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1 Introduction and preliminaries

The notion of almost periodicity was introduced by the Danish mathematician Harald Bohr around
1925 and later generalized by many others. The notion of almost automorphy, which generalizes the
notion of almost periodicity, was discovered by the American mathematician S. Bochner in 1955.
Starting presumably with the papers of W. A. Veech [30,31], many authors have deeply investigated
the concept of almost automorphy on various classes of (semi-)topological groups.

Suppose that (X, ‖ · ‖) is a complex Banach space and F : Rn → X is a continuous mapping.
Then we say that the function F (·) is almost automorphic if and only if for every sequence (bk) in
Rn there exist a subsequence (ak) of (bk) and a mapping G : Rn → X such that

lim
k→∞

F
(
t + ak

)
= G(t) and lim

k→∞
G
(
t− ak

)
= F (t), (1.1)

pointwisely for t ∈ Rn. If this is the case, then the range of F (·) is relatively compact in X and
the limit function G(·) is bounded on Rn but not necessarily continuous on Rn. Further on, if the
convergence of limits appearing in (1.1) is uniform on compact subsets of Rn, resp. the whole space
Rn, then we say that the function F (·) is compactly almost automorphic, resp. almost periodic. It is
well known that an almost automorphic function F (·) is compactly almost automorphic if and only
if F (·) is uniformly continuous. The function F (·) is said to be asymptotically almost automorphic
(asymptotically almost periodic) if and only if there exist an almost automorphic function (almost
periodic function) G : Rn → X and a function Q ∈ C0(Rn : X) such that F (t) = G(t) + Q(t)
for all t ∈ Rn; here, C0(Rn : X) denotes the Banach space of all continuous functions from Rn
into X vanishing at infinity. For more details about almost periodic functions, almost automorphic
functions, various generalizations and applications, we refer the reader to the research monographs
[6, 7, 15, 16, 19, 20, 26] and [32].

In our recent research study [3], we have investigated various notions of almost periodicity for
a continuous function F : I × X → Y, where Y is a complex Banach space equipped with the
norm ‖ · ‖Y and ∅ 6= I ⊆ Rn (in this paper, ∅ 6= I ⊆ Rn generally does not satisfy the semigroup
property I + I ⊆ I or contain the zero vector). In [5], we have investigated various notions of
almost automorphy for a continuous function F : Rn ×X → Y. The notions of almost periodicity
and almost automorphy on (semi-)topological groups were analyzed by numerous authors; see the
research monographs [26] by B. M. Levitan, [28] by A. A. Pankov and the reference list given in
the forthcoming monograph [20] by M. Kostić for more details on the subject.

It would be really difficult to summarize here all obtained results about the one-dimensional
Stepanov almost periodic functions and their applications. Our recent paper [4] investigates various
classes of Stepanov multi-dimensional almost periodic type functions F : I ×X → Y, where Y is
a complex Banach space and ∅ 6= I ⊆ Rn. The main aim of this paper is to continue the research
studies [4, 5] by investigating various classes of Stepanov multi-dimensional almost automorphic
functions in Lebesgue spaces with variable exponents (see also the recent research articles by T.
Diagana, M. Kostić [8, 9] and M. Kostić, W.-S. Du [24, 25] for related studies carried out in the
dimensional setting).

In support of our investigation of the Stepanov multi-dimensional almost automorphy, we would
like to present the following illustrative example (the notion and terminology used will be explained
a bit later):
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Example 1.1 The existence and uniqueness of the spatially almost automorphic solutions of the
homogeneous heat equation with nonlocal diffusion

ut −∆u = 0 in [0,+∞)× Rn, (1.2)

u(0, x) = F (x) in Rn × {0},

has recently been initiated in [5, Subsection 3.2]. We can similarly consider the Stepanov spatially
almost automorphic solutions of (1.2).

More precisely, let X = Cb(Rn : C), the Banach space of bounded continuous functions on Rn
equipped with the sup-norm. Then we know that the Gaussian semigroup

(G(t)F )(x) :=
(
4πt
)−(n/2)

∫
Rn

F (x− y)e−
|y|2
4t dy, t > 0, f ∈ X, x ∈ Rn,

is a bounded holomorphic semigroup which is not strongly continuous at zero, generated by the
Laplacian ∆x with maximal distributional domain (see [1, Example 3.7.6, Example 3.7.8] for more
details). Under certain conditions, the unique solution of (1.2) is given by (t, x) 7→ (G(t)F )(x),
t ≥ 0, x ∈ Rn. Let a number t0 > 0 be fixed, and let p ∈ D+(Ω). Then Proposition 2.11 below
shows that the function Rn 3 x 7→ u(x, t0) ≡ (G(t0)F )(x) ∈ C is bounded, Stepanov (Ω, p(u))-
(RX ,B)-multi-almost automorphic provided that R is any non-empty collection of sequences in
Rn and the function F (·) is bounded, Stepanov (Ω, p(u))-(RX ,B)-multi-almost automorphic. The
conclusions obtained in [5, Example 1] and the fifth application of [4, Section 6] can be also recon-
sidered for the Stepanov multi-dimensional almost automorphic type inhomogeneities.

The organization and main ideas of this paper can be briefly described as follows. The main
aim of Subsection 1.1 is to remind the readers of the basic definitions and results from the theory
of Lebesgue spaces with variable exponents; in Subsection 1.2, we collect the necessary definitions
and results about multi-dimensional almost periodic functions and multi-dimensional almost auto-
morphic functions, while in Subsection 1.3 we recall the basic definitions with regards to Stepanov
multi-dimensional almost periodic functions in Lebesgue spaces with variable exponents.

In the one-dimensional setting, the notion of a Stepanov p-almost automorphy was introduced by
V. Casarino [2] in 2000 and later reconsidered, in a slightly different form, by G. M. N’Guérékata
and A. Pankov [17] in 2008 (1 ≤ p < ∞). In [9, Definition 6, Definition 7], we have recently
made the first steps in the analysis of (asymptotical) Stepanov p(x)-almost automorphy in the one-
dimensional setting. The main aim of Section 2 is to investigate the Stepanov multi-dimensional
almost automorphic type functions in Lebesgue spaces with variable exponents; here, among many
other topics, we investigate the pointwise products of Stepanov multi-dimensional almost automor-
phic functions, the convolution invariance of Stepanov multi-dimensional almost automorphy and
provide several illustrative examples. In Subsection 2.1, we provide certain applications of our re-
sults to the abstract Volterra integro-differential equations in Banach spaces, considering primarily
the multi-dimensional heat equation and the multi-dimensional wave equation. Although we work
with Lebesgue spaces with variable exponents, it is worth noting that the introduced classes of
Stepanov multi-dimensional almost automorphic functions seem to be not analyzed elsewhere even
in the case that the exponent p(·) has a constant value.

Before explaining the notation, we would like to emphasize that this is the first research study
of spatially Stepanov almost automorphic solutions of the partial differential equations (for some
results concerning the Stepanov almost automorphic solutions in time for various classes of the
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partial differential equations, one may refer e.g. to the works [7, 9, 11, 12, 16–19, 21] and references
quoted therein).

Unless stated otherwise, we will always assume that Ω is a fixed compact subset of Rn with
positive Lebesgue measure as well as that p : Ω → [1,∞] is an element of the space P(Ω),
introduced in Subsection 1.1. We will also always assume henceforth that (X, ‖ · ‖) and (Y, ‖ · ‖Y )
are complex Banach spaces, R is a non-empty collection of sequences in Rn and RX is a non-
empty collection of sequences in Rn × X; L(X,Y ) denotes the Banach algebra of all bounded
linear operators from X into Y with L(X,X) being denoted L(X). By B we denote a certain
collection of non-empty subsets of X satisfying that for each x ∈ X there exists B ∈ B such that
x ∈ B. By P (A) we denote the power set of A and by (e1, · · ·, en) we denote the canonical basis
of Rn.

In this paper, we will always assume that Ω is a fixed compact subset of Rn with positive
Lebesgue measure and p ∈ P(Ω). If F : Rn × X → Y, then we introduce the multi-dimensional
Bochner transform F̂Ω : Rn ×X → Y Ω by[

F̂Ω(t;x)
]
(u) := F (t + u;x), t ∈ Rn, u ∈ Ω, x ∈ X;

here, Y Ω denotes the set of all functions from Ω into Y .

1.1 Lebesgue spaces with variable exponents Lp(x)

Basic source of information about Lebesgue spaces with variable exponents Lp(x) can be obtained
by consulting the research monograph [10] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka.

Suppose that ∅ 6= Ω ⊆ Rn is a non-empty Lebesgue measurable subset and M(Ω : X) is
the collection of all measurable functions f : Ω → X; M(Ω) := M(Ω : R). By P(Ω) we
denote the vector space of all Lebesgue measurable functions p : Ω → [1,∞]. If p ∈ P(Ω) and
f ∈M(Ω : X), then we define

ϕp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) <∞,

0, 0 ≤ t ≤ 1, p(x) =∞,

∞, t > 1, p(x) =∞

and
ρ(f) :=

∫
Ω
ϕp(x)(‖f(x)‖) dx.

The Lebesgue space Lp(x)(Ω : X) with variable exponent is defined by

Lp(x)(Ω : X) :=
{
f ∈M(Ω : X) : lim

λ→0+
ρ(λf) = 0

}
.

Equivalently,

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) : there exists λ > 0 such that ρ(λf) <∞

}
;

see, e.g., [10, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg norm of u(·) by

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(u/λ) ≤ 1

}
.



STEPANOV MULTI-DIMENSIONAL ALMOST AUTOMORPHIC TYPE FUNCTIONS 5

Equipped with the above norm, the space Lp(x)(Ω : X) is a Banach space, coinciding with the usual
Lebesgue space Lp(Ω : X) in the case that p(x) ≡ p ≥ 1 is a constant function. Further on, if
p ∈M(Ω) ≡M(Ω : C), then we define

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Set
D+(Ω) :=

{
p ∈M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞ for a.e. x ∈ Ω

}
.

Let us recall that, for every p ∈ D+([0, 1]), we have

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) ; for all λ > 0 we have ρ(λf) <∞

}
.

Set
Ep(x)(Ω : X) :=

{
f ∈ Lp(x)(Ω : X) ; for all λ > 0 we have ρ(λf) <∞

}
;

Ep(x)(Ω) ≡ Ep(x)(Ω : C).

We will use the following lemma:

Lemma 1.2 (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1

q(x)
=

1

p(x)
+

1

r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e. on Ω. Then
Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X), and the constant of embedding is
less than or equal to 2(1 +m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈M(Ω : X) and 0 ≤ ‖g‖ ≤ ‖f‖ a.e. on Ω. Then g ∈ Lp(x)(Ω : X)
and ‖g‖p(x) ≤ ‖f‖p(x).

(iv) (The dominated convergence theorem) Let p ∈ P(Ω), and let fk, f ∈ M(Ω : X) for all
k ∈ N. If limk→∞ fk(x) = f(x) for a.e. x ∈ Ω and there exists a real-valued function
g ∈ Ep(x)(Ω) such that ‖fk(x)‖ ≤ g(x) for a.e. x ∈ Ω, then limk→∞ ‖fk−f‖Lp(x)(Ω:X) = 0.

For further information concerning the Lebesgue spaces with variable exponents Lp(x), see
also [13] and [27].

1.2 Multi-dimensional almost periodic functions and multi-dimensional almost au-
tomorphic functions

Let us recall that, throughout this paper, we assume that n ∈ N, B is a non-empty collection of
subsets of X, R is a non-empty collection of sequences in Rn and RX is a non-empty collection of
sequences in Rn ×X; usually, B denotes the collection of all bounded subsets of X or all compact
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subsets of X. Henceforth we will always assume that for each x ∈ X there exists B ∈ B such that
x ∈ B.

In this subsection, we recall the basic facts about multi-dimensional almost periodic functions
and multi-dimensional almost automorphic functions; see [3] and [5] for more details.

The following definition is extremely important in our study:

Definition 1.3 Suppose that F : Rn × X → Y is a continuous function as well as that for each
B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R we have that WB,(bk) : B → P (P (Rn)) and PB,(bk) ∈

P (P (Rn ×B)). Then we say that the function F (·; ·) is:

(i) (R,B)-multi-almost periodic if and only if for every B ∈ B and for every sequence (bk =
(b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkl = (b1kl , b

2
kl
, · · ·, bnkl)) of (bk) and a

function F ∗ : Rn ×X → Y such that

lim
l→+∞

F
(
t + (b1kl , · · ·, b

n
kl

);x
)

= F ∗(t;x)

uniformly for all x ∈ B and t ∈ Rn;

(ii) (R,B)-multi-almost automorphic if and only if for every B ∈ B and for every sequence
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkl = (b1kl , b

2
kl
, · · ·, bnkl)) of (bk) and

a function F ∗ : Rn ×X → Y such that

lim
l→+∞

F
(
t + (b1kl , · · ·, b

n
kl

);x
)

= F ∗(t;x) (1.3)

and

lim
l→+∞

F ∗
(
t− (b1kl , · · ·, b

n
kl

);x
)

= F (t;x), (1.4)

pointwisely for all x ∈ B and t ∈ Rn. If for each x ∈ B the above limits converge uni-
formly on compact subsets of Rn, then we say that F (·; ·) is compactly (R,B)-multi-almost
automorphic;

(iii) (R,B,WB,R)-multi-almost automorphic if and only if for everyB ∈ B and for every sequence
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkl = (b1kl , b

2
kl
, · · ·, bnkl)) of (bk) and

a function F ∗ : Rn × X → Y such that (1.3)-(1.4) hold pointwisely for all x ∈ B and
t ∈ Rn as well as that for each x ∈ B the convergence in t is uniform for any element of the
collection WB,(bk)(x);

(iv) (R,B,PB,R)-multi-almost automorphic if and only if for everyB ∈ B and for every sequence
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkl = (b1kl , b

2
kl
, · · ·, bnkl)) of (bk) and

a function F ∗ : Rn×X → Y such that (1.3)-(1.4) hold pointwisely for all x ∈ B and t ∈ Rn
as well as that the convergence in (1.3)-(1.4) is uniform in (t;x) for any set of the collection
PB,(bk).

Further on, the notion introduced above is a special case of the notion introduced in the following
definition, with

RX :=
{
b : N→ Rn ×X ; (∃a ∈ R) b(l) = (a(l); 0) for all l ∈ N

}
. (1.5)
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Definition 1.4 Suppose that F : Rn × X → Y is a continuous function as well as that for each
B ∈ B and (b;x) = ((b;x)k = ((b1k, b

2
k, · · ·, bnk);xk)) ∈ RX we have WB,(b;x) : B → P (P (Rn))

and PB,(b;x) ∈ P (P (Rn ×B)). Then we say that the function F (·; ·) is:

(i) (RX ,B)-multi-almost periodic if and only if for every B ∈ B and for every sequence
((b;x)k = ((b1k, b

2
k, · · ·, bnk);xk)) ∈ RX there exist a subsequence ((b;x)kl = ((b1kl , b

2
kl
, · ·

·, bnkl);xkl)) of ((b;x)k) and a function F ∗ : Rn ×X → Y such that

lim
l→+∞

F
(
t + (b1kl , · · ·, b

n
kl

);x+ xkl
)

= F ∗(t;x)

uniformly for all x ∈ B and t ∈ Rn;

(ii) (RX ,B)-multi-almost automorphic if and only if for every B ∈ B and for every sequence
((b;x)k = ((b1k, b

2
k, · · ·, bnk);xk)) ∈ RX there exist a subsequence ((b;x)kl = ((b1kl , b

2
kl
, · ·

·, bnkl);xkl)) of ((b;x)k) and a function F ∗ : Rn ×X → Y such that

lim
l→+∞

F
(
t + (b1kl , · · ·, b

n
kl

);x+ xkl
)

= F ∗(t;x) (1.6)

and

lim
l→+∞

F ∗
(
t− (b1kl , · · ·, b

n
kl

);x− xkl
)

= F (t;x), (1.7)

pointwisely for all x ∈ B and t ∈ Rn. We say that the function F (·; ·) is compactly (RX ,B)-
multi-almost automorphic if and only if the convergence of limits in (1.6)-(1.7) is uniform on
any compact subset K of Rn ×X which belongs to Rn ×B;

(iii) (RX ,B,WB,RX
)-multi-almost automorphic if and only if for every B ∈ B and for every

sequence ((b;x)k = ((b1k, b
2
k, · · ·, bnk);xk)) ∈ RX there exist a subsequence ((b;x)kl) of

((b;x)k) and a function F ∗ : Rn × X → Y such that (1.6)-(1.7) hold pointwisely for all
x ∈ B and t ∈ Rn as well as that for each x ∈ B the convergence in (1.6)-(1.7) is uniform
in t for any set of the collection WB,(b;x)(x);

(iv) (RX ,B,PB,RX
)-multi-almost automorphic if and only if for every B ∈ B and for every

sequence ((b;x)k = ((b1k, b
2
k, · · ·, bnk);xk)) ∈ RX there exist a subsequence ((b;x)kl) of

((b;x)k) and a function F ∗ : Rn × X → Y such that (1.6)-(1.7) hold pointwisely for all
x ∈ B and t ∈ Rn as well as that the convergence in (1.6)-(1.7) is uniform in (t;x) for any
set of the collection PB,(b;x).

It is clear that the assumption X ∈ B implies that a continuous function F : Rn ×X → Y is
(compactly) (RX ,B)-multi-almost automorphic if and only if the above requirements hold for any
sequence ((b;x)k) ∈ RX and the set B = X.

We also need the following definition from [3]:

Definition 1.5 Suppose that D ⊆ Rn and the set D is unbounded. By C0,D,B(Rn × X : Y ) we
denote the vector space consisting of all continuous functionsQ : Rn×X → Y such that, for every
B ∈ B, we have limt∈D,|t|→+∞Q(t;x) = 0, uniformly for x ∈ B.
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1.3 Stepanov multi-dimensional almost periodic functions in Lebesgue spaces with
variable exponents

In this subsection, we will repeat the basic definitions about Stepanov multi-dimensional almost
periodic functions in Lebesgue spaces with variable exponents ( [4]). Let us recall that our standing
assumptions are that Ω is a fixed compact subset of Rn with positive Lebesgue measure and p ∈
P(Ω).

We need the following notion:

Definition 1.6 Suppose that F : Rn × X → Y satisfies that for each t ∈ Rn and x ∈ X , the
function F (t + u;x) belongs to the space Lp(u)(Ω : Y ). Then we say that F (·; ·) is Stepanov
(Ω, p(u))-bounded on B if and only if for each B ∈ B we have

sup
t∈Rn;x∈B

∥∥∥[F̂Ω(t;x)
]
(u)
∥∥∥
Lp(u)(Ω:Y )

= sup
t∈Rn;x∈B

∥∥∥F (t + u;x)
∥∥∥
Lp(u)(Ω:Y )

<∞.

Definition 1.7 Suppose that F : Rn × X → Y, and the function F̂ : Rn × X → Lp(u)(Ω : Y )
is well defined and continuous. Then we say that the function F (·; ·) is Stepanov (Ω, p(u))-(R,B)-
multi-almost periodic if and only if the function F̂Ω : Rn × X → Lp(u)(Ω : Y ) is (R,B)-multi-
almost periodic, i.e., for every B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence

(bkl = (b1kl , b
2
kl
, · · ·, bnkl)) of (bk) and a function F ∗ : Rn ×X → Lp(u)(Ω : Y ) such that

lim
l→+∞

∥∥∥F (t + u + (b1kl , · · ·, b
n
kl

);x
)
−
[
F ∗(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

= 0,

uniformly for all x ∈ B and t ∈ Rn.

The notion introduced in the last definition is a special case of the following notion (this can be
seen using the collection RX defined in (1.5)):

Definition 1.8 Suppose that F : Rn×X → Y, and the function F̂ : Rn×X → Lp(u)(Ω : Y ) is well
defined and continuous. Then we say that the function F (·; ·) is Stepanov (Ω, p(u))-(RX ,B)-multi-
almost periodic if and only if the function F̂Ω : Rn ×X → Lp(u)(Ω : Y ) is (RX ,B)-multi-almost
periodic, i.e., for every B ∈ B and for every sequence ((b;x)k = ((b1k, b

2
k, · · ·, bnk);xk)) ∈ RX

there exist a subsequence ((b;x)kl = ((b1kl , b
2
kl
, · · ·, bnkl);xkl)) of ((b;x)k) and a function F ∗ :

Rn ×X → Lp(u)(Ω : Y ) such that

lim
l→+∞

∥∥∥F (t + u + (b1kl , · · ·, b
n
kl

);x+ xkl
)
−
[
F ∗(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

= 0,

uniformly for all x ∈ B and t ∈ Rn.

We will also use the conclusions from the following remark:

Remark 1.9 (i) Suppose that p ∈ D+(Ω), there exists a finite constant L ≥ 1 such that

‖F (t;x)− F (t; y)‖Y ≤ L‖x− y‖, t ∈ Rn, x, y ∈ X (1.8)

and the mapping F̂Ω : Rn ×X → Lp(u)(Ω : Y ) is well defined. Then it is continuous.

(ii) Suppose that F : Rn×X → Y is continuous and p ∈ D+(Ω). Then the continuity of mapping
F̂Ω : Rn × X → Lp(u)(Ω : Y ) follows directly by applying the dominated convergence
theorem (see Lemma 1.2(iv)).
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2 Stepanov multi-dimensional almost automorphic type functions

This section investigates Stepanov multi-dimensional almost automorphic type functions in
Lebesgue spaces with variable exponents. Besides our standing assumptions, we will occasionally
use the following one:

(ST) The function F : Rn×X → Y satisfies that the Bochner transform F̂ : Rn×X → Lp(u)(Ω :
Y ) is well defined and continuous. For each B ∈ B and b = (bk) ∈ R we have that WB,b :
B → P (P (Rn)) and PB,b ∈ P (P (Rn×B)); for each B ∈ B and (b;x) = ((b;x)k) ∈ RX

we have WB,(b;x) : B → P (P (Rn)) and PB,(b;x) ∈ P (P (Rn ×B)).

If this condition holds, then we can simply introduce the following classes of Stepanov multi-
dimensional almost automorphic type functions:

Definition 2.1 Suppose that (ST) holds. Then we say that the function F (·; ·) is:

(i) Stepanov (Ω, p(u))-(R,B)-multi-almost automorphic if and only if the function F̂ : Rn ×
X → Lp(u)(Ω : Y ) is (R,B)-multi-almost automorphic;

(ii) Stepanov (Ω, p(u))-(R,B,WB,R)-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,B,PB,R)-multi-almost automorphic] if and only if the function F̂ : Rn×X →
Lp(u)(Ω : Y ) is (R,B,WB,R)-multi-almost automorphic [(R,B,RB,R)-multi-almost auto-
morphic];

(iii) Stepanov (Ω, p(u))-(RX ,B)-multi-almost automorphic if and only if the function F̂ : Rn ×
X → Lp(u)(Ω : Y ) is (RX ,B)-multi-almost automorphic;

(iv) Stepanov (Ω, p(u))-(RX ,B,WB,R)-multi-almost automorphic [Stepanov
(Ω, p(u))-(RX ,B,PB,R)-multi-almost automorphic] if and only if the function F̂ : Rn ×
X → Lp(u)(Ω : Y ) is (RX ,B,WB,R)-multi-almost automorphic [(RX ,B,PB,R)-multi-
almost automorphic].

For the functions of the form F : Rn → Y , we will omit the term “B” from the notation henceforth.

Without any doubt, the most important case in our analysis is that one in which we have that R
(RX ) is a collection of all sequences b(·) in Rn ((b;x) in Rn×X). If this is the case and Ω = [0, 1]n,
then we will simply say that the function F : Rn → Y is Stepanov p(·)-almost automorphic.

Let k ∈ N and Fi : Rn × X → Yi (1 ≤ i ≤ k). Then we define the function (F1, · · ·, Fk) :
Rn ×X → Y1 × · · · × Yk by

(F1, · · ·, Fk)(t;x) := (F1(t;x), · · ·, Fk(t;x)), t ∈ Rn, x ∈ X.

Keeping in mind the introduced notion, we immediately get:

Proposition 2.2 Suppose that k ∈ N, (ST) and the following condition hold:
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(C1) for each set B ∈ B, for each sequence (b;x) = ((b;x)k) ∈ RX and for every sub-
sequence (b;x)′ of (b;x) we have WB,(b;x)(x) ⊆ WB,(b;x)′(x) for all x ∈ B and
PB,(b;x) ⊆ PB,(b;x)′ .

If the function Fi : Rn × X → Yi is Stepanov (Ω, p(u))-(RX ,B)-multi-almost auto-
morphic [Stepanov (Ω, p(u))-(RX ,B,WB,RX

)-multi-almost automorphic; Stepanov (Ω, p(u))-
(RX ,B,PB,RX

)-multi-almost automorphic] for 1 ≤ i ≤ k, then the function (F1, · · ·, Fk)(·; ·)
has the same property.

Clearly, we also have the following:

Proposition 2.3 Suppose that (ST) holds.

(i) If the function F : Rn × X → Y is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic, then
F (·; ·) is Stepanov (Ω, p(u))-(R,B,PB,R)-multi-almost automorphic, where for each B ∈ B
and b ∈ R we have PB,b = {{Rn ×B}}.

(ii) Suppose that for each set B ∈ B and sequence (bk;xk) ∈ RX we have that there exists an
integer k0 ∈ N such that, for every integer k ≥ k0, we have B − xk ⊆ B. If the function
F : Rn × X → Y is Stepanov (Ω, p(u))-(RX ,B)-multi-almost periodic, then F (·; ·) is
Stepanov (Ω, p(u))-(RX ,B,PB,RX

)-multi-almost automorphic, where for each B ∈ B and
(b;x) ∈ RX we have PB,(b;x) = {{Rn ×B}}.

We continue by providing two illustrative examples; the first one is a slight modification of [5,
Example 3] and the second one is a slight modification of [5, Example 5]:

Example 2.4 Suppose thatϕ : R→ C is an almost periodic function, Ω := [0, 1]2 and (T (t))t∈R ⊆
L(X,Y ) is an operator family which is strongly locally integrable and not strongly continuous at
zero. Suppose, further, that there exist a finite real number M ≥ 1 and a real number γ ∈ (0, 1)
such that ∥∥T (t)

∥∥
L(X,Y )

≤ M

|t|γ
, t ∈ R \ {0}, (2.1)

as well as that R is the collection of all sequences in ∆2 ≡ {(t, t) : t ∈ R} and B is the collection
of all bounded subsets of X. Define a function F : R2 ×X → Y by

F (t, s;x) := e
∫ t
s ϕ(τ) dτT (t− s)x, (t, s) ∈ R2, x ∈ X.

Let for each bounded subset B of X and for each sequence (bk = (bk, bk)) in R the collection
PB,(bk) be constituted of all sets of form {(t, s) ∈ R2 : |t − s| ≤ L} × B, where L > 0. Then the
function F (·, ·; ·) is Stepanov (Ω, 1)-(R,B,PB,R)-multi-almost automorphic, which can be deduced
as follows. First of all, it can be simply shown with the help of Fubini theorem and our assumption
(2.1) that for each real numbers s, t ∈ R and for each element x ∈ X we have (u = (u1, u2)):

(
u1, u2

)
7→ F

(
t+ u1, s+ u2;x

)
≡ e

∫ t+u1
s+u2

ϕ(r) dr
T
(
t− s+ (u1 − u2)

)
x ∈ L1([0, 1]2 : Y ).
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Furthermore, it can be simply shown with the help of the Fubini theorem, the dominated convergence
theorem and an elementary argumentation that the function F̂Ω : R2 ×X → Y is continuous. Let
a real number L > 0 and a bounded subset B of X be fixed, and let (t, s) ∈ R2 satisfy |t− s| ≤ L.
By Bochner’s criterion, there exist a subsequence (bkl , bkl) of (bk, bk) and a function ϕ∗ : R → C
such that liml→+∞ ϕ(r + bkl) = ϕ∗(r), uniformly in r ∈ R. Set[

F ∗(t, s;x)
](
u1, u2

)
:= e

∫ t+u1
s+u2

ϕ∗(r) dr
T
(
t− s+ (u1 − u2)

)
x, (t, s) ∈ R2, x ∈ X.

Arguing as in [5], we can simply shown that this is the right choice of required limit function as
well as that the function F (·, ·; ·) is Stepanov (Ω, 1)-(R,B,PB,R)-multi-almost automorphic, as
claimed. Observe, finally, that the function F (·, ·; ·) is not (R,B)-multi-almost automorphic in
general since it is not necessarily continuous in general as well as that the higher-dimensional
analogue of this example can be constructed in the same way as in [5]. The interested reader may
try to reconsider the conclusions established in [5, Example 4], provided that the functions fj(·)
from this example are Stepanov p-almost automorphic (Stepanov p-almost periodic) for some finite
real exponent p ≥ 1.

Example 2.5 Suppose that R is any collection of sequences in Rn such that each subsequence of a
sequence (bk) ∈ R also belongs to R, as well as that R′ is any collection of sequences in Rm such
that each subsequence of a sequence (b′k) ∈ R′ also belongs to R′. Let fi : Rn → R be a Stepanov
1-bounded, Stepanov (Ω1, 1)-R-almost automorphic function (1 ≤ i ≤ p), and gj : Rm → R be
a Stepanov 1-bounded, Stepanov (Ω1, 1)-R′-almost automorphic function (1 ≤ j ≤ q). Define the
functions F : Rn → Rq by F (t) :=

∑p
i=1 fi(t)ei and G : Rm → Rq by G(s) :=

∑q
j=1 gj(s)ej .

Define also the function F
⊗
G : Rn × Rm →Mp×q(R) by (t ∈ Rn, s ∈ Rm)

F
⊗

G (t, s) :=


f1(t)g1(s) f1(t)g2(s) · · · f1(t)gq(s)
f2(t)g1(s) f2(t)g2(s) · · · f2(t)gq(s)

...
...

. . .
...

fp(t)g1(s) fp(t)g2(s) · · · fp(t)gq(s)

 ,

where Mp×q(R) denotes the set of all real matrices of format p× q. Set, for every u ∈ Ω1, v ∈ Ω2,
t ∈ Rn and s ∈ Rm,[

F
⊗

G (t, s)
]
(u,v)

:=


[
f∗1 (t)

]
(u)
[
g∗1(s)

]
(v)

[
f∗1 (t)

]
(u)
[
g∗2(s)

]
(v) · · ·

[
f∗1 (t)

]
(u)
[
g∗q (s)

]
(v)[

f∗2 (t)
]
(u)
[
g∗1(s)

]
(v)

[
f∗2 (t)

]
(u)
[
g∗2(s)

]
(v) · · ·

[
f∗2 (t)

]
(u)
[
g∗q (s)

]
(v)

...
...

. . .
...[

f∗p (t)
]
(u)
[
g∗1(s)

]
(v)

[
f∗p (t)

]
(u)
[
g∗2(s)

]
(v) · · ·

[
f∗p (t)

]
(u)
[
g∗q (s)

]
(v)

 .

Then it is not difficult to prove that F
⊗
G is Stepanov (Ω1×Ω2, 1)-(R×R′)-almost automorphic,

where R × R′ := {(b,b′) : b ∈ R , b′ ∈ R′}. If, in addition to the above, for each i ∈ Np we
have that fi : Rn → R is a Stepanov (Ω1, 1)-(R,PR)-almost automorphic function as well as that
for each j ∈ Nq we have that gj : Rn → R is a Stepanov (Ω2, 1)-(R′,P′R′)-almost automorphic
function, then the function F

⊗
G is a Stepanov (Ω1×Ω2, 1)-(R×R′,P′′R×R′)-almost automorphic

function, provided that for each sequence b from R (c from R′) each set of the collection Pb (Pc)
belongs to the collection Pb′ (Pc′) for any subsequence b′ of b (c′ of c) and for each sequence
(b; c) belonging to R × R′ the collection P′′(b;c) consists of all direct products of sets from the
collections Pb and P′c.
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Further on, let us consider the notion introduced in Definition 2.1(iii). If the function F̂ : Rn ×
X → Lp(u)(Ω : Y ) is (RX ,B)-multi-almost automorphic, then for each set B ∈ B and sequence
(bk;xk) ∈ RX there exist a subsequence (bkl ;xkl) of (bk;xk) and a function F ∗ : Rn ×X → Y
such that

lim
l→+∞

∥∥∥F (t + u + bkl ;x+ xkl
)
−
[
F ∗(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

= 0 (2.2)

and

lim
l→+∞

∥∥∥F ∗(t + u− bkl ;x− xkl
)
− F (t + u;x)

∥∥∥
Lp(u)(Ω:Y )

= 0

pointwisely for all x ∈ B and t ∈ Rn. In general case, it is very difficult to deduce the existence
of a function G : Rn × X → Y such that G(t + u;x) = [F ∗(t;x)](u) for all x ∈ B and a.e.
t ∈ Rn, u ∈ Ω. But, this can be always done provided that Ω = [0, 1]n, which can be simply
deduced by using the first limit equality (2.2) and the proof of [9, Proposition 3.1] with appropriate
modifications (we can write down the set Rn as the union of sets k + Ω when k ∈ Zn and define
after that G(t;x) := [F ∗(k;x)](t− k) if t ∈ k + Ω for some k ∈ Zn).

Further on, in [4, Proposition 2.23, Proposition 2.25] (see also [9, Theorem 3.3]), we have
clarified several embedding type results for the spaces of Stepanov multi-dimensional almost peri-
odic functions. These results can be reformulated for the corresponding spaces of Stepanov multi-
dimensional almost automorphic functions since their proofs simply follow by applying Lemma 1.2.
For example, if p ∈ D+(Ω) and 1 ≤ p− ≤ p(u) ≤ p+ < +∞ for a.e. u ∈ Ω, then any Stepanov
(Ω, p+)-(RX ,B)-almost automorphic function is Stepanov (Ω, p(u))-(RX ,B)-almost automorphic
and any Stepanov (Ω, p(u))-(RX ,B)-almost automorphic function is Stepanov (Ω, p−)-(RX ,B)-
almost automorphic; in particular, any Stepanov (Ω, p(u))-(RX ,B)-almost automorphic function is
Stepanov (Ω, 1)-(RX ,B)-almost automorphic (this statement actually holds for any p ∈ P(Ω)).

Concerning the statements of [4, Proposition 2.24] and [9, Proposition 3.4], we will clarify the
following result, only:

Proposition 2.6 Suppose that the function F : Rn ×X → Y is (R,B)-multi almost automorphic,
p ∈ D+(Ω) and for each set B ∈ B we have supt∈Rn;x∈B ‖F (t;x)‖Y < +∞. Then the function
F (·; ·) is Stepanov (Ω, p(u))-(R,B)-almost automorphic.

Proof. Due to our conclusion from Remark 1.9(ii), the function F̂Ω : Rn × X → Y is contin-
uous. Since p ∈ D+(Ω), we have 1 ∈ Ep(u)(Ω) so that the final conclusion simply follows by
applying the dominated convergence theorem and our assumption that for each set B ∈ B we have
supt∈Rn;x∈B ‖F (t;x)‖Y < +∞. �

We continue by stating the following illustrative examples:

Example 2.7 Let F := {F ∈ L1
loc(Rn : Y ) ; supp(F ) is compact}, let p ∈ P(Ω) and let R

denote any collection of sequences in Rn such that there exists a sequence (bk) ∈ R whose any
subsequence is unbounded. Then a non-trivial function F ∈ F cannot be Stepanov (Ω, p(u))-R-
multi-almost automorphic, which can be shown arguing as in [21, Example 1, Example 2]. On
the other hand, a non-trivial function F ∈ F can belong to certain classes of equi-Weyl multi-
dimensional almost automorphic functions (see [23, Example 3.5] for more details).
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Example 2.8 (see the second part of [4, Example 2.9]) Suppose that Ω := [0, 1]n and p(u) :=
1− ln(u1 ·u2 · · ·un), where u = (u1, u2, · · ·, un) ∈ Ω, and F (x1, x2, · · ·, xn) := sin(x1 +x2 + · · ·+
xn)+sin(

√
2(x1+x2+···+xn)), (x1, x2, ···, xn) ∈ Rn. SetH(t) := sign(F (t)), t ∈ Rn. Then the

functionH(·) is essentially bounded and therefore Stepanov (Ω, p(u))-bounded. On the other hand,
we know that the function H(·) cannot be Stepanov (Ω, p(u))-almost periodic; the argumentation
used for proving this fact in combination with the argumentation used in [21, Example 2] shows
that the function H(·) cannot be Stepanov (Ω, p(u))-R-almost automorphic, where R denotes the
collection of all sequences in Rn.

In [4, Proposition 2.18, Proposition 2.19], we have analyzed the pointwise products of Stepanov
multi-dimensional almost periodic type functions. The following result is an analogue of the above-
mentioned results for Stepanov multi-dimensional almost automorphic functions (for simplicity, we
assume that the function f(·) depends only on the argument t ∈ Rn):

Proposition 2.9 Suppose that (ST) and (C1) hold with RX = R as well as that p, q, r ∈ P(Ω)
and 1/p(u) + 1/r(u) = 1/q(u). Suppose, further, that:

(i) f : Rn → C is Stepanov-(Ω, r(u))-bounded and Stepanov (Ω, r(u))-R-multi-almost auto-
morphic [Stepanov (Ω, r(u))-(R,W f

R)-multi-almost automorphic];

(ii) F : Rn × X → Y is a Stepanov (Ω, p(u))-(R,B)-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,B,WF

B,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,B,PFB,R)-multi-
almost automorphic] function satisfying that

sup
t∈Rn;x∈B

∥∥F̂Ω(t;x)
∥∥
Lp(u)(Ω)

<∞. (2.3)

Define
F1(t;x) := f(t)F (t;x), t ∈ Rn, x ∈ X

and

(iii) WF1

B,(bk)(x) to be the collection of all sets of the form D ∩ D′, where D ∈ WF
B,(bk)(x) and

D′ ∈ W f
(bk) for all B ∈ B, (bk) ∈ R and x ∈ B [PF1

B,(bk) to be the collection of all sets of

the form D ∩D′, where D ∈ RF
B,(bk) and D′ ∈W f

(bk) for all B ∈ B and (bk) ∈ R].

Then F1(·; ·) is Stepanov-(Ω, q(u))-(R,B)-multi-almost automorphic [Stepanov (Ω, q(u))-
(R,B,WF1

B,R)-multi-almost automorphic; Stepanov (Ω, q(u))-(R,B,PF1
B,R)-multi-almost automor-

phic].

Proof. Let (bk) ∈ R and B ∈ B be given. Then we have

F̂1Ω(t′;x′)− F̂1Ω(t;x)

= f̂Ω(t′) ·
[
F̂Ω(t′;x′)− F̂Ω(t;x)

]
+
[
f̂Ω(t′)− f̂Ω(t)

]
· F̂Ω(t;x)

for every t, t′ ∈ Rn and x, x′ ∈ X. Since the mapping f̂Ω(·) ∈ Lr(u)(Ω : C) is continuous and
the mapping F̂Ω(·; ·) is continuous, the above equality in combination with the Hölder inequality
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(see Lemma 1.2(i)) shows that the mapping F̂1Ω(·; ·) ∈ Lp(u)(Ω : C) is continuous, as well. In the
remainder of proof, we will consider only the general class of Stepanov-(Ω, q(u))-(R,B)-multi-
almost automorphic functions. Since (C1) holds, we know that there exist a subsequence (bkl) of
(bk) and two functions f∗ : Rn → C and F ∗ : Rn × X → Y such that, for every t ∈ Rn and
x ∈ B, we have

lim
l→+∞

f
(
t + bkl + u

)
= f∗(t + u), and lim

l→+∞
f∗
(
t + u− bkl

)
= f(t + u),

for the topology of Lr(u)(Rn : C),

lim
l→+∞

F
(
t + bkl + u;x

)
=
[
F ∗(t;x)

]
(u),

and

lim
l→+∞

[
F ∗
(
t− bkl ;x

)]
(u) = F (t + u;x),

for the topology of Lp(u)(Rn : Y ). Define[
F ∗1 (t;x)

]
(u) :=

[
f∗(t)

]
(u) ·

[
F ∗(t;x)

]
(u), t ∈ Rn, x ∈ X, u ∈ Ω.

Since

F1(t + bkl + u;x)−
[
F ∗1 (t;x)

]
(u)

=
[
f(t + bkl + u)− f∗(t + u)

]
· F (t + bkl + u;x)

+ f∗(t + u) ·
[
F (t + bkl + u;x)−

[
F ∗(t;x)](u)

]
for every t ∈ Rn, u ∈ Ω and x ∈ B, the first limit equality follows from the Hölder inequality, the
obvious estimate supt∈Rn ‖f∗(t)‖Lr(u)(Ω) <∞ and (2.3). The second limit equality can be proved
similarly. �

Now we would like to present the following illustrative example:

Example 2.10 Suppose that Ω = [0, 1]n, R denotes the collection of all sequences in Rn and, for
every i ∈ Nn, the function fi(·) is Stepanov (Ω, p)-R-almost automorphic for every finite exponent
p ∈ [1,∞). Set

F
(
t1, t2, · · ·, tn

)
:= f1(t1)f2(t2) · · · fn(tn), t =

(
t1, t2, · · ·, tn

)
∈ Rn.

Applying Proposition 2.9, we have that the function t 7→ F (t), t ∈ Rn is Stepanov-(Ω, p(u))-R-
almost automorphic for any p ∈ D+(Ω).

Concerning the convolution invariance of Stepanov multi-dimensional almost automorphy, we
will state and prove the following result (cf. also [4, Proposition 2.10], where we have used slightly
different assumptions):

Proposition 2.11 Suppose that h ∈ L1(Rn), p ∈ D+(Ω) and F : Rn × X → Y is a Stepanov
(Ω, p(u))-(RX ,B)-multi-almost automorphic function satisfying that for each B ∈ B there exists a
finite real number εB > 0 such that

sup
t∈Rn,x∈B·

∥∥F (t, x)
∥∥
Y
< +∞,

where B· ≡ B◦ ∪
⋃
x∈∂B B(x, εB). Let condition (CI) hold, where:
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(CI) RX = R, or X ∈ B and RX is general.

Then the function

(h ∗ F )(t;x) :=

∫
Rn

h(σ)F (t− σ;x) dσ, t ∈ Rn, x ∈ X

is well defined, Stepanov (Ω, p(u))-(RX ,B)-multi-almost automorphic, and for each B ∈ B we
have supt∈Rn,x∈B· ‖(h ∗ F )(t;x)‖Y < +∞.

Proof. Arguing similarly as in the proof of [5, Proposition 5], we have that the function (h∗F )(·; ·)
is well defined as well as that supt∈Rn,x∈B· ‖(h ∗ F )(t;x)‖Y < +∞ for all B ∈ B. By definition,
the function F̂Ω(·; ·) is (RX ,B)-multi-almost automorphic; furthermore, since we have assumed
that p ∈ D+(Ω), an application of Lemma 1.2(ii) shows that for each set B ∈ B we have

sup
t∈Rn,x∈B·

∥∥F̂Ω(t;x)
∥∥
Lp(u)(Ω:Y )

< +∞.

Applying [5, Proposition 5], we get that the function h ∗ F̂Ω(·; ·) is well defined and (RX ,B)-multi-
almost automorphic. Now the final conclusion follows from the equality

h ∗ F̂Ω = ˆh ∗ FΩ

and a corresponding definition of Stepanov (Ω, p(u))-(RX ,B)-multi-almost automorphy. �

In order to transfer the statement of [4, Proposition 2.22] to multi-dimensional almost automor-
phic type functions, we need to clarify the following lemma:

Lemma 2.12 Suppose that (ST) and (C1) hold. If for every ε > 0, B ∈ B and (bk) ∈ R, there
exist a subsequence (bεkl) of (bk) and a function F ∗,ε : Rn × X → Lp(u)(Ω : Y ) such that, for
every x ∈ B and t ∈ Rn [for every x ∈ B, for every D ∈ WB,(bk)(x) and for every t ∈ D; for
every D ∈ PB,(bk) and for every (t;x) ∈ D], there exists l0 ∈ N such that, for every l ≥ l0, we
have ∥∥∥F (t + u + (b1kl , · · ·, b

n
kl

)ε;x
)
−
[
F ∗,ε(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤ ε/2

and ∥∥∥[F ∗,ε(t− (b1kl , · · ·, b
n
kl

)ε;x
)]

(u)− F (t + u;x)
∥∥∥
Lp(u)(Ω:Y )

≤ ε/2,

then F (·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost automorphic [Stepanov (Ω, p(u))-
(R,B,WB,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,B,PB,R)-multi-almost automor-
phic].

Proof. Let B ∈ B and (bk) ∈ R be fixed. Suppose that s ∈ N. Using our assumption, we have
that there exist a subsequence (bsk) of (bk) and a function F ∗s : Rn×X → Lp(u)(Ω : Y ) such that,
for every x ∈ B and t ∈ Rn [for every x ∈ B, for every D ∈ WB,(bk)(x) and for every t ∈ D; for
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every D ∈ PB,(bk) and for every (t;x) ∈ D], there exists k0 ∈ N such that, for every k ≥ k0, we
have ∥∥∥F (t + u + bsk;x

)
−
[
F ∗s (t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤ 1/s

and ∥∥∥[F ∗s (t− bsk;x
)]

(u)− F (t + u;x)
∥∥∥
Lp(u)(Ω:Y )

≤ 1/s;

furthermore, since (C1) holds, we may assume that (bs+1
k ) is a subsequence of (bsk) for all s ∈ N.

It is not difficult to prove that, for every fixed point t ∈ Rn and element x ∈ X, the sequence
(F ∗s (t;x)) is a Cauchy sequence in Lp(u)(Ω : Y ) and therefore convergent; indeed, let ε > 0 be
given and let s0 ∈ N satisfy 2/s < ε. Suppose that s1 ≥ s and s2 ≥ s. Then there exist two
sufficiently large integers k, k′ ∈ N such that∥∥∥[F ∗s1(t;x)

]
(u)−

[
F ∗s2(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤
∥∥∥[F ∗s1(t;x)

]
(u)− F

(
t + u + bs1k ;x

)∥∥∥
Lp(u)(Ω:Y )

+
∥∥∥F (t + u + bs1k ;x

)
− F

(
t + u + bs2k′ ;x

)∥∥∥
Lp(u)(Ω:Y )

+
∥∥∥F (t + u + bs2k′ ;x

)
−
[
F ∗s2(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

=
∥∥∥[F ∗s1(t;x)

]
(u)− F

(
t + u + bs1k ;x

)∥∥∥
Lp(u)(Ω:Y )

+
∥∥∥F (t + u + bs2k′ ;x

)
−
[
F ∗s2(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤ (1/s1) + (1/s2) ≤ 2/s < ε.

Set F ∗(t;x) := lims→+∞ F
∗
s (t;x), t ∈ Rn, x ∈ B and ck := bkk, k ∈ N (with a little loss

of generality; we can always use here the well known diagonal procedure). Observe that, in the
case of consideration of Stepanov (Ω, p(u))-(R,B,WB,R)-multi-almost automorphy, for every x ∈
B and for every D ∈ WB,(bk)(x), the above limit is uniform in t ∈ D, as well as that, in the
case of consideration of Stepanov (Ω, p(u))-(R,B,PB,R)-multi-almost automorphy, for every D ∈
PB,(bk), the above limit is uniform in (t;x) ∈ D. Furthermore, for every x ∈ B and t ∈ Rn [for
every x ∈ B, for every D ∈WB,(bk)(x) and for every t ∈ D; for every D ∈ PB,(bk) and for every
(t;x) ∈ D], we have the existence of a sufficiently large integer k ∈ N such that∥∥∥F (t + ck + u)−

[
F ∗(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤
∥∥∥F (t + ck + u)−

[
F ∗k (t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

+
∥∥∥[F ∗k (t;x)

]
(u)−

[
F ∗(t;x)

]
(u)
∥∥∥
Lp(u)(Ω:Y )

≤ (ε/2) + (ε/2) = ε.

This completes the proof of lemma. �

Now we are able to state the following result:
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Theorem 2.13 Suppose that k ∈ N, (ST) and (C1) hold. Let B be any family of compact subsets of
X, let Bf be the collection of all finite subsets of X , and let F : Rn ×X → Y satisfy the following
conditions:

(i) The function F (·; ·) is Stepanov (Ω, p(u))-(R,Bf )-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,Bf ,W f

Bf ,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,Bf ,PfBf ,R)-
multi-almost automorphic];

(ii) For every B ∈ B, (b) = (bk) ∈ R and ε > 0, there exist a subsequence (bkl) ∈ R of
(bk) and a real number δ > 0 such that, for every point t ∈ Rn and for every two elements
x′, x′′ ∈ B, there exist two integers m0, l0 ∈ N such that, for every integer m ≥ m0, we
have

‖x′ − x′′‖ ≤ δ

=⇒
∥∥∥F (t + u + bkm ;x′

)
− F

(
t + u + bkm ;x′′

)∥∥∥
Lp(u)(Ω:Y )

≤ ε/2 (2.4)

and, for every integer m ≥ m0 and l ≥ l0, we have

‖x′ − x′′‖ ≤ δ

=⇒
∥∥∥F (t + u− bkl + bkm ;x′

)
− F

(
t + u− bkl + bkm ;x′′

)∥∥∥
Lp(u)(Ω:Y )

≤ ε/2

(2.5)

[for each B ∈ B, (bk) ∈ R and ε > 0, there exist a subsequence (bkl) ∈ R of (bk) and
a real number δ > 0 such that, for every two elements x′, x′′ ∈ B, set D ∈ WB;(bk)(x

′)
and point t ∈ D, there exist two integers m0, l0 ∈ N such that, for every integer m ≥ m0,
the implication (2.4) holds as well as that, for every integer l ≥ l0 we have D − bkl ⊆
WB,(bk)(x

′) ∩WB,(bk)(x
′′) and (2.5); for each B ∈ B, (bk) ∈ R and ε > 0, there exist a

subsequence (bkl) ∈ R of (bk) and a real number δ > 0 such that, for every D ∈ P(b;x),
(t;x′) ∈ D and x′′ ∈ B, there exist two integers m0, l0 ∈ N such that, for every integer
m ≥ m0, the implication (2.4) holds as well as that, for every integer l ≥ l0 we have
D − (bkl , 0) ⊆ PB,(bk) and (2.5)];

(iii) For each set B ∈ B and for each finite subset B′ of B, we have W f
B′;(bk)(x) ⊇ WB′;(bk)(x)

for all x ∈ B, x′ ∈ B′ and PfB′;(bk) ⊇ PB;(b).

Then the function F (·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,B,WB,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,B,PB,R)-multi-almost
automorphic].

Proof. We may assume that p(u) ≡ p ∈ [1,∞); the proof in general case can be deduced similarly.
Let ε > 0, B ∈ B and (b;x) = ((bk;xk)) ∈ RX be given. Then there exist a subsequence
(bkl) ∈ R of (bk) and a real number δ > 0 such that (ii) holds, which implies that there exists a
finite subset {x′1, · · ·, x′s} ⊆ B (s ∈ N) such that B ⊆

⋃l
i=1B(x′i, δ). Due to (i) and (C1), we have

the existence of a subsequence of (bkl) [w.l.o.g. we may assume that this subsequence is equal to
the initial sequence (bkl)] and a function F ∗ : Rn ×X → Lp(Ω : Y ) such that, for every t ∈ Rn,
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there exists an integer m0 ∈ N such that, for every m ≥ m0, we have:(∫
Ω

∥∥F (t + u + bkm ;x′i)−
[
F ∗(t;x′i)

]
(u)
∥∥p
Y

du

)
≤ ε/2, m ≥ m0, i ∈ Ns (2.6)

and (∫
Ω

∥∥[F ∗(t− bkm ;x′i)
]
(u)− F (t + u;x′i)

∥∥p
Y

du

)
≤ ε/2, m ≥ m0, i ∈ Ns. (2.7)

Let x ∈ B and t ∈ Rn be fixed [let x ∈ B, D ∈ WB,(bk)(x) and t ∈ D be fixed; let D ∈ PB,(bk)

and (t;x) ∈ D be fixed]. By the foregoing, there exists i ∈ Ns such that ‖x− x′i‖ ≤ δ. By (ii), we
have the existence of an integer m1 ∈ N such that, for every integer m ≥ m1, one has∥∥∥F (t + u + bkm ;x

)
− F

(
t + u + bkm ;x′i

)∥∥∥
Lp(u)(Ω:Y )

≤ ε/2. (2.8)

Assume first that the function F (·; ·) is Stepanov (Ω, p(u))-(R,Bf )-multi-almost automorphic.
Then we have (∫

Ω

∥∥F (t + u + bkm ;x)−
[
F ∗(t;x′i)

]
(u)
∥∥p
Y

du

) 1
p

≤

(∫
Ω

∥∥F (t + u + bkm ;x)− F (t + u + bkm ;x′i)
∥∥p
Y

du

) 1
p

+

(∫
Ω

∥∥F (t + u + bkm ;x′i)−
[
F ∗(t;x′i)

]
(u)
∥∥p
Y

du

) 1
p

≤(ε/2) + (ε/2) = ε, m ≥ m0 +m1, (2.9)

where (2.9) follows by applying (2.6) and (2.8); in the case of consideration of Stepanov (Ω, p(u))-
(R,B,WB,R)-multi-almost automorphy [Stepanov (Ω, p(u))-(R,B,PB,R)-multi-almost automor-
phy], we also need to apply condition (iii) and the corresponding assumptions from the issue (ii).
For the second limit equation, we use the estimates(∫

Ω

∥∥[F ∗(t− bkl ;x)
]
(u)− F (t + u;x)

∥∥p
Y

du

) 1
p

≤

(∫
Ω

∥∥[F ∗(t− bkl ;x)
]
(u)−

[
F ∗(t− bkl ;x

′
i)
]
(u)
∥∥p
Y

du

) 1
p

+

(∫
Ω

∥∥[F ∗(t− bkl ;x
′
i)
]
(u)− F (t + u;x)

∥∥p
Y

du

) 1
p

, m ≥ m0 +m1, l ≥ l0,

where we have applied (2.5), (2.7), the limit equality

lim
l→+∞

F
(
t + u− bkl + bkm ;x′

)
=
[
F ∗(t− bkl ;x

′
i)
]
(u),

and the corresponding limit equality with the element x′i replaced therein with the element x. Then
the final conclusion follows from Lemma 2.12. �
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It is clear that some known statements for multi-dimensional almost automorphic functions can
be straightforwardly extended to the corresponding Stepanov classes by using the properties of
the Bochner transform. For example, suppose that F : Rn × X → Y is a Stepanov (Ω, p(u))-
(R,B)-multi almost automorphic function, where R denotes the collection of all sequences in Rn
and B denotes any collection of compact subsets of X. If there exists a finite real constant L > 0
such that (1.8) holds, then, for every set B ∈ B, we have that the set {F̂Ω(t, x) : t ∈ Rn, x ∈
B} is relatively compact in Lp(u)(Ω : Y ). This can be deduced with the help of our conclusion
from Remark 1.9(i) and [5, Proposition 1]. Similarly, we can clarify the supremum formula for
Stepanov (Ω, p(u))-(R,B)-multi almost automorphic functions using [5, Proposition 3] and some
sufficient conditions ensuring the invariance of various types of Stepanov (Ω, p(u))-(R,B)-multi-
almost automorpy under the composition with continuous functions (see [5, Proposition 2]).

Suppose now that D ⊆ Rn and the set D is unbounded. Any of the function spaces from Def-
inition 2.1 can be extended by introducing the corresponding space of D-asymptotically Stepanov
multi-almost automorphic functions; for example, we can introduce the following notion:

Definition 2.14 We say that the function F (·; ·) is D-asymptotically Stepanov (Ω, p(u))-(R,B)-
multi-almost automorphic if and only if there exist a Stepanov (Ω, p(u))-(R,B)-multi-almost au-
tomorphic function H : Rn × X → Y and a function Q ∈ S

Ω,p(u)
0,D,B (Rn × X : Y ) such that

F (t;x) = H(t;x) + Q(t;x) for a.e. t ∈ Rn and all x ∈ X. If X = {0} and B = {X}, then
we also say that the function F (·) is D-asymptotically Stepanov (Ω, p(u))-R-multi-almost automor-
phic.

Using [5, Proposition 4] (cf. also [5, Proposition 8] and [4, Proposition 2.11] for the correspond-
ing statement concerning the Stepanov multi-dimensional almost periodic functions), we can formu-
late a great number of corresponding statements for (D-asymptotically) Stepanov multi-dimensional
almost automorphic functions. For example, we can prove the following:

Proposition 2.15 Suppose that for each integer j ∈ N the function Fj(·; ·) is Stepanov (Ω, p(u))-
(R,B)-multi-almost automorphic. If for each B ∈ B there exists εB > 0 such that

lim
j→+∞

sup
t∈Λ;x∈B·

∥∥∥Fj(t + u;x)− F (t + u;x)
∥∥∥
Lp(u)(Ω:Y )

= 0,

where B· ≡ B◦ ∪
⋃
x∈∂B B(x, εB), then the function F (·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-

almost automorphic.

It is worth noting that any such space of D-asymptotically Stepanov multi-dimensional almost
automorphic functions has the linear vector structure provided that the collection R (RX ) has the
property that, for every sequence which belongs to R (RX ), any its subsequence belongs to R
(RX ); in [5, Proposition 6], we have also analyzed the translation invariance and the homogeneity
of D-asymptotically Stepanov multi-almost automorphic functions (under certain conditions, the
decomposition of a D-asymptotically Stepanov multi-almost automorphic function into its Stepanov
multi-almost automorphic part and the corrective part is unique, which simply follows from an
application of the deduced supremum formula; cf. also [5, Proposition 7]). We can simply transfer
the corresponding parts of the above-mentioned proposition to D-asymptotically Stepanov multi-
almost automorphic functions. Details can be left to the interested readers.
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Before we switch to the next subsection, we would like to clarify the following extension of [11,
Theorem 3.3] and [20, Lemma 2.3.4] for Stepanov multi-dimensional almost automorphic type
functions depending on two parameters:

Theorem 2.16 (i) Suppose that Ω = [0, 1]n, the collection RX (R) has the property that, for ev-
ery sequence which belongs to RX (R), any its subsequence belongs to RX (R) and the func-
tion F : Rn ×X → Y is Stepanov (Ω, p(u))-(RX ,B)-multi-almost automorphic (Stepanov
(Ω, p(u))-(R,B)-multi-almost automorphic). If the function F (·; ·) is uniformly convergent
on Rn ×X (if for each B ∈ B there exists εB > 0 such that the function F (·; ·) is uniformly
convergent on Rn × B·, where B· := B◦ ∪

⋃
x∈∂B B(x, εB)), then the function F (·; ·) is

(RX ,B)-multi-almost automorphic ((R,B)-multi-almost automorphic).

(ii) Suppose that Ω = [0, 1]n and the function F : Rn → Y is Stepanov Rn-asymptotically
(Ω, p(u))-R-multi-almost automorphic, where R denotes the collection of all sequences in
Rn. If the function F (·) is uniformly continuous, then F (·) is asymptotically almost automor-
phic.

Proof. We will prove the part (i) only for (RX ,B)-multi-almost automorphic functions. Define, for
every s ∈ N, t ∈ Rn and x ∈ X, Fs(t;x) :=

∫
Ω F (t+(u/s);x) du. Suppose that an integer s ∈ N

is fixed. In order to prove that the function Fs(·; ·) is continuous at the fixed point (t;x) ∈ Rn×X,
let us take arbitrary real number ε > 0 and choose after that a set B ∈ B such that x ∈ B. Then
there exists a real number εB > 0 such that the function F (·; ·) is uniformly convergent on Rn×B·.
Using this fact, the required continuity of function Fs(·; ·) at (t;x) follows from the equality

Fs(t;x)− Fs
(
t′;x′

)
=

∫
Ω

[
F (t + (u/s);x)− F (t′ + (u/s);x′)

]
du

and the fact that for each sufficiently small real number δ > 0 we have thatB(x′, δ) ⊆ B·. Similarly
we can prove that for each set B ∈ B the sequence (Fs(·; ·)) converges uniformly to the function
F (·; ·) on the set Rn × B◦. In the remainder of the proof of (i) we may assume without loss of
generality (see Lemma 1.2(ii)) that p(u) ≡ 1. Due to [5, Proposition 4], it suffices to show that the
function Fs(·; ·) is (R,B)-multi-almost automorphic for all s ∈ N. Let a sequence (bk) ∈ R and a
set B ∈ B be given. By our assumption, we have the existence of a subsequence (bkl) of (bk) and
a function F ∗ : Rn ×X → L1(Ω : Y ) such that liml→+∞ F (t + · + bkl ;x) = [F ∗(t;x)](·) and
liml→+∞[F ∗(t− bkl ;x)](·) = F (t + ·;x) for the topology of L1(Ω : Y ). Define, for fixed integer
s ∈ N,

F ∗s (t;x) := sn
∫

Ω/s

[
F ∗(t;x)

]
(u) du, t ∈ Rn, x ∈ X.

Then, for every s ∈ N, t ∈ Rn and x ∈ B, we have∥∥Fs(t + bkl
)
− F ∗s (t;x)

∥∥
Y

=

∥∥∥∥∥sn
∫

Ω/s

[
F (t + u + bkl ;x) du− sn

∫
Ω/s

[
F ∗(t;x)

]
(u) du

∥∥∥∥∥
Y

≤ sn
∫

Ω

∥∥∥F (t + u + bkl ;x)−
[
F ∗(t;x)

]
(u)
∥∥∥
Y

du→ 0, l→ +∞.

We can similarly prove the second limit equation. The proof of (ii) follows by applying [5, Lemma
1] and the argumentation contained in the proof of [18, Proposition 3.1]. �
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We close this section by observing that the composition principles for one-dimensional Stepanov
p-almost automorphic type functions (1 ≤ p < ∞), established by Z. Fan, J. Liang, T.-J. Xiao
[14] and H.-S. Ding, J. Liang, T.-J. Xiao [11, 12], have recently been reconsidered and slightly
generalized by T. Diagana and M. Kostić [9, Section 4] for one-dimensional Stepanov p(x)-almost
automorphic type functions (see also the research article [22]). The above-mentioned results admit
straightforward reformulations in the multi-dimensional setting and, because of that, we will not
reconsider these results here (cf. also [4, Section 4] for more details given in the almost periodic
case). For simplicity, we will not consider here various questions about the invariance of Stepanov
multi-dimensional almost automorphic properties under the actions of convolution products, as well
(cf. [4, Section 5], [5, Subsection 2.5] and [9, Section 5] for more details).

2.1 Applications to the heat equation and the wave equation

In this subsection, we analyze the Stepanov almost automorphic solutions of the heat equation and
the wave equation with respect to the space variable (see also Example 1.1).

In [5, Subsection 3.2], we have revisited the classical theory of partial differential equations of
second order and provided some new applications in the qualitative analysis of solutions of the wave
equations in R3 :

utt(t, x) = d2∆xu(t, x), x ∈ R3, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (2.10)

where d > 0, g ∈ C3(R3 : R) and h ∈ C2(R3 : R). By the famous Kirchhoff formula (see
e.g., [29, Theorem 5.4, pp. 277-278]), the function

u(t, x) :=
∂

∂t

[
1

4πd2t

∫
∂Bdt(x)

g(σ) dσ

]
+

1

4πd2t

∫
∂Bdt(x)

h(σ) dσ

=
1

4π

∫
∂B1(0)

g(x+ dtω) dω +
dt

4π

∫
∂B1(0)

∇g(x+ dtω) · ω dω

+
t

4π

∫
∂B1(0)

h(x+ dtω) dω, t ≥ 0, x ∈ R3, (2.11)

is a unique solution of problem (2.10) which belongs to the class C2([0,∞) × R3). Suppose now
that a number t0 > 0 is fixed. Let us also assume that the functions g(·), ∇g(·) and h(·) are bounded
and Stepanov ([0, 1]3, 1)-R-multi-almost automorphic, where R is any collection of sequences in
R3 such that, for every sequence (bk) ∈ R, any subsequence (bkl) of (bk) also belongs to R.
Using the dominated convergence theorem and the Fubini theorem, we can simply conclude that
the function x 7→ u(t0, x), x ∈ R3 is likewise bounded and Stepanov ([0, 1]3, 1)-R-multi-almost
automorphic. We can similarly consider the following wave equation in R2 :

utt(t, x) = d2∆xu(t, x), x ∈ R2, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (2.12)

where d > 0, g ∈ C3(R2 : R) and h ∈ C2(R2 : R). By the Poisson formula ( [29, Theorem 5.5,
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pp. 280-281]), we have that the function

u(t, x) :=
∂

∂t

[
1

2πd

∫
∂Bdt(x)

g(σ)√
d2t2 − |x− y|2

dσ

]
+

1

2πd

∫
∂Bdt(x)

h(σ)√
d2t2 − |x− y|2

dσ

= d

∫
B1(0)

g(x+ dtσ)√
1− |σ|2

dσ + d2t

∫
B1(0)

∇g(x+ dtσ) · σ√
1− |σ|2

dσ

+ dt

∫
B1(0)

h(x+ dtσ)√
1− |σ|2

dσ, t ≥ 0, x ∈ R2,

is a unique solution of problem (2.12) which belongs to the class C2([0,∞)× R3). The consider-
ation is then similar to the consideration already given in the three-dimensional case.

Let us finally consider the one-dimensional case. Then the unique regular solution of wave
equation

utt(t, x) = d2∆xu(t, x), x ∈ R, t > 0; u(0, x) = g(x), ut(0, x) = h(x),

where d > 0, g ∈ C2(R : R) and h ∈ C1(R : R), is given by the d’Alembert formula

u(x, t) =
1

2

[
g(x− dt) + g(x+ dt)

]
+

1

2d

∫ x+dt

x−dt
h(s) ds, x ∈ R, t > 0.

Suppose that the functions g(·) and h[1](·) ≡
∫ ·

0 h(s) ds are Stepanov 1-almost automorphic. Then
we can simply prove with the help of the dominated convergence theorem and the Fubini theorem
that the solution u(x, t) is Stepanov 1-almost automorphic in the variable (x, t) ∈ R2.
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[22] M. Kostić, Composition principles for generalized almost periodic functions, Bulletin. Classe
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