤ lε(x) for a.e.
x ∈ Ω.
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Corresponding to the functions f and M , we introduce the functions F : Ω × R → R and
M̃ : [0,+∞)→ R, respectively, as follows

F (x, t) =

∫ t

0
f(x, ξ) dξ for all (x, t) ∈ Ω× R

and

M̃(t) =

∫ t

0
M(ξ) dξ for all t ≥ 0.

We say that u ∈ X is a weak solution of the problem (P fλ ) if∫
Ω
|∆u|p(x)−2∆u∆v dx+M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω
|∇u|p(x)−2∇u∇v dx

+

∫
Ω
ρ(x)|u|p(x)−2uv dx− λ

∫
Ω
f(x, u)uv dx = 0

for every v ∈ X .

Proposition 2.4 (see [11]) For every u ∈ Lp(x)(Ω) let J(u) =
∫

Ω |u|
p(x) dx. We have

(a) ‖u‖p(x) < 1(= 1;> 1)⇐⇒ J(u) < 1(= 1;> 1),

(b) ‖u‖p(x) ≥ 1 =⇒ ‖u‖p
−

p(x) ≤ J(u) ≤ ‖u‖p
+

p(x),

(c) ‖u‖p(x) ≤ 1 =⇒ ‖u‖p
+

p(x) ≤ J(u) ≤ ‖u‖p
−

p(x),

(d) ‖u‖p(x) −→ 0⇐⇒ J −→ 0.

According to Proposition 2.4, for every u ∈ X we can deduce the following estimates:

‖u‖p− ≤
∫

Ω

(
|∆u|p(x) + |∇u|p(x) + ρ(x)|u|p(x)

)
dx ≤ ‖u‖p+ if ‖u‖ ≥ 1

and
‖u‖p+ ≤

∫
Ω

(
|∆u|p(x) + |∇u|p(x) + ρ(x)|u|p(x)

)
dx ≤ ‖u‖p− if ‖u‖ ≤ 1.

3 Main results

Put M− = min{1,m0} and M+ = max{1,m1}. We state our main result as follows.

Theorem 3.1 Assume that

sup
γ>0

γp
−∫

Ω
sup
|t|≤γ

F (x, t) dx

>
p+cp

−

M−
, (DF )
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where c is the constant defined in (2.2), and that there are non-empty open sets D ⊆ Ω and B ⊂ D
of positive Lebesgue measure such that

lim sup
ξ→0+

infx∈B F (x, ξ)

|ξ|p−
= +∞ (3.1)

and

lim inf
ξ→0+

infx∈D F (x, ξ)

|ξ|p−
> −∞. (3.2)

Then, for each

λ ∈ Λ =

0,
M−

p+cp−
sup
γ>0

γp
−∫

Ω
sup
|t|≤γ

F (x, t) dx


the problem (P fλ ) admits at least one non-trivial weak solution uλ ∈ X. Moreover, one has

lim
λ→0+

‖uλ‖ = 0

and the real function

λ 7→
∫

Ω

|∆uλ|p(x)

p(x)
dx+ M̃

(∫
Ω

|∇uλ|p(x)

p(x)
dx

)
+

∫
Ω

ρ(x)|uλ|p(x)

p(x)
dx− λ

∫
Ω
F (x, uλ) dx

is negative and strictly decreasing in Λ.

Proof. Our aim is to apply Theorem 2.1 to the problem (P fλ ). Consider the functionals Φ,Ψ defined
for every u ∈ X by the formulas

Φ(u) =

∫
Ω

|∆u|p(x)

p(x)
dx+ M̃

(∫
Ω

|∇u|p(x)

p(x)
dx

)
+

∫
Ω

ρ(x)|u|p(x)

p(x)
dx (3.3)

and

Ψ(u) =

∫
Ω
F (x, u) dx, (3.4)

and put Iλ(u) = Φ(u) − λΨ(u) for every u ∈ X . Let us prove that the functionals Φ and Ψ
satisfy the assumptions of Theorem 2.1. It is well-known that Ψ is a differentiable functional whose
differential at the point u ∈ X is

Ψ′(u)(v) =

∫
Ω
f(x, u)v dx

for every v ∈ X . Moreover, Ψ is sequentially weakly upper semicontinuous. Due to Proposition 2.4
we have

Φ(u) ≥ 1

p+

∫
Ω
|∆u|p(x) dx+m0

(∫
Ω

|∇u|p(x)

p(x)
dx

)
+

1

p+

∫
Ω
ρ(x)|u|p(x) dx ≥ M−

p+
‖u‖p−
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for all u ∈ X such that ‖u‖ > 1, and since p− > 1, it follows that Φ is coercive. Moreover, Φ is
continuously differentiable and its differential at the point u ∈ X is

Φ′(u)(v) =

∫
Ω
|∆u|p(x)−2∆u∆v dx+M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω
|∇u|p(x)−2∇u∇v dx

+

∫
Ω
ρ(x)|u|p(x)−2uv dx

for every v ∈ X . Furthermore, Φ is sequentially weakly lower semicontinuous. Therefore, we
observe that the regularity assumptions on Φ and Ψ, as requested in Theorem 2.1, are satsfied. Note
that the critical points of the functional Iλ are the weak solutions of the problem (P fλ ). We now look
at the existence of a critical point of the functional Iλ in X . By the condition (DF ) there exists γ̄ > 0
such that

γ̄p
−∫

Ω
sup
|t|≤γ̄

F (x, t) dx

>
p+cp

−

M−
. (3.5)

Choose

r =
M−

p+

( γ̄
c

)p−
.

Then, in view of [5, Proposition 2.2], for all u ∈ X with Φ(u) < r one has

‖u‖ ≤ max
{

(p+r)
1

p+ , (p+r)
1

p−
}
.

So, due to the embedding X ↪→ C0(Ω) (see (2.2)), one has ‖u‖∞ ≤ c‖u‖. From the definition of r
it follows that

Φ−1(−∞, r) = {u ∈ X |Φ(u) < r} ⊆ {u ∈ X | |u| ≤ γ̄}

and this ensures that

Ψ(u) ≤ sup
u∈Φ−1(−∞,r)

∫
Ω
F (x, u) dx ≤

∫
Ω

sup
|t|≤γ̄

F (x, t) dx

for every u ∈ X such that Φ(u) < r. Then,

sup
Φ(u)<r

Ψ(u) ≤
∫

Ω
sup
|t|≤γ̄

F (x, t) dx.

By simple calculations and from the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) =
0, one has

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))−Ψ(u)

r − Φ(u)
≤

supu∈Φ−1(−∞,r) Ψ(u)

r

≤

∫
Ω

sup
|t|≤γ̄

F (x, t) dx

r
≤

∫
Ω

sup
|t|≤γ̄

F (x, t) dx

M−

p+

( γ̄
c

)p− .



96 M. Abolghasemi and S. Moradi, J. Nonl. Evol. Equ. Appl. 2022 (2022) 89–103

Hence, putting

λ∗ =
M−

p+cp−
sup
γ>0

γp
−∫

Ω
sup
|t|≤γ

F (x, t) dx

,

Theorem 2.1 ensures that for every λ ∈ (0, λ∗) ⊆
(
0, 1

ϕ(r)

)
, the functional Iλ admits at least one

critical point (local minima) uλ ∈ Φ−1(−∞, r). We will show that the function uλ cannot be trivial.
Let us prove that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞. (3.6)

In view of to the assumptions (3.1) and (3.2), we can consider a sequence {ξn} ⊂ R+ converging to
zero and two constants σ, κ (with σ > 0) such that

lim
n→+∞

infx∈B F (x, ξn)

|ξn|p−
= +∞

and
inf
x∈D

F (x, ξ) ≥ κ|ξ|p−

for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a function v ∈ X such that

(k1) v(x) ∈ [0, 1] for every x ∈ Ω,

(k2) v(x) = 1 for every x ∈ G,

(k3) v(x) = 0 for every x ∈ Ω \D.

Fix K > 0 and consider a real positive number η with

K <

ηmeas(G) + κ

∫
D\G
|v|p− dx

M+

p−
‖v‖p−

.

Then, there is n0 ∈ N such that ξn < σ and

inf
x∈B

F (x, ξn) ≥ η|ξn|p
−

for every n > n0. Now, for every n > n0, by considering the properties of the function v (that is,
0 ≤ ξnv < σ for n large enough), we have

Ψ(ξnv)

Φ(ξnv)
=

∫
G
F (x, ξn) dx+

∫
D\G

F (x, ξnv) dx

Φ(ξnv)

>

ηmeas(G) + κ

∫
D\G
|v|p− dx

M+

p−
‖v‖p−

> K.
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Since K could be arbitrarily large, it is concluded that

lim
n→∞

Ψ(ξnv)

Φ(ξnv)
= +∞,

from which (3.6) clearly follows. Hence, there exists a sequence {wn} ⊂ X strongly converging to
zero such that, for n large enough, wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we obtain

Iλ(uλ) < 0. (3.7)

Therefore, uλ is not trivial. From (3.7) we easily observe that the map

(0, λ∗) 3 λ 7→ Iλ(uλ) (3.8)

is negative. Also, one has
lim
λ→0+

‖uλ‖ = 0.

Indeed, bearing in mind that Φ is coercive and for every λ ∈ (0, λ∗) the solution uλ ∈ Φ−1(−∞, r),
one has that there exists a positive constant L such that ‖uλ‖ ≤ L for every λ ∈ (0, λ∗). After that,
it is easy to see that there exists a positive constant N such that∣∣∣∣∫

Ω
f(x, uλ)uλ dx

∣∣∣∣ ≤ N‖uλ‖ ≤ NL (3.9)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for every v ∈ X and
every λ ∈ (0, λ∗). In particular, I ′λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ

∫
Ω
f(x, uλ)uλ dx (3.10)

for every λ ∈ (0, λ∗). For ‖uλ‖ ≥ 1, in view of to Proposition 2.4, we have

0 ≤M−‖uλ‖p
− ≤ Φ′(uλ)(uλ),

and from (3.10) we have

0 ≤M−‖uλ‖p
− ≤ λ

∫
Ω
f(x, uλ)uλ dx (3.11)

for any λ ∈ (0, λ∗). Letting λ→ 0+, by (3.11) together with (3.9), we get

lim
λ→0+

‖uλ‖ = 0.

The proof in the case when ‖uλ‖ ≤ 1 is similar to the one in the case ‖uλ‖ ≥ 1. Thus, we have
obviously the desired conclusion.

Finally, we have to show that the map

λ 7→ Iλ(uλ)
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is strictly decreasing in (0, λ∗). For our goal we see that for any u ∈ X one has

Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
. (3.12)

Now, let us consider 0 < λ1 < λ2 < λ∗ and let uλi be the global minimum of the functional Iλi
restricted to Φ(−∞, r) for i = 1, 2. Also, set

mλi =

(
Φ(uλi)

λi
−Ψ(uλi)

)
= inf

v∈Φ−1(−∞,r)

(
Φ(v)

λi
−Ψ(v)

)
for i = 1, 2. Clearly, (3.8) together with (3.12) and the positivity of λ imply that

mλi < 0 for i = 1, 2. (3.13)

Moreover,
mλ2 ≤ mλ1 , (3.14)

due to the fact that 0 < λ1 < λ2. Then, by (3.12)–(3.14) and again by the fact that 0 < λ1 < λ2, we
get that

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1).

So the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). The proof is complete. �

Here we present an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2 Let Ω =
{

(x, y) ∈ R2 |x2 + y2 < 4
}

. Consider the problem∆2
p(x,y)u−M

(∫
Ω

|∇u|p(x,y)

p(x, y)
dx dy

)
∆p(x,y)u+ |u|p(x,y)−2u = λf(x, y, u) in Ω,

u = ∆u = 0 on ∂Ω,

(3.15)

where M(t) = 5
2 + 1

2 cos(t) for every t ∈ [0,+∞), p(x, y) = x2 + y2 + 4 for every (x, y) ∈ Ω and

f(x, y, t) =
x2 + y2

103c4π

(
4t3 + 2t+ et + sinh(t)

)
for every (x, y, t) ∈ Ω× R. By the definition of f , we have

F (x, y, t) =
x2 + y2

103c4π

(
t4 + t2 + et + cosh(t)− 2

)
for every (x, y, t) ∈ Ω× R. By simple calculations, we obtain m0 = 2, p− = 4 and p+ = 8. Since

sup
γ>0

γ4∫
Ω

sup
|t|≤γ

F (x, y, t) dx dy

> 8c4 =
p+cp

−

M−
,

we observe that all the assumptions of Theorem 3.1 are fulfilled. Hence, Theorem 3.1 implies that
for each λ ∈

(
0, 125

8

)
the problem (3.15) admits at least one non-trivial weak solution uλ ∈ X.

Moreover, one has
lim
λ→0+

‖uλ‖ = 0
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and the real function

λ 7→
∫

Ω

|∆uλ|p(x,y)

p(x, y)
dx dy + M̃

(∫
Ω

|∇uλ|p(x,y)

p(x, y)
dx dy

)
+

∫
Ω

ρ(x)|uλ|p(x,y)

p(x, y)
dx dy

− λ
∫

Ω
F (x, y, uλ) dx dy

is negative and strictly decreasing in λ ∈
(
0, 125

8

)
.

Now, we give some remarks concerning our result.

Remark 3.3 In Theorem 3.1 we searched for the critical points of the functional Iλ naturally
associated with the problem (P fλ ). We note that, in general, Iλ can be unbounded from below in X .
Indeed, for example, if we take f(ξ) = 1 + |ξ|ε−p+ξp+−1 for every ξ ∈ R with ε > p+, for any fixed
u ∈ X\{0} and ι ∈ R we obtain

Iλ(ιu) = Φ(ιu)− λ
∫

Ω
F (ιu) dx ≤ ιp+M

+

p−
‖u‖p+ − λι‖u‖L1(Ω) − λ

ιε

ε
‖u‖εLε(Ω) → −∞

as ι→ +∞. Hence, we can not use direct minimization to find critical points of the functional Iλ.
Furthermore, for fixed γ̄ > 0 let

γ̄p
−∫

Ω
sup
|t|≤γ̄

F (x, t) dx

>
p+cp

−

M−
.

Then, the result of Theorem 3.1 holds with ‖uλ‖∞ ≤ γ̄.

Remark 3.4 We observe that Theorem 3.1 is a bifurcation result in the sense that the pair (0, 0)
belongs to the closure of the set{

(uλ, λ) ∈ X × (0,+∞) |uλ is a non-trivial weak solution of (P fλ )
}

in X × R. Indeed, by Theorem 3.1 we have that

‖uλ‖ → 0 as λ→ 0.

Hence, there exist two sequences {uj} in X and {λj} in R+ (here uj = uλj ) such that

λj → 0+ and ‖uj‖ → 0

as j → +∞. Moreover, we emphasis that due to the fact that the map

(0, λ∗) 3 λ 7→ Iλ(uλ)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗) with λ1 6= λ2 the weak solutions uλ1 and uλ2
ensured by Theorem 3.1 are different.
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Remark 3.5 If f is non-negative, then the weak solution ensured by Theorem 3.1 is non-negative.
Indeed, let u0 be the weak solution of the problem (P fλ ) ensured by Theorem 3.1. Arguing by a
contradiction, assume that the set A = {x ∈ Ω |u0(x) < 0} is non-empty and of positive measure.
Put ū = min {0, u0(x)} for all x ∈ Ω. Clearly, v̄ ∈ X and one has∫

Ω
|∆u0|p(x)−2∆u0∆v̄ dx+M

(∫
Ω

|∇u0|p(x)

p(x)
dx

)∫
Ω
|∇u0|p(x)−2∇u0∇v̄ dx

+

∫
Ω
ρ(x)|u0|p(x)−2u0v̄ dx− λ

∫
Ω
f(x, u0)v̄ dx = 0

for every v̄ ∈ X . Thus, from our sign assumptions on the data, we have

M−‖u‖wm,p(x)(A) ≤
∫
A
|∆u0|p(x) dx+M

(∫
A

|∇u0|p(x)

p(x)
dx

)∫
A
|∇u0|p(x) dx

+

∫
A
ρ(x)|u0|p(x) dx = λ

∫
A
f(x, u0)u0 dx ≤ 0,

i.e.,
‖u0‖wm,p(x)(A) ≤ 0,

which contradicts the fact that u0 is a non-trivial weak solution. Hence, the set A is empty, and u0 is
non-negative.

When f does not depend upon x, we obtain the following autonomous version of Theorem 3.1.

Theorem 3.6 Let f : R→ R be a non-negative continuous function. Put

F (ξ) =

∫ ξ

0
f(t) dt

for all ξ ∈ R. Assume that

lim
ξ→0+

F (ξ)

|ξ|p−
= +∞.

Then, for each

λ ∈ Λ =

(
0,

M−

p+cp− meas(Ω)
sup
γ>0

γp
−

F (γ)

)
,

where c is the constant defined in (2.2), the problem∆2
p(x)u−M

(∫
Ω

|∇u|p(x) dx

p(x)

)
∆p(x)u+ ρ(x)|u|p(x)−2u = λf(u) in Ω,

u = ∆u = 0 on ∂Ω

admits at least one non-trivial weak solution uλ ∈ X such that

lim
λ→0+

‖uλ‖ = 0.

Moreover, the real function

λ 7→
∫

Ω

|∆uλ|p(x)

p(x)
dx+ M̃

(∫
Ω

|∇uλ|p(x)

p(x)
dx

)
+

∫
Ω

ρ(x)|uλ|p(x)

p(x)
dx− λ

∫
Ω
F (uλ) dx

is negative and strictly decreasing in Λ.
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