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1 Introduction

Fractional differential equations, of late, have surfaced as an immensely significant topic of investi-
gation due to their growing number of applications in various areas of applied science and engineer-
ing (for details, see [11, 13, 14, 22]). It has come to the notice that the fractional order differential
equations represent better and precise realistic scenario for describing a large number of physical
phenomena in comparison with those differential equations expressed through usual integer order
derivatives. There are various ways of interpolating the definition of integer order to non-integer
order. Among them, the most widely known ones are Riemann-Liouville and Caputo derivatives.
The main advantage of Caputo’s definition in comparison to the Riemann-Liouville definition is
that it allows consideration of easily interpreted initial conditions in terms of the unknown x or its
derivatives such as x(0) = x0, x′(0) = x1, etc. (see [6]).

There are several works available in literature which have investigated the existence of mild
solutions of different types of fractional differential equations. However, in many of the works such
as [12, 19], the mild solution of a fractional evolution differential equation was defined by gener-
alizing the mild solution definition of integer order evolution equations, which was not considered
appropriate by Lin and Jia [15]. Zhou and his co-researchers [27, 30] came out with an appropriate
concept of mild solution for fractional evolution differential equations of order α ∈ (0, 1) by using
Laplace transform and probability density function Mα(θ), which was defined only for α ∈ (0, 1).
Subsequently, a reasonable number of researchers have used this approach to study the existence
of mild solutions of fractional evolution equations of order α ∈ (0, 1). For more information on
mild solutions of fractional differential equations of order α ∈ (1, 2), the readers are referred to the
works in a number of articles such as [16, 17, 24].

The following fractional evolution equation has been extensively studied when the operator A
is densely defined:

CDα
0+x(t) = Ax(t) + f(t, x(t)), t ∈ [0, b], α ∈ (0, 1),

x(0) = x0.

Da Prato and Sinestrari [4] initiated an investigation of initial value problems with a non-dense
domain wherein they introduced the concept of integral solutions of the following abstract Cauchy
problem:

x′(t) = Ax(t) + f(t), t ∈ [0, b],

x(0) = x0.

For more details, the readers are referred to some works such as [7,8,20]. Gu et al. [10] took up the
following fractional semilinear equation with Caputo derivative:

CDα
0+x(t) = Ax(t) + f(t, x(t)), t ∈ (0, b], α ∈ (0, 1),

x(0) = x0,

and studied the existence of integral solutions by using the measure of noncompactness.

Fu [9] studied the existence of solutions for the following semilinear neutral functional diffe-
rential equations with nonlocal conditions on a general Banach space X:

d

dt
[x(t)− F (t, x(h1(t)))] = A[x(t)− F (t, x(h1(t)))] +G(t, x(h2(t))), 0 ≤ t ≤ a,

x(0) + g(x) = x0 ∈ X.
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Motivated by the works carried out by Gu et al. [10] and Fu [9] as mentioned above, the main
objective of our present work is to study the following neutral fractional integro-differential equation
of mixed type for t ∈ [0, b]:

CDα
0+ [x(t)− u(t, x(t))] = A[x(t)− u(t, x(t))] + f(t, x(t), (Hx)(t), (Gx)(t)),

x(0) = x0,

}
(1.1)

where

(Hx)(t) =

∫ t

0
h(t, s, x(s)) ds and (Gx)(t) =

∫ b

0
g(t, s, x(s)) ds,

with α ∈ (0, 1), J = [0, b] and A : D(A) ⊆ X → X as a closed linear operator on a Banach
space X , which is not necessarily densely defined. The state x(·) assumes values in X , and u :
J × X → X is a function which satisfies some assumptions to be specified later. The functions
h : ∆×X → X , g : J × J ×X → X and f : J ×X ×X ×X → X are given abstract functions
where ∆ = {(t, s) ∈ J × J

∣∣ s ≤ t}.
It has been observed that establishing the compactness of the solution operator is not trivial [28].

In this work, in establishing the existence results, we use Arzelà-Ascoli theorem to show the relative
compactness of the solution operator. For additional information, we refer the readers to the works
in [25, 26, 28].

The present article is presented as follows: In Section 2, some definitions, theorems and lemmas
relevant to our work are recalled. Section 3 presents the hypotheses, statements and derivations of
the existence theorems for the integral solution of our defined problem. Section 4 presents two
examples which verify two theorems. At the end, the results are precisely summarized in Section 5.

2 Preliminaries

Throughout this article, we use the following notations:

(i) X: a Banach space with norm ‖ · ‖X ,
(ii) C(J,X): the Banach space of all continuous functions from J to X with the norm

‖x‖C = sup
t∈J
‖x(t)‖X ,

(iii) B(X): the Banach space of all bounded linear operators on X ,
(iv) Lp(J,X), 1 ≤ p ≤ ∞: the Banach space of all measurable functions f : J → X with the
following norm:

‖f‖Lp =


(∫

J
‖f‖p

X
dt
) 1
p
, 1 ≤ p <∞,

inf
µ(J̄)=0

{
sup
t∈J\J̄

‖f(t)‖X
}
, p =∞.

Theorem 2.1 (Hölder’s inequality) [28] Consider p, q ≥ 1 with 1/p + 1/q = 1. Then, for f ∈
Lp(J,X) and g ∈ Lq(J,X), 1 ≤ p ≤ ∞,

fg ∈ L1(J,X) and ‖fg‖
L1 ≤ ‖f‖Lp‖g‖Lq .
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Theorem 2.2 (Bochner’s theorem) [29] A measurable function f : J → X is said to be Bochner
integrable if ‖f‖ is Lebesgue integrable.

Definition 2.1 [29] The following integral defines the Riemann-Liouville fractional integral of
order α > 0 of a function f ∈ L1(J) with lower limit 0:

Iα0+f(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds, t > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the gamma function.

Definition 2.2 [29] The following integral defines the Caputo derivative of order α of a function
f ∈ L1(J) with lower limit 0:

CDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s) ds = In−α

0+
f (n)(t), t > 0,

where n = dαe denotes the least integer greater than or equal to α.

For an abstract function f with values in X , the integrals appearing in Definitions 2.1 and 2.2
are taken in Bochner’s sense.

Definition 2.3 [2] LetX be a Banach space and ΩX be the bounded subsets ofX . The Kuratowski
measure of noncompactness is the map α : ΩX → [0,∞) defined for B ∈ ΩX by

α(B) = inf{ε > 0|B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε for i = 1, 2, . . . , n},

where diam(Bi) = sup{‖x− y‖ : x, y ∈ Bi}.

Lemma 2.1 [2] The Kuratowski measure of noncompactness satisfies the following properties:
(i) α(B) = 0 iff B is relatively compact set,
(ii) B1 ⊂ B2 =⇒ α(B1) ≤ α(B2),
(iii) α(B1 +B2) ≤ α(B1) + α(B2).

Lemma 2.2 [3] Let X be a Banach space, and let D ⊂ X be bounded. Then there exists a
countable set D0 ⊂ D such that

α(D) ≤ 2α(D0).

Lemma 2.3 [1] Let X be a Banach space, and let D ⊂ C(J,X) be equicontinuous and bounded.
Then α(D(t)) is continuous on J and

αc(D) = max
t∈J

α(D(t)).

Lemma 2.4 [18] Let {xn}∞n=1 be a sequence of Bochner integrable functions from J into X with

‖xn(t)‖ ≤ m(t) for almost all t ∈ J and every n ∈ N,

where m ∈ L(J,R+). Then the function φ(t) = α
(
{xn}∞n=1

)
∈ L(J,R+) and it satisfies

α
(
{
∫ t

0
xn(s) ds

∣∣∣n ∈ N}
)
≤ 2

∫ t

0
φ(s) ds.
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Theorem 2.3 [5] Let X be a Banach space and S ⊂ X be a bounded, closed and convex set in
X and Q : S → S be a condensing map which means that α(Q(S)) ≤ α(S). Then Q has a fixed
point in S.

Theorem 2.4 (Krasnoselskii’s fixed point theorem) [23] Let X be a Banach space, and S be a
bounded, closed and convex subset of X . Let P and Q map S into X such that
(i) Px+Qy ∈ S whenever x, y ∈ S,
(ii) P is a contraction mapping,
(iii) Q is compact and continuous.
Then there exists z ∈ S such that Pz +Qz = z.

Theorem 2.5 (Darbo-Sadovskii’s fixed point theorem) [28] If S is a bounded, closed and convex
subset of a Banach space X and the continuous mapping Q : S → S is an α-contraction, then the
mapping Q has at least one fixed point in S.

Throughout this article, it is assumed that the operator A : D(A) ⊂ X → X satisfies the
Hille-Yosida condition, i.e., there exist M ≥ 0 and a constant w ∈ R such that (w,∞) ⊆ ρ(A) and

sup
{

(λ− w)n‖R(λ : A)n‖
B(X)

∣∣∣n ∈ N, λ > w
}
≤M,

where ρ(A) is the resolvent set of A, and R(λ : A) denotes the resolvent of A.

Let A0 be the part of A in D(A) defined by

D(A0) =
{
x ∈ D(A)

∣∣∣Ax ∈ D(A)
}
,

A0x = Ax.

Then A0 generates a C0-semigroup {T (t)}t≥0 on D(A). Assume that {T (t)}t≥0 is uniformly
bounded, i.e., there exists M > 1 such that

sup
t∈[0,∞)

‖T (t)‖
B(X)

< M.

Problem (1.1) is now equivalent to the following integral equation:

x(t) = x0 − u(0, x(0)) + u(t, x(t))

+
1

Γ(α)

∫ t

0
(t− s)α−1

[
A
(
x(s)− u(s, x(s))

)
+ f(s, x(s), (Hx)(s), (Gx)(s))

]
ds, t ∈ [0, b].

Based on the information available in [10], we present the following definition and results:
Assuming f to be continuous and x0 ∈ D(A), the integral solution of problem (1.1) is defined as
follows.

Definition 2.4 A function x : J → X is said to be an integral solution of (1.1) if

x ∈ C(J,X), Iα0+ [x(t)− u(t, x(t))] ∈ D(A) for t ∈ [0, b],
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and

x(t) = x0 − u(0, x(0)) + u(t, x(t)) +
A

Γ(α)

∫ t

0
(t− s)α−1[x(s)− u(s, x(s))] ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s), (Hx)(s), (Gx)(s)) ds, t ∈ [0, b].

Remark 2.1 If x is an integral solution of problem (1.1), it can be shown that x(t) − u(t, x(t)) ∈
D(A) for t ∈ J .

Now, we consider the following auxiliary problem:

CDα
0+ [x(t)− u(t, x(t))] = A0[x(t)− u(t, x(t))] + f(t, x(t), (Hx)(t), (Gx)(t)), t ∈ [0, b],

x(0) = x0.

}
(2.1)

The integral solution of (2.1) takes the following form:

x(t) = x0 − u(0, x(0)) + u(t, x(t)) +A0I
α
0+ [x(t)− u(t, x(t))]

+ Iα0+f(t, x(t), (Hx)(t), (Gx)(t)). (2.2)

Let Bλ = λ(λI − A)−1. Then, since Bλx→ x as λ→ +∞ for x ∈ D(A), we have the following
lemma:

Lemma 2.5 [10] The integral solution of (2.2) can be written in the following form:

x(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))]

+ lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds,

where

Sα(t) = I1−α
0+

Kα(t), Kα(t) = tα−1Pα(t),

Pα(t) =

∫ ∞
0

α θMα(θ)T (tαθ) dθ.

Here

Mα(θ) =
1

α
θ−1− 1

αψα(θ−
1
α ) and

ψα(θ) =
1

π

∞∑
n=0

(−1)n−1θ(−αn−1) Γ(αn+ 1)

n!
sin(nπα), θ ∈ (0,∞).

Mα(θ) is a probability density function on (0,∞) satisfying

Mα(θ) ≥ 0,

∫ ∞
0

Mα(θ) dθ = 1,

∫ ∞
0

θMα(θ) dθ =
1

Γ(1 + α)
.

Lemma 2.6 [10] For any fixed t > 0, {Kα(t)}t>0 and {Sα(t)}t>0 are linear operators, and for
any x ∈ D(A),

‖Kα(t)x‖X ≤
Mtα−1

Γ(α)
‖x‖X and ‖Sα(t)x‖X ≤M‖x‖X .
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Lemma 2.7 [10] {Kα(t)}t>0 and {Sα(t)}t>0 are strongly continuous, i.e., for any x ∈ D(A) and
0 < t1 < t2 ≤ b,

‖Kα(t2)x−Kα(t1)x‖X → 0 and ‖Sα(t2)x− Sα(t1)x‖X → 0,

as t2 → t1.

Lemma 2.8 [29] For any fixed t > 0, Pα(t) is a linear and bounded operator, and

‖Pα(t)x‖X ≤
M

Γ(α)
‖x‖X for any x ∈ D(A).

Lemma 2.9 [21] Assume that {T (t)}t>0 is compact. Then T (t) is continuous in the uniform
operator topology for t > 0, i.e., {T (t)}t>0 is equicontinuous.

3 Main Results

Our first result is based on Banach fixed point theorem. Here we use the following assumptions:

(H1)(i) there exist a constant α1 ∈ (0, α) and functions l1, l2, l3 ∈ L
1
α1 (J,R+) such that

‖f(t, x1, y1, z1)− f(t, x2, y2, z2)‖X ≤ l1(t)‖x1 − x2‖X + l2(t)‖y1 − y2‖X + l3(t)‖z1 − z2‖X ,

for all xi, yi, zi ∈ X , i = 1, 2 and t ∈ J .
(ii) there exist a constant α2 ∈ (0, α) and a function l ∈ L

1
α2 (J,R+) such that

‖f(t, x, y, z)‖X ≤ l(t), for all x, y, z ∈ X and t ∈ J.

(H2) for the function u : J ×X → X , there exists a constant L1 > 0 such that

‖u(t, x1)− u(t, x2)‖X ≤ L1‖x1 − x2‖X , ∀ t ∈ J and x1, x2 ∈ X.

(H3) there exist constants L2, L3 > 0 such that∥∥∥∫ t

0
[h(t, s, x)− h(t, s, y)] ds

∥∥∥
X

≤ L2‖x− y‖X ,∥∥∥∫ b

0
[g(t, s, x)− g(t, s, y)] ds

∥∥∥
X

≤ L3‖x− y‖X ,

for all x, y ∈ X .

Theorem 3.1 Assume that hypotheses (H1)–(H3) hold. Then there exists a unique integral solution
of (1.1) in C(J,D(A)) provided

ξ1 = (M + 1)L1 +
MM

Γ(α)

{
‖l1‖

L
1
α1

+ L2‖l2‖
L

1
α1

+ L3‖l3‖
L

1
α1

} bα−α1(
α−α1
1−α1

)1−α1
< 1.
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Proof. Define Q : C(J,D(A))→ C(J,D(A)) by

Qx(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))]

+ lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds, t ∈ J.

Then with the help of (H1)(ii), Hölder’s inequality and Bochner’s theorem, it can be shown that Q
is well-defined on C(J,D(A)).

Let x, y ∈ C(J,D(A)). Then for any t ∈ [0, b], we have

‖(Qx)(t)− (Qy)(t)‖X
≤ ‖u(t, x(t))− u(t, y(t))‖X + ‖Sα(t)[u(0, x(0))− u(0, y(0))]‖X

+ ‖ lim
λ→∞

∫ t

0
Kα(t− s)Bλ[f(s, x(s), (Hx)(s), (Gx)(s))− f(s, y(s), (Hy)(s), (Gy)(s))] ds‖X

≤ L1(1 +M)‖x− y‖C

+
MM

Γ(α)

∫ t

0
(t− s)α−1‖f(s, x(s), (Hx)(s), (Gx)(s))− f(s, y(s), (Hy)(s), (Gy)(s))] ds‖X

≤ L1(1 +M)‖x− y‖C

+
MM

Γ(α)

∫ t

0
(t− s)α−1

[
l1(s)‖x(s)− y(s)‖X + l2(s)‖(Hx)(s)− (Hy)(s)‖X

+ l3(s)‖(Gx)(s)− (Gy)(s)‖X
]

ds

≤ ξ1‖x− y‖C .

Therefore, by using Banach fixed point theorem, we conclude that there exists a unique integral
solution of our problem in C(J,D(A)). This completes the proof of the theorem. �

In order to establish the next result, we introduce the following additional assumptions:
(H4) T (t), t > 0 is compact.
(H5)(i) for each t ∈ [0, b], the function f(t, ·, ·, ·) : X ×X ×X → X is continuous and for each
(x, y, z) ∈ X ×X ×X , the function f(·, x, y, z) : J → X is strongly measurable.
(ii) there exists a function l ∈ L(J,R+) such that

Iα0+ l ∈ C(J,R+), lim
t→0+

Iα0+ l(t) = 0

and

‖f(t, x, y, z)‖X ≤ l(t) for all x, y, z ∈ X and for t ∈ [0, b].

(H6) u : J ×X → X is continuous and there exists L1 > 0 such that

‖u(t, x1)− u(t, x2)‖X ≤ L1‖x1 − x2‖X , for each t ∈ [0, b] and all x1, x2 ∈ X,

and let M0 = sup
t∈J
‖u(t, 0)‖X .

(H7)(i) for each (t, s) ∈ ∆, the function h(t, s, ·) : X → X is continuous, and for each x ∈ X , the
function h(·, ·, x) : ∆→ X is strongly measurable.
(ii) there exists a function mh(t, s) ∈ C(∆,R+) such that

‖h(t, s, x)‖X ≤ mh(t, s)‖x‖X , for (t, s) ∈ ∆, x ∈ X
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and H∗ = sup
t∈J

∫ t

0
mh(t, s) ds <∞.

(H8)(i) for each (t, s) ∈ J × J , the function g(t, s, ·) : X → X is continuous, and for each x ∈ X ,
the function g(·, ·, x) : J × J → X is strongly measurable.
(ii) There exists a function mg(t, s) ∈ C(J × J,R+) such that

‖g(t, s, x)‖X ≤ mg(t, s)‖x‖X , for (t, s) ∈ J × J, x ∈ X

and G∗ = sup
t∈J

∫ b

0
mg(t, s) ds <∞.

For our second existence result, we use Krasnoselskii’s fixed point theorem.

Theorem 3.2 Assume that hypotheses (H4)–(H8) hold. Then (1.1) has an integral solution in
C(J,D(A)) provided

(M + 1)L1 ≤
1

2
.

Proof. Choose r ≥ 2ξ2 where ξ2 = M0+M‖x0‖X +M‖u(0, x(0))‖X +MM
Γ(α)

∫ t
0 (t−s)α−1l(s) ds.

Define two operators P and Q on Br = {x ∈ C(J,D(A)) : ‖x‖C ≤ r} by

(Px)(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))],

(Qx)(t) = lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds.

Step I: To show that Px+Qy ∈ Br whenever x, y ∈ Br.

For any t ∈ [0, b], we have

‖(Px)(t)‖X ≤ ‖u(t, x(t))− u(t, 0)‖X +M0 +M‖x0 − u(0, x(0))‖X
≤ L1‖x‖C +M0 +M‖x0‖X +M‖u(0, x(0))‖X

and

‖(Qy)(t)‖X ≤
MM

Γ(α)

∫ t

0
(t− s)α−1‖f(s, x(s), (Hx)(s), (Gx)(s))‖X ds

≤ MM

Γ(α)

∫ t

0
(t− s)α−1l(s) ds.

Therefore,

‖(Px)(t) + (Qy)(t)‖X

≤ L1r +M0 +M‖x0‖X +M‖u(0, x(0))‖X +
MM

Γ(α)

∫ t

0
(t− s)α−1l(s) ds

≤ r,

which implies that Px+Qy ∈ Br.

Step II: To show that P is a contraction.
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It can be easily shown that P is a contraction.

Step III: To show that Q is compact and continuous. We show it in several steps.

(i) To show that {Qx | x ∈ Br} is equicontinuous:

Let x ∈ Br and 0 = t1 < t2 ≤ b. Then

‖(Qx)(t2)− (Qx)(t1)‖X ≤
MM

Γ(α)

∫ t2

0
(t2 − s)α−1‖f(s, x(s), (Hx)(s), (Gx)(s))‖X ds

≤MMIα0+ l(t2) −→ 0 as t2 → 0.

For 0 < t1 < t2 ≤ b, we have

‖(Qx)(t2)− (Qx)(t1)‖X

≤ MM

Γ(α)

∫ t2

t1

(t2 − s)α−1l(s) ds+
MM

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]l(s) ds

+M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

≤ MM

Γ(α)

∣∣∣ ∫ t2

0
(t2 − s)α−1l(s) ds−

∫ t1

0
(t1 − s)α−1l(s) ds

∣∣∣
+

2MM

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]l(s) ds

+M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

=: I1 + I2 + I3,

where

I1 =
MM

Γ(α)

∣∣∣ ∫ t2

0
(t2 − s)α−1l(s) ds−

∫ t1

0
(t1 − s)α−1l(s) ds

∣∣∣,
I2 =

2MM

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]l(s) ds,

I3 = M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds.

Since Iα0+ l ∈ C(J,R+), therefore it follows that I1 → 0 as t2 → t1.

For I2, we have

[(t1 − s)α−1 − (t2 − s)α−1]l(s) ≤ (t1 − s)α−1l(s)

and
∫ t1

0 (t1− s)α−1l(s) ds exists. Therefore, by using Lebesgue’s dominated convergence theorem,
we can conclude that I2 → 0 as t2 → t1.

Now,

I3 = M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds.



EXISTENCE AND UNIQUENESS OF INTEGRAL SOLUTIONS 51

For ε > 0 small enough, we have

I3 = M

∫ t1−ε

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

+M

∫ t1

t1−ε
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

≤M
∫ t1

0
(t1 − s)α−1l(s) ds sup

s∈[0,t1−ε]
‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

+
2MM

Γ(α)

∣∣∣ ∫ t1

0
(t1 − s)α−1l(s) ds−

∫ t1−ε

0
(t1 − ε− s)α−1l(s) ds

∣∣∣
+

2MM

Γ(α)

∫ t1−ε

0
[(t1 − ε− s)α−1 − (t1 − s)α−1]l(s) ds

= I31 + I32 + I33.

From (H4), it follows that I31 → 0 as t2 → t1. It can also be shown that both I32 and I33 tend to
zero as ε → 0 (applying similar arguments as shown for I1 → 0 and I2 → 0 as t2 → t1). Thus,
‖(Qx)(t2)− (Qx)(t1)‖X → 0 independent of x ∈ Br as t2 → t1, which implies that {Qx|x ∈ Br}
is equicontinuous.

(ii) To show that Q is continuous:

Let {xn}∞n=1 ⊂ Br such that xn → x(n→∞) in Br. Using (H5)(i), (H7), (H8) and
Lebesgue’s dominated convergence theorem, it follows that

f(s, xn(s), (Hxn)(s), (Gxn)(s)) −→f(s, x(s), (Hx)(s), (Gx)(s)) as n→∞.

Now for each t ∈ J , we have

(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X ≤ 2(t− s)α−1l(s)

and 2(t − s)α−1l(s) is integrable for s ∈ [0, t] and t ∈ [0, b]. Therefore, by Lebesgue’s dominated
convergence theorem, as n→∞, we obtain∫ t

0
(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X ds −→ 0.

For t ∈ [0, b],

‖(Qxn)(t)− (Qx)(t)‖X

≤ MM

Γ(α)

∫ t

0
(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X ds

−→ 0 as n→∞.

Therefore, Q is continuous.

(iii) To show that Q is uniformly bounded:

From the inequality

‖(Qy)(t)‖X ≤
MM

Γ(α)

∫ t

0
(t− s)α−1l(s) ds,
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it follows that Q is uniformly bounded.

To show that Q is compact:

Here we use Arzelà-Ascoli theorem. We are required to show that for any t ∈ [0, b],
{(Qx)(t)|x ∈ Br} is relatively compact in X . For t = 0, it is obviously true. Therefore, by
fixing t ∈ (0, b], and for ε ∈ (0, t), δ > 0 and x ∈ Br, we define an operator Qε,δ by

(Qε,δx)(t)

= lim
λ→∞

α

∫ t−ε

0

∫ ∞
δ
θ(t− s)α−1Mα(θ)T ((t− s)αθ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds

= αT (εαδ) lim
λ→∞

∫ t−ε

0

∫ ∞
δ
θ(t− s)α−1Mα(θ)T ((t− s)αθ − εαδ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds.

From the compactness of T (εαδ), (εαδ > 0), we can conclude that {(Qε,δx)(t)|x ∈ Br} is rela-
tively compact in X for all ε ∈ (0, t) and all δ > 0. Further, for any x ∈ Br, we obtain

‖(Qx)(t)− (Qε,δx)(t)‖X

≤ αMM

∫ t

0
(t− s)α−1l(s) ds

∫ δ

0
θMα(θ) dθ +

MM

Γ(α)

∫ t

t−ε
(t− s)α−1l(s) ds

−→ 0 as ε→ 0, δ → 0.

Therefore, {(Qx)(t)|x ∈ Br} is relatively compact in X for all t ∈ (0, b]. Consequently, by
Arzelà-Ascoli theorem, Q is compact.

Now, Krasnoselskii’s fixed point theorem implies that (1.1) has at least one integral solution on
C(J,D(A)). This completes the proof of the theorem. �

In order to establish our next result, we now assume the following additional hypotheses:
(H5)(iii) There exists a function l ∈ L∞(J,R+) such that

‖f(t, x, y, z)‖X ≤ l(t), for all x, y, z ∈ X and for t ∈ [0, b].

(H9) for the function u : J ×X → X , there exists a constant L1 > 0 such that

‖u(t1, x1)− u(t2, x2)‖X ≤ L1(|t1 − t2|+ ‖x1 − x2‖X ),

for all t1, t2 ∈ [0, b] and all x1, x2 ∈ X . Further, let M0 = sup
t∈J
‖u(t, 0)‖X .

The proof of the next result is based on Darbo-Sadovskii’s fixed point theorem.

Theorem 3.3 Suppose that (H4), (H5)(i), (H5)(iii), (H7)–(H9) are satisfied. Then (1.1) has an
integral solution in C(J,D(A)) provided

L1 < 1.

Proof. Let Br = {x ∈ C(J,D(A)) : ‖x‖C ≤ r} where r = ξ3
1−L1

, ξ3 = M0 + M‖x0‖X +

M‖u(0, x(0))‖X + MM
Γ(α+1)b

α‖l‖
L∞ . Define Q : C(J,D(A))→ C(J,D(A)) by

(Qx)(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))]

+ lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds

= (Q1x)(t) + (Q2x)(t),
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where

(Q1x)(t) = Sα(t)[x0 − u(0, x(0))] + lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds,

(Q2x)(t) = u(t, x(t)).

Step I: To show that Q : Br → Br.

It follows in a straightforward manner from the fact that

‖(Qx)(t)‖X ≤ L1‖x‖C +M0 +M‖x0‖X +M‖u(0, x(0))‖X +
MM

Γ(α+ 1)
bα‖l‖

L∞

≤ r.

Step II: To show that Q1 is completely continuous.

(i) Q1 is equicontinuous on Br:

Let x ∈ Br and 0 ≤ t1 < t2 ≤ b. Then

‖(Q1x)(t2)− (Q1x)(t1)‖X ≤ ‖Sα(t2)[x0 − u(0, x(0))]− Sα(t1)[x0 − u(0, x(0))]‖X

+ ‖ lim
λ→∞

∫ t2

0
Kα(t2 − s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds

− lim
λ→∞

∫ t1

0
Kα(t1 − s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds‖X

= I1 + I2,

where

I1 = ‖Sα(t2)[x0 − u(0, x(0))]− Sα(t1)[x0 − u(0, x(0))]‖X ,

I2 = ‖ lim
λ→∞

∫ t2

0
Kα(t2 − s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds

− lim
λ→∞

∫ t1

0
Kα(t1 − s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds‖X .

For I1, by Lemma 2.7, we have I1 → 0 as t2 → t1. For t1 = 0, 0 < t2 ≤ b,

I2 ≤
MM

Γ(α)

∫ t2

0
(t2 − s)α−1l(s) ds ≤ MM

Γ(α)
tα2 ‖l‖L∞ −→ 0 as t2 → 0.

For 0 < t1 < t2 ≤ b,

I2 ≤
MM

Γ(α)

∫ t2

t1

(t2 − s)α−1l(s) ds+
MM

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]l(s) ds

+M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

= I∗1 + I∗2 + I∗3 ,



54 Bandita Roy and Swaroop Nandan Bora, J. Nonl. Evol. Equ. Appl. 2021 (2021) 41–62

where

I∗1 =
MM

Γ(α)

∫ t2

t1

(t2 − s)α−1l(s) ds,

I∗2 =
MM

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]l(s) ds,

I∗3 = M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds.

We have

I∗1 ≤
MM

Γ(α)
‖l‖

L∞ (t2 − t1)α, i.e., I∗1 −→ 0 as t2 → t1

and

I∗2 ≤
MM

Γ(α)
‖l‖

L∞

(∫ t1

0
(t1 − s)α−1 ds−

∫ t1

0
(t2 − s)α−1 ds

)
≤ MM

Γ(α)
‖l‖

L∞ (t2 − t1)α,

i.e., I∗2 −→ 0 as t2 → t1.

Now since

I∗3 = M

∫ t1

0
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds,

therefore, for ε > 0 small enough, we have

I∗3 ≤M
∫ t1

0
(t1 − s)α−1l(s) ds sup

s∈[0,t1−ε]
‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

+M

∫ t1

t1−ε
(t1 − s)α−1‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

l(s) ds

≤M
∫ t1

0
(t1 − s)α−1l(s) ds sup

s∈[0,t1−ε]
‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

+
2MM

Γ(α)

∫ t1

t1−ε
(t1 − s)α−1l(s) ds

≤M
∫ t1

0
(t1 − s)α−1l(s) ds sup

s∈[0,t1−ε]
‖Pα(t2 − s)− Pα(t1 − s)‖B(X)

+
2MM

Γ(α+ 1)
‖l‖

L∞ ε
α

= I∗31 + I∗32.

From (H4), it follows that I∗31 → 0 as t2 → t1 and also I∗32 → 0 as ε → 0. Thus, ‖(Q1x)(t2) −
(Q1x)(t1)‖X → 0 as t2 → t1, independent of x ∈ Br, which implies that {Q1x|x ∈ Br} is
equicontinuous.

(ii) Q1 is continuous on Br:

Let {xn}∞n=1 ⊂ Br such that xn → x(n→∞) in Br. Using (H5)(i), (H7), (H8) and
Lebesgue’s dominated convergence theorem, it follows that

f(s, xn(s), (Hxn)(s), (Gxn)(s)) −→f(s, x(s), (Hx)(s), (Gx)(s)), as n→∞.



EXISTENCE AND UNIQUENESS OF INTEGRAL SOLUTIONS 55

Now for each t ∈ J , by using (H5)(ii), we have

(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X
≤ 2(t− s)α−1l(s) ∈ L1(J,R+), for s ∈ [0, t], t ∈ J.

Therefore, by Lebesgue’s dominated convergence theorem, as n→∞, we obtain

∫ t

0
(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X ds −→ 0.

Now, for each t ∈ [0, b], we have

‖(Q1xn)(t)− (Q1x)(t)‖X
≤ML1‖xn − x‖C

+
MM

Γ(α)

∫ t

0
(t− s)α−1‖f(s, xn(s), (Hxn)(s), (Gxn)(s))− f(s, x(s), (Hx)(s), (Gx)(s))‖X ds

−→ 0 as n→∞.

Therefore, Q1 is continuous.

Further, it is obvious that Q1 is uniformly bounded.

To show that for any t ∈ J , {Q1x(t)|x ∈ Br} is relatively compact in X:

For t = 0, it is obvious. Therefore, we fix t ∈ (0, b]. Since

Sα(t)[x0 − u(0, x(0))] =
1

Γ(1− α)

∫ t

0
(t− s)−αsα−1Pα(s)[x0 − u(0, x(0))] ds

=
1

Γ(1− α)

∫ t

0
(t− s)−αsα−1

∫ ∞
0
αθMα(θ)T (sαθ)[x0 − u(0, x(0))] dθds,

then for ε ∈ (0, t) and δ > 0, we define

(Qε,δ1 x)(t)

=
α

Γ(1− α)

∫ t−ε

0

∫ ∞
δ
θMα(θ)(t− s)−αsα−1T (sαθ)[x0 − u(0, x(0))] dθds

+ lim
λ→∞

α

∫ t−ε

0

∫ ∞
δ
θMα(θ)(t− s)α−1T ((t− s)αθ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds

=
α

Γ(1− α)

∫ t−ε

0

∫ ∞
δ
θMα(θ)(t− s)−αsα−1T (sαθ)[x0 − u(0, x(0))] dθds+ αT (εαδ)

× lim
λ→∞

∫ t−ε

0

∫ ∞
δ
θ(t− s)α−1Mα(θ)T ((t− s)αθ − εαδ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds.

From the compactness of T (εαδ), (εαδ > 0), we obtain that {(Qε,δ1 x)(t)|x ∈ Br} is relatively
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compact in X for all ε ∈ (0, t) and all δ > 0. Moreover, for any x ∈ Br, we have

‖(Q1x)(t)− (Qε,δ1 x)(t)‖X

≤ Mα

Γ(1− α)

∥∥∥∫ t

0
(t− s)−αsα−1

∫ δ

0
θMα(θ)[x0 − u(0, x(0))] dθds

∥∥∥
X

+
Mα

Γ(1− α)

∥∥∥∫ t

t−ε
(t− s)−αsα−1

∫ ∞
δ

θMα(θ)[x0 − u(0, x(0))] dθds
∥∥∥
X

+
∥∥∥ lim
λ→∞

α

∫ t

0

∫ δ

0
θ(t− s)α−1Mα(θ)T ((t− s)αθ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds

∥∥∥
X

+
∥∥∥ lim
λ→∞

α

∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1Mα(θ)T ((t− s)αθ)Bλf(s, x(s), (Hx)(s), (Gx)(s)) dθds
∥∥∥
X

≤ Mα

Γ(1− α)
B(α, 1− α)[‖x0‖X + ‖u(0, x(0))‖X ]

∫ δ

0
θMα(θ) dθ

+
M

Γ(1− α)Γ(α)
[‖x0‖X + ‖u(0, x(0))‖X ]

∫ t

t−ε
(t− s)−αsα−1 ds

+ αMM

∫ t

0

∫ δ

0
θ(t− s)α−1Mα(θ)l(s) dθds

+ αMM

∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1Mα(θ)l(s) dθds

≤ Mα

Γ(1− α)
B(α, 1− α)[‖x0‖X + ‖u(0, x(0))‖X ]

∫ δ

0
θMα(θ) dθ

+
M

Γ(1− α)Γ(α)
[‖x0‖X + ‖u(0, x(0))‖X ]

∫ t

t−ε
(t− s)−αsα−1 ds

+ αMM

∫ t

0
(t− s)α−1l(s) ds

∫ δ

0
θMα(θ) dθ

+ αMM

∫ t

t−ε
(t− s)α−1l(s) ds

∫ ∞
0

θMα(θ) dθ.

Therefore,

‖(Q1x)(t)− (Qε,δ1 x)(t)‖X ≤ J1 + J2 + J3 + J4.

Using the inequality
∫∞

0 θMα(θ) dθ = 1
Γ(1+α) , it is found that J1, J3 and J4 tend to 0 as ε, δ → 0.

Also, upon application of the absolute continuity of the Lebesgue integral, J2 tends to 0 as ε, δ → 0.
Therefore, there exist relatively compact sets arbitrarily close to the set {(Q1x)(t)|x ∈ Br}, t > 0
which implies that {(Q1x)(t)|x ∈ Br}, t > 0 is relatively compact. Consequently, {Q1x|x ∈ Br}
is a relatively compact set in X .

Step III: To show that Q is continuous on Br.

Proceeding similarly as in Step II, it can be shown that Q is continuous on Br.

Step IV: To show that Q2 is a contraction on Br.

For any x, y ∈ Br, we have

‖(Q2x)(t)− (Q2y)(t)‖X ≤ L1‖x(t)− y(t)‖X .
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Thus

‖Q2x−Q2y‖C ≤ L1‖x− y‖C ,

which implies that αc(Q2Br) ≤ L1αc(Br). Also, Q1Br is relatively compact in X which gives
αc(Q1Br) = 0. Therefore,

αc(QBr) ≤ αc(Q1Br) + αc(Q2Br) ≤ L1αc(Br).

As L1 < 1, Q is an α-contraction on Br. Hence, from Darbo-Sadovskii’s fixed point theorem, it
follows that Q has at least one fixed point on Br. This completes the proof of the theorem. �

Our next result for problem (1.1) is for the case where the associated C0-semigroup is not
compact. Here the following assumptions are required:

(H5)(iv) there exist a constant α1 ∈ (0, α) and a function l ∈ L
1
α1 (J,R+) such that

‖f(t, x, y, z)‖X ≤ l(t)(‖x‖X + ‖y‖X + ‖z‖X ), for all x, y, z ∈ X and for t ∈ [0, b],

(v) there exist l1, l2, l3 ∈ C(J,R+) such that

α(f(t,D1, D2, D3)) ≤ l1(t)α(D1) + l2(t)α(D2) + l3(t)α(D3)

for any bounded sets D1, D2, D3 ⊂ X and t ∈ J . Let l∗i = supt∈J |li(t)|, i = 1, 2, 3.
(H7)(iii) for any bounded set D ⊂ X , and (t, s) ∈ ∆, there exists a function m̃ : ∆ → R+ such
that

α(h(t, s,D)) ≤ m̃(t, s)α(D)

with m̃∗ = sup
t∈J

∫ t

0
m̃(t, s) ds <∞.

(H8)(iii) for any bounded set D ⊂ X , and (t, s) ∈ J × J , there exists a function ñ : J × J → R+

such that

α(g(t, s,D)) ≤ ñ(t, s)α(D)

with ñ∗ = sup
t∈J

∫ b

0
ñ(t, s) ds <∞.

(H10) for each t > 0, T (t) is equicontinuous.

Theorem 3.4 Assume that (H5)(i), (iv), (v), (H7)(i), (ii), (iii), (H8)(i), (ii), (iii), (H9) and (H10)
hold. Then (1.1) has an integral solution provided

ξ4 = L1 +
MM

Γ(α)
(1 +H∗ +G∗)‖l‖

L
1
α1

bα−α1

(α−α1
1−α1

)1−α1
< 1

and

2L1(1 +M) +
4MM

Γ(α+ 1)
bα(l∗1 + 2l∗2m̃

∗ + 2l∗3ñ
∗) < 1.
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Proof. Choose r = φ
1−ξ4 , where φ = M0 + M‖x0‖X + M‖u(0, x(0))‖X and let Br = {x ∈

C(J,D(A)) | ‖x‖C ≤ r}. Define Q : C(J,D(A))→ C(J,D(A)) by

(Qx)(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))]

+ lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds, t ∈ J.

Then proceeding similarly as in Theorem 3.3, it can be shown that Q : Br → Br is continuous as
well as equicontinuous. Now, it remains to show that Q : Br → Br is a condensing operator.

For all D ⊂ Br, Q(D) is bounded and equicontinuous. Hence, by Lemma 2.2, there exists a
countable set D0 = {xn}∞n=1 ⊂ D such that

αc(Q(D)) ≤ 2αc(Q(D0)). (3.1)

Since Q(D0) ⊂ Q(Br) is equicontinuous, so by using Lemma 2.3, we get

αc(Q(D0)) = max
t∈J

α(Q(D0)(t)). (3.2)

Now, let

(Qx)(t) = (Q1x)(t) + (Q2x)(t),

where

(Q1x)(t) = u(t, x(t)) + Sα(t)[x0 − u(0, x(0))],

(Q2x)(t) = lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, x(s), (Hx)(s), (Gx)(s)) ds.

For x, y ∈ D0, we have

‖Q1x−Q1y‖C ≤ L1(1 +M)‖x− y‖C .

Therefore, it follows that

αc(Q1(D0)) ≤ L1(1 +M)αc(D0).

Now, for t ∈ J , we get

α({Q2xn(t)}∞n=1)

= α
({

lim
λ→∞

∫ t

0
Kα(t− s)Bλf(s, xn(s), (Hxn)(s), (Gxn)(s)) ds

}∞
n=1

)
≤ 2MM

Γ(α)

∫ t

0
(t− s)α−1α({f(s, xn(s), (Hxn)(s), (Gxn)(s))}∞n=1) ds

≤ 2MM

Γ(α)

∫ t

0
(t− s)α−1

[
l1(s)α({xn(s)}∞n=1) + l2(s)α({Hxn(s)}∞n=1) + l3(s)α({Gxn(s)}∞n=1)

]
ds

≤ 2MM

Γ(α)
αc(D)

[ ∫ t

0
(t− s)α−1l1(s) ds+ 2m̃∗

∫ t

0
(t− s)α−1l2(s) ds+ 2ñ∗

∫ t

0
(t− s)α−1l3(s) ds

]
≤ 2MM

Γ(α+ 1)
αc(D)bα(l∗1 + 2l∗2m̃

∗ + 2l∗3ñ
∗).
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Therefore,

α(Q(D0)(t)) ≤ α(Q1(D0)(t)) + α(Q2(D0)(t))

≤
[
L1(1 +M) +

2MM

Γ(α+ 1)
bα(l∗1 + 2l∗2m̃

∗ + 2l∗3ñ
∗)
]
αc(D).

From equations (3.1) and (3.2), we have

αc(Q(D)) ≤ 2
[
L1(1 +M) +

2MM

Γ(α+ 1)
bα(l∗1 + 2l∗2m̃

∗ + 2l∗3ñ
∗)
]
αc(D)

< αc(D).

Thus Q : Br → Br is a condensing operator and therefore from Lemma 2.3, we conclude that Q
has a fixed point on Br. This completes the proof of the theorem. �

4 Examples

Consider the following fractional partial differential system:

CDα
0+ [x(t, y)− u(t, x(t, y))] =

∂2

∂y2
[x(t, y)− u(t, x(t, y))]

+ f
(
t, x(t, y),

∫ t

0
h(t, s, x(s, y)) ds,

∫ b

0
g(t, s, x(s, y)) ds

)
, t ∈ [0, b], y ∈ Ω = [0, π],

x(t, 0) = 0 = x(t, π), t ∈ [0, b],

x(0, y) = x0(y), y ∈ Ω,

where b > 0 is finite and x0 ∈ C(Ω,R) with x0(0) = 0 = x0(π).

Next, let X = C(Ω,R) and consider A : D(A) ⊂ X → X defined by

Aw =
∂2w

∂y2

with its domain of definition

D(A) =
{
w ∈ X :

∂2w

∂y2
∈ X and w = 0 on ∂Ω

}
.

Then,

D(A) = {w ∈ X : w = 0 on ∂Ω} 6= X.

Also, from [4], it is known that A satisfies Hille-Yosida condition with (0,∞) ⊂ ρ(A), ‖R(λ :
A)‖ ≤ λ−1 and M = 1 and generates a compact C0-semigroup {T (t)}t>0 on D(A) with M = 1.

Let us take

x(t)(y) = x(t, y), and

f(t, x(t), (Hx)(t), (Gx)(t))(y) = f
(
t, x(t, y),

∫ t

0
h(t, s, x(s, y)) ds,

∫ b

0
g(t, s, x(s, y)) ds

)
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for t ∈ [0, b], y ∈ Ω. Consequently, (1.1) is the abstract formulation of the above considered
problem.

For validation of Theorem 3.2, consider u(t, x(t, y)) = 1
5x(t, y). Then u satisfies (H6) with

L1 = 1
5 . Also, take

h(t, s, x(s, y)) = t sinx(s, y) and g(t, s, x(s, y)) = s sinx(s, y).

Then h and g satisfy (H7) and (H8), respectively, with H∗ = b2 and G∗ =
b2

2
. Consider

f
(
t, x(t, y),

∫ t

0
h(t, s, x(s, y)) ds,

∫ b

0
g(t, s, x(s, y)) ds

)
= t

1
2 cos

(
|x(t, y)|

1 + |x(t, y)|
+

∫ t

0
h(t, s, x(s, y)) ds+

∫ b

0
g(t, s, x(s, y)) ds

)
.

If we choose l(t) = t
1
2 , then f satisfies the assumptions in (H5). Thus all the conditions of Theorem

3.2 are fulfilled and therefore, we can confirm the existence of an integral solution.

Next, for Theorem 3.3, consider

f
(
t, x(t, y),

∫ t

0
h(t, s, x(s, y)) ds,

∫ b

0
g(t, s, x(s, y)) ds

)
= exp(−t) cos

(
|x(t, y)|

1 + |x(t, y)|
+

∫ t

0
h(t, s, x(s, y)) ds+

∫ b

0
g(t, s, x(s, y)) ds

)
.

Here, choose l(t) = exp(−t) and assuming u to be a suitable function satisfying (H9), Theorem
3.3 implies the existence of integral solution of this problem.

5 Conclusion

This article is concerned with the existence of integral solution of a class of neutral fractional
integro-differential equation of mixed type when the operator A is not dense. By using various
fixed point theorems, fractional calculus and measure of noncompactness, we obtain some suffi-
cient conditions which ensure the existence of integral solutions of the problem under consideration
when the associated C0-semigroup generated by the part of A in D(A) is compact or non-compact.
Under suitable assumptions, four theorems are proposed and proved. Two theorems are verified by
considering appropriate examples. These results are expected to enrich the analysis with regard to
solutions for mixed Volterra-Fredholm integro fractional differential equations.
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[20] G. M. Mophou, G. M. N’Guérékata, On integral solutions of some nonlocal fractional diffe-
rential equations with nondense domain, Nonlinear Analysis: Theory, Methods & Applica-
tions 71, no. 10 (2009), pp. 4668–4675.

[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer, New York, 1983.

[22] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[23] R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional stochastic diffe-
rential equations, Nonlinear Analysis: Theory, Methods & Applications 81 (2013), pp. 70–86.

[24] X.-B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential
equations with nonlocal conditions of order 1 < α < 2, Computers & Mathematics with
Applications 64, no. 6 (2012), pp. 2100–2110.

[25] M. Yang, Q.-R. Wang, Approximate controllability of Hilfer fractional differential inclusions
with nonlocal conditions, Mathematical Methods in the Applied Sciences 40, no. 4 (2017),
pp. 1126–1138.

[26] M. Yang, Q.-R. Wang, Existence of mild solutions for a class of Hilfer fractional evolu-
tion equations with nonlocal conditions, Fractional Calculus and Applied Analysis 20, no. 3
(2017), pp. 679–705.

[27] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Ana-
lysis. Real World Applications. 11, no. 5 (2010), pp. 4465–4475.

[28] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

[29] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Com-
puters & Mathematics with Applications 59, no. 3 (2010), pp. 1063–1077.

[30] Y. Zhou, L. Zhang, X. H. Shen, Existence of mild solutions for fractional evolution equations,
Journal of Integral Equations and Applications 25, no. 4 (2013), pp. 557–586.


	Introduction
	Preliminaries
	Main Results
	Examples
	Conclusion

