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Abstract. In this paper, two different classes of difference equations under rational expectations are
examined. The first one concerns the conditional expectational singular difference equations and the
second one is about the time-varying conditional expectational difference equations. Asymptotic
behaviors of the solutions of the latter are especially studied.

Keywords: Random sequence, singular difference equation, time-varying difference equation.

2010 Mathematics Subject Classification: Primary 39A10, 60G07; Secondary 34F05.

1 Introduction

In recent years, solutions of various kinds of difference equations have been considerably investigated
in lots of publications (see for instance [2, 3, 4, 10]) because of their significance and applications in
physics, mechanics, and mathematical biology. Conditional expectational difference equations have
received less studies about them.

This paper deals with the existence of solutions of different classes of conditional expectational
difference equations. The first type is of the form

AEt[X(t+ 1)] +BX(t) = g(t), t ∈ Z+, (1.1)

where A,B are N ×N square matrices satisfying detA = detB = 0 and g : Ω× Z+ → RN is a
bounded random function. The second type is of the form

Et[X(t+ 1)] = A(t)X(t) + g(t), t ∈ Z+, (1.2)
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where {A(t)}t∈Z+ is a family of N × N invertible random matrices and g : Ω × Z+ → RN is a
bounded random function.

Such conditional expectational difference equations arise typically in the context of rational
expectations models. Starting with the seminal paper by Blanchard and Kahn [5], an extensive
literature developed which analyzes the existence and nature of their solutions. The most influential
papers, at least for the present exposition, are Klein [8] and Sims [11], among others. Recently,
Neusser [9] developed a comprehension theory for rational expectations models with time-varying
(random) coefficients based on Lyapunov exponents defined as the asymptotic growth rates of
trajectories.

In this paper we review the analytical aspects: boundedness, stability, and asymptotic behavior
of equations (1.1)–(1.2). Our aim is twofold. First, we use Diagana and Pennequin [6] techniques to
study the existence of solutions of conditional expectational singular difference equations. Second,
we make use of dichotomy techniques to study the existence of solutions of time-varying conditional
expectational difference equations.

The rest of this paper is organized as follows. In Section 2, notations and definitions are
introduced. In Section 3, some stochastic nonsingular linear difference equations are discussed. In
Section 4, we investigate solutions to some conditional expectational singular difference equations.
Finally, the last section is devoted to the study of asymptotic behaviors of the solutions of time-varying
conditional expectational difference equations.

2 Preliminaries

In this section we review some basic concepts and results which will be useful to prove our main
results. To facilitate our task, we first introduce the notions needed in the sequel.

Let (RN , ‖·‖) be theN -dimensional Euclidean space and let (Ω,F ,P) be a complete probability
space. Throughout the rest of the paper, Z+ denotes the set of all positive integers. Define L1(Ω;RN )
to be the space of all RN -valued random variables V such that

E‖V ‖ :=

(∫
Ω
‖V (ω)‖ dP(ω)

)
<∞. (2.1)

It is then routine to check that L1(Ω;RN ) is a Banach space when it is equipped with its natural
norm ‖ · ‖1 defined by ‖V ‖1 := E‖V ‖ for each V ∈ L1(Ω,RN ).

Let X = {X(t)}t∈Z+ be a sequence of RN -valued random variables satisfying E‖X(t)‖ <∞
for each t ∈ Z+. Thus, interchangeably we can, and do, speak of such a sequence as a function,
which goes from Z+ into L1(Ω;RN ).

Definition 2.1 We say that a sequence X = {X(t)}t∈Z+ is bounded if there exists an M > 0 such
that E‖X(t)‖ ≤M for all t ∈ Z+.

Let UB(Z+; L1(Ω;RN )) denote the collection of all uniformly bounded L1(Ω;RN )-valued
random sequences X = {X(t)}t∈Z+ . It is then easy to check that the space UB(Z+; L1(Ω;RN ))
is a Banach space when it is equipped with the norm

‖X‖∞ = sup
t∈Z+

E‖X(t)‖.
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We now state the following composition result.

Lemma 2.2 Let F : Z+ × L1(Ω;RN )→ L1(Ω;RN ), (t, U) 7→ F (t, U), be bounded in mean in
t ∈ Z+ uniformly in U ∈ L1(Ω;RN ). Assume that there exists a function γ from Z+ into R+ such
that E‖F (t, U)−F (t, V )‖ ≤ γ(t)E‖U − V ‖ for all RN -valued random variables U, V with finite
expectation and t ∈ Z+, and that

F (t, 0) = 0 and
∞∑
s=1

γ(s) <∞.

Then, for any mean bounded random sequence X = {X(t)}t∈Z+ , the random sequence Y (t) =
F (t,X(t)) is bounded in mean.

Proof. The proof of Lemma 2.2 is straightforward, and hence is omitted. �

Let {A(t)}t∈Z+ be a family of N ×N invertible random matrices and consider the following
conditional expectational first-order linear difference equation of type (1.2). Its corresponding
homogeneous equation is given by

Et[X(t+ 1)] = A(t)X(t), t ∈ Z+. (2.2)

The sequence {A(t), g(t)} of random variables is defined on the same probability space (Ω,F ,P).
Define Ft = σ{(X(s),A(s), g(s)) : s ≤ t} to be the smallest σ-algebra such that
(X(s),A(s), g(s)) is measurable for all s ≤ t. Then, Et[ . ] = E[ . |Ft] denotes the conditional
expectation with respect to Ft.

Definition 2.3 The matrix U(t, a) which satisfies equation (2.2) and U(a, a) = I is called principal
fundamental matrix. We denote U(t, a) by U(t)U−1(a).

Theorem 2.4 The following holds

U(t)U−1(a) =



t−1∏
s=a

A(a+ t− 1− s) for all a ≤ t ∈ Z+,

a−1∏
s=t

A−1(s) for all a ≥ t ∈ Z+.

(2.3)

Proof. The proof of the theorem can be seen in Argawal [1] for instance. �

Definition 2.5 Let U(t) be the principal fundamental matrix of equation (2.2). Equation (2.2) is
said to possess a discrete exponential dichotomy if there exists a projection P , which commutes with
U(t), and M > 0 and β ∈ (0, 1) such that

‖U(t)PU−1(s)‖ ≤Mβt−s, t ≤ s,

‖U(t)[I − P ]U−1(s)‖ ≤Mβs−t, s ≤ t.
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Definition 2.6 A zero solution X(t) of equation (1.2) is stable if for any positive integer t0 and any
ε > 0 there is a δ(t0, ε) > 0 such that 0 < E‖X(t0)‖ < δ(t0, ε) implies E‖X(t)‖ < ε for all
t ≥ t0.

Definition 2.7 A zero solution X(t) of equation (1.2) is asymptotically stable if for any positive
integer t0 and any ε > 0 there is a δ(t0, ε) > 0 such that 0 < E‖X(t0)‖ < δ(t0, ε) implies
E‖X(t)‖ → 0 as t→∞.

Definition 2.8 Let Y (t) be a solution of equation (1.2). Then, Y (t) is called conditionally stable if
there exists a sequence {Yn(t)} of solutions of equation (1.2) which converges to Y (t) in L1(Ω,RN )
uniformly in t ∈ Z+.

3 Solutions to some stochastic nonsingular linear difference equations

In this section we study the existence of solutions of the following systems of conditional expecta-
tional linear first-order stochastic difference equations of type

Et[X(t+ 1)] = MX(t) + g(t), (3.1)

where M is a N × N square matrix, X(t + 1) is non-predeterminined at time t (that is, it is
nondegenerate with respect to information available up to and including time t) and g : Z+ → CN
is a mean bounded random sequence. In equation (3.1), Et[ . ] = E[ . |Ft] denotes the conditional
expectation, where Ft = σ{(X(l), g(l)) : l ≤ t} is the smallest σ-algebra such that (X(l), g(l)) is
measurable for all l ≤ t. We assume that g and X(0) are independent. This assumption together with
equation (3.1) imply that g is independent of the sequence {X(t)}t∈Z+ . For simplicity we assume
that stochastic process {X(t), t ∈ Z+} is mean stationary, that is, E[X(t)] = E[X(t+ r)] for all r.

We begin with the scalar case M = λ and denote by S1 the unit circle on the complex plane, that
is, S1 = {z ∈ C : |z| = 1}. We can now solve equation (3.1) forward noting that

Et+jX(t+ j + 1) = λX(t+ j) + g(t+ j),

Et[Et+j [X(t+ j + 1)]] = λEt[X(t+ j)] + Et[g(t+ j)],

Et[X(t+ j + 1)] = λEt[X(t+ j)] + Et[g(t+ j)],

where the last line follows from the Law of Iterated Expectations. Then, equation (3.1) implies that

X(t) = λ−1Et[X(t+ 1)]− λ−1[g(t)]

= λ−1
[
λ−1Et[X(t+ 2)]− λ−1Et[g(t+ 1)]− λ−1[g(t)]

]
...

= λ−lEt[X(t+ l)]−
l−1∑
j=0

λ−(j+1)Et[g(t+ j)].

Letting l→∞, the last line becomes

X(t) = lim
l→∞

λ−lEt[X(t+ l)]−
∞∑
j=0

λ−(j+1)Et[g(t+ j)]. (3.2)
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If |λ| > 1, for a bounded {X(t)} we have

lim
l→∞

λ−lEt[X(t+ l)] = 0.

Hence,

X(t) = −
∞∑
j=0

λ−(j+1)Et[g(t+ j)].

Remark 3.1 Let us assume that |λ| < 1. Clearly, liml→∞ λ
−lEt[X(t + l)] is not finite, so that

equation (3.2) does not help us pin down a unique bounded solution. On the other hand, note that
the set of solutions of equation (3.1) can also be described by

X(t) = λX(t− 1) + g(t− 1) + ν(t), (3.3)

where {ν(t)}, the sequence of expectational errors, is an arbitrary stochastic process that satisfies
Et[ν(t + 1)] = 0 for all t. Hence, all solutions defined by equation (3.3) for a bounded random
sequence satisfying Et[ν(t+ 1)] = 0 for all k, are bounded solutions. That is, if |λ| < 1, one has an
infinity of bounded solutions.

Theorem 3.2 Suppose that M := λ with |λ| > 1. If g : Z+ → CN is bounded in mean, then there
is a mean bounded solution of equation (3.1) given by

X̄(t) = −Et

[ ∞∑
l=t

λt−l−1g(l)

]
.

In addition, E‖X̄(t)‖ → 0 as t→∞.

Proof. Define Y (t) = λ−t and since |λ| > 1, we deduce from Remark 3.1 that

∞∑
l=0

|Y (l)| = |λ|
|λ| − 1

.

It follows that X is bounded in mean. Next, we check that X is a solution of equation (3.1). We have

X(t+ 1) = −

[ ∞∑
l=t+1

λt−lEt[g(l)]

]
= −

∞∑
l=t

λt−lEt[g(l)] + g(t)

= −λ
∞∑
l=t

λt−l−1Et[g(l)] + g(t).

Taking Et[ . ] on both sides, we obtain

Et[X(t+ 1)] = λX(t) + g(t).

Moreover,

E‖X̄(t)‖ ≤ E

[ ∞∑
l=t

|λ|t−l−1Et‖g(l)‖

]
≤ C

∞∑
l=t

|λ|t−l−1,

where C = supr∈Z+
E‖g(r)‖. Consequently, limt→∞E‖X̄(t)‖ = 0. �
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As a consequence of the previous theorem, we obtain the following result in case of a nonsingular
random matrix M .

Theorem 3.3 Suppose M is a constant N ×N nonsingular matrix with eigenvalues λ outside S1.
Then, if g is bounded in mean, there is a mean bounded solution of equation (3.1).

Proof. Our proof follows closely that of [2]. Since we are in stochastic case and for the sake of
clarity, we reproduce it here with slight modifications. It is well-known that there exists a nonsingular
random matrix S such that S−1MS = B is an upper triangular matrix. Setting X(t) = SY (t),
equation (3.1) becomes

Et[Y (t+ 1)] = BY (t) + S−1g(t), t ∈ Z+. (3.4)

Obviously, equation (3.4) is of the same type as equation (3.1). One can easily see that S−1g(t) is
bounded in mean. The general case of an arbitrary random matrix M can now be reduced to the
scalar case. Indeed, the last equation of (3.4) is of the form

Et[Z(t+ 1)] = λZ(t) + d(t), t ∈ Z+, (3.5)

where λ is an element of C with |λ| > 1 and {d(l)}l∈Z+ is a mean bounded random sequence.
Hence, all we need to show is that any solution Z(t) of equation (3.5) is bounded in mean. But this
is the content of Theorem 3.2. It then implies that the N th component YN (t) of the solution Y (t) of
equation (3.4) is bounded in mean. Then, substituting YN (t) in the (N − 1)th equation of (3.4) we
obtain again an equation of the form (3.5) for YN−1(t); and so on. The proof is complete. �

4 Solutions to some conditional expectational singular difference
equations

4.1 Linear case

We are first interested in the case when the forcing term f does not depend on x. Namely, we study
the existence of bounded solutions of equation (1.1). In equation (1.1), Et[ . ] = E[ . | Ft] represents
the conditional expectation where Ft = σ{(X(l), g(l)) : l ≤ t} is the smallest σ-algebra such that
(X(l), g(l)) is measurable for all l ≤ t. We assume that g is independent of X(0). This assumption
together with equation (1.1) imply that g is independent of the sequence {X(t)}t∈Z.

Set ρ(A,B) = {λ ∈ C : λA+B is invertible}. In order to proceed, we adopt the following
assumption.

(H.1) (Saddle-point property): The number of generalized eigenvalues with modulus larger than 1
equals the number of non-predetermined variables.

The condition (H.1) means that there are as many non-predetermined variables as there are eigenval-
ues outside S1. For more details, see Blanchard and Kahn [5].
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We now state one of our main results.

Theorem 4.1 Suppose that S1 ⊂ ρ(A,B) and that (H.1) holds. Then, equation (1.1) has a unique
mean bounded solution.

Proof. We borrow the Diagana–Pennequin [6] proof and adapt it in stochastic case. We set

Â = (A+B)−1A, B̂ = (A+B)−1B and ĝ(t) = (A+B)−1g(t).

We can easily show that equation (1.1) is equivalent to

ÂEt[X(t+ 1)] + B̂X(t) = ĝ(t), t ∈ Z+. (4.1)

Using the identity Â+ B̂ = IN , we deduce that ÂB̂ = B̂Â. Consequently, one can find common
basis of trigonalization for Â and B̂. Thus, there exists an invertible matrix T such that

Â = T−1

[
A1 0
0 A2

]
T

and

B̂ = T−1

[
B1 0
0 B2

]
T,

where A1, B2 are invertible and A2, B1 are nilpotent.

Noting Ai +Bi is the identity matrix of the same size as Ai and letting

TX(t) =

[
W (t)
V (t)

]
and

T ĝ(t) =

[
α(t)
β(t)

]
,

where {α(t)} and {β(t)} are bounded random sequences, equation (4.1) can be written as follows{
A1Et[W (t+ 1)] +B1W (t) = α(t),

A2Et[V (t+ 1)] +B2V (t) = β(t).
(4.2)

Using the fact that both A1 and B2 are invertible, one can show that equation (4.1) is equivalent to{
Et[W (t+ 1)] +A−1

1 B1W (t) = A−1
1 α(t),

B−1
2 A2Et[V (t+ 1)] + V (t) = B−1

2 β(t).
(4.3)

Now, let us focus the first equations appearing in (4.3), that is,

Et[W (t+ 1)]− (−A−1
1 B1)W (t) = A−1

1 α(t), t ∈ Z+. (4.4)

Clearly, {A−1
1 α(l)}l∈Z+ is bounded in mean. We shall now prove that −A−1

1 B1 has no eigenvalue
that belongs to S1. From that we will deduce that equation (4.4) has a unique bounded solution. For
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that, let us consider a non-zero eigenvalue λ of −A−1
1 B1. Let U 6= 0. We have −A−1

1 B1U = λU .
Consequently,

(λA+B)U = 0,

from which we deduce that

(λÂ+ B̂)T−1

[
U
0

]
= 0.

Since

T−1

[
U
0

]
6= 0,

it follows that λÂ+ B̂ is not invertible and so is the case for λA+B. With the assumptions made,
this proves that |λ| 6= 1.

Using assumption (H.1) and Remark 3.1, we can assume that |λ| > 1 and conclude that there
exists a unique bounded solution {W (t)}t∈Z+ to the first equation of (4.3).

For the second equation appearing in (4.3), setting Y (t) = V (t+ 1) it becomes

B−1
2 A2Et[Y (t)] + Y (t− 1) = B−1

2 β(t). (4.5)

Using similar arguments as before, we can prove that equation (4.5) has a unique bounded solu-
tion {Y (t)}t∈Z+ , so the second equation appearing in (4.3) has also a unique bounded solution
{V (t)}t∈Z+ . Since equations (4.3) and (1.1) are equivalent, we obtain the existence and uniqueness
of a bounded solution of equation (1.1). �

4.2 Nonlinear case

We now study the existence of bounded solutions to the following equation

AEt[X(t+ 1)] +BX(t) = h(t,X(t)), t ∈ Z+, (4.6)

where A,B are N ×N square matrices satisfying detA = detB = 0 and h : Z+ ×RN → RN is a
bounded sequence. Our setting requires the following assumption.

(H.2) The function (t, w) 7→ h(t, w) is bounded in mean in t ∈ Z+ uniformly in w in O, where
O = {y ∈ RN : ‖y‖ ≤ η} for a fixed η > 0. In addition, we assume that there exists a
constant L > 0 such that

E‖h(t, U)− h(t, V )‖ ≤ L ·E‖U − V ‖RN for all U, V ∈ L1(Ω,O), t ∈ Z+.

Theorem 4.2 Suppose that S1 ⊂ ρ(A,B) and that (H.1) and (H.2) hold. Then, for sufficiently small
L, equation (4.6) has a unique bounded solution.

Proof. Letting g(t) = h(t,X(t)) and using Lemma 2.2 together with similar arguments presented
above, one can easily obtain the existence and uniqueness of a bounded solution to equation (4.6). �
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4.3 Application to some conditional expectational second-order singular difference
equations

In this section, we study the existence of solutions to second-order conditional expectational differ-
ence equation of type

AEt[X(t+ 1)] +BX(t) + CX(t− 1) = h(t,X(t)), t ∈ Z+, (4.7)

where A,B,C are N × N square matrices satisfying detA = detB = detC = 0 and h : Z ×
L1(Ω,RN )→ L1(Ω,RN ) is mean bounded in the first variable uniformly in the second variable. In
equation (4.7), Et[ . ] = E[ . | Ft], where Ft = σ{(X(l), h(l, .)) : l ≤ t} is the smallest σ-algebra
such that (X(l), h(l, .)) is measurable for all l ≤ t.

In order to study the existence of bounded solution to equation (4.7), we make extensive use of
the results obtained in the previous section. For that, we rewrite equation (4.7) as follows

LEt[W (t+ 1)] +MW (t) = H(t,W (t)), t ∈ Z+, (4.8)

where

L =

[
A 0
0 I

]
, M =

[
B C
−I 0

]
, H =

[
h
0

]
and W (t) =

[
X(t)

X(t− 1)

]
with 0 and I being the N ×N zero and identity matrices.

Lemma 4.3 λL+M is invertible if and only if λ2A+ λB + C is invertible.

Proof. The 2N ×N square matrix λL+M is given by

λL+M =

[
λA+B C
−I λ

]
.

Consequently, solving

(λL+M)

[
U
V

]
=

[
X
Y

]
yields (λA + B)U + CV = X and −U + λV = Y . If λ2A + λB + C is invertible, then from
U = λV − Y it follows that (λ2A+ λB + C)V = X + (λA+B)Y which yields

V = [λ2A+ λB + C]−1(X + (λA+B)Y ),

U = λ
{

[λ2A+ λB + C]−1(X + (λA+B)Y )
}
− Y.

The latter implies that λL+M is invertible.

The converse can be proven using similar arguments as before, and hence is omitted. �

Set ρ(A,B,C) =
{
λ ∈ C : λ2A+ λB + C is invertible

}
. Using Lemma 4.3 and Theorem 4.2,

we obtain the following result.

Theorem 4.4 Suppose that S1 ⊂ ρ(A,B,C) and that (H.1) and (H.2) hold. Then, for sufficiently
small L, equation (4.7) has a unique bounded solution.
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5 Asymptotic behavior of some time-varying conditional expecta-
tional difference equations

5.1 Time-varying conditional expectational first order difference equations

We begin with the following lemma which plays an important role in the sequel.

Lemma 5.1 Let a be a positive integer, P be a projection (i.e., P 2 = P ), and U(t) be an N ×N
invertible matrix defined for all t ≥ a+ 1. Assume that there exists a constant K > 1 such that

t−1∑
s=a

‖U(t)PU−1(s)‖ ≤ K for all t ≥ a+ 1.

Then, there exists a constant K1 such that

‖U(t)P‖ ≤ K‖U(a+ 1)‖
(
K − 1

K

)t−a−1

for all t ≥ a+ 1. (5.1)

Moreover, we have limt→∞E‖U(t)P‖ = 0.

Proof. See Agarwal [1] or Schinas [10]. �

For conditional expectational linear difference equation, we have the following theorem.

Theorem 5.2 Suppose that the conditional expectational difference equation (2.2) corresponding to
equation (1.2) has a regular discrete dichotomy and that g : Z+ → RN is bounded in mean. Then,
equation (1.2) has a mean bounded solution which is given by

X̄(t) =

t−1∑
j=−∞

U(t)PU−1(j + 1)g(j)

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)g(j)

]
,

(5.2)

where U(t)PU−1(j) = 0 for j > t and g(j) = 0 for j < 0.

Proof. We first show that X̄(t) defined by (5.2) is a solution of equation (1.2). For that, let
U(t)U−1(s) be the fundamental matrix of (2.2). Then,

Et[X̄(t+ 1)]−A(t)X̄(t) =

t∑
j=−∞

U(t+ 1)PU−1(j + 1)g(j)]

−Et

[ ∞∑
j=t+1

U(t+ 1)[I − P ]U−1(j + 1)g(j)

]

−A(t)

t−1∑
j=−∞

U(t)PU−1(j + 1)g(j)
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+A(t)Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)g(j)

]
.

Now, using the fact that A(t)U(t)U−1(j + 1) = U(t+ 1)U−1(j + 1), we can write

Et[X(t+ 1)]−A(t)X(t) =

t∑
j=−∞

U(t+ 1)PU−1(j + 1)g(j)

−Et

[ ∞∑
j=t+1

U(t+ 1)[I − P ]U−1(j + 1)g(j)

]

−
t−1∑

j=−∞
U(t+ 1)PU−1(j + 1)g(j)

+ Et

[ ∞∑
j=t

U(t+ 1)[I − P ]U−1(j + 1)g(j)

]

=
t−1∑

j=−∞
U(t+ 1)PU−1(j + 1)g(j)

+ U(t+ 1)PU−1(j + 1)g(t)

−Et

[ ∞∑
j=t

U(t+ 1)[I − P ]U−1(j + 1)g(j)

]
+ Et

[
U(t+ 1)[I − P ]U−1(t+ 1)g(j)

]
−

t−1∑
j=−∞

U(t+ 1)PU−1(j + 1)g(j)

+ Et

[ ∞∑
j=t

U(t+ 1)[I − P ]U−1(j + 1)g(j)

]
= Pg(j) + Et

[
[1− P ]g(j)

]
.

Taking the conditional expectation Et[ . ] on both sides, we conclude that

Et[X(t+ 1)]−A(t)X(t) =
[
Et[P ] + Et[1− P ]

]
g(t) = g(t).

It remains to prove that X̄ is bounded in mean. By the discrete dichotomy assumption and bounded-
ness of g, we have

E‖X̄(t)‖ ≤
t−1∑

r=−∞
E‖U(t)PU−1(r + 1)g(r)‖+

∞∑
r=t

E‖U(t)[I − P ]U−1(r + 1)g(r)‖

≤

{
t−1∑

r=−∞
Mβt−r−1 +

∞∑
r=t

Mβt−r−1

}
sup
s∈Z+

E‖g(s)‖ = M
1 + β

1− β
‖g‖∞.

Thus, the desired result will follow. �
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In order to state similar results for the nonlinear case, we set O =
{
y ∈ RN : ‖y‖ ≤ η

}
for

a fixed η > 0 and take a function F : Z+ × L1(Ω,O) → L1(Ω,RN ), (t,X) 7→ F (t,X), with
F (t, 0) = 0. Let us consider the following conditional expectational nonlinear difference equation

Et[X(t+ 1)] = A(t)X(t) + F (t,X(t)), t ∈ Z+, (5.3)

where F satisfies the following conditions.

(H.3) There exists a function γ from Z+ to R+ such that

E‖F (t, U)− F (t, V )‖ ≤ γ(t) E‖U − V ‖

for all O-valued random variables U , V with finite expectation and t ∈ Z+. In addition, we
assume that

∞∑
s=1

γ(s) <∞.

Theorem 5.3 Suppose that the conditional expectational difference equation (2.2) corresponding to
equation (5.3) has a regular discrete dichotomy with positive constants M > 0 and β ∈ (0, 1) and
that F satisfies (H.3). Then, equation (5.3) has a unique mean bounded solution which is given by

X̄(t) =
t−1∑

j=−∞
U(t)PU−1(j + 1)F (j,X(j))

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)F (j,X(j))

]
,

(5.4)

where U(t)PU−1(j) = 0 for j > t and F (j, .) = 0 for j < 0 provided that

MΓ(β + 1)

1− β
< 1 with Γ = sup

t∈Z+

γ(t) .

In addition, E‖X̄(t)‖ → 0 as t→∞.

Proof. Consider the Banach space UB(Z+;L1(Ω,RN )) with the supremum norm. Setting
g(r) := F (r, ϕ(r)), it follows from Theorem 2.2 that if ϕ ∈ UB(Z+;L1(Ω,RN )), then
g ∈ UB(Z+;L1(Ω,RN )). Now, define Λ: UB(Z+;L1(Ω,RN )) → UB(Z+;L1(Ω,RN )) to be
the nonlinear operator given by

(Λϕ)(t) :=

t−1∑
j=−∞

U(t)PU−1(j + 1)F (j, ϕ(j))

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)F (j, ϕ(j))

]
.
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Using the proof of Theorem 5.2, one can easily show that Λ(UB(Z+;L1(Ω,RN ))) ⊂
UB(Z+;L1(Ω,RN )), and hence Λ is well-defined. Moreover, for ϕ, ψ ∈ UB(Z+;L1(Ω,B))
having the same property as X defined in equation (5.3), we have

E‖(Λϕ)(t)− (Λψ)(t)‖

= E

∥∥∥∥∥
t−1∑

j=−∞
U(t)PU−1(j + 1)[F (j, ϕ(j))− F (j, ψ(j))]

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)[F (j, ϕ(j))− F (j, ψ(j))]

]∥∥∥∥∥
≤

t−1∑
j=−∞

Mβt−j−1γ(j) E
∥∥ϕ(j)− ψ(j)

∥∥
+

∞∑
j=t

Mβj+1−tγ(j) E
∥∥ϕ(j)− ψ(j)

∥∥
≤

{
t−1∑

j=−∞
Mβt−j−1 +

∞∑
j=t

Mβj+1−t

}
Γ sup
r∈Z+

E‖ϕ(r)− ψ(r)‖

≤ ΓML
β + 1

1− β
‖ϕ− ψ‖∞,

where Γ = supr∈Z+
|γ(r)|. Thus,

‖Λϕ− Λψ‖∞ ≤ ΓM
β + 1

1− β
‖ϕ− ψ‖∞ .

This means that Λ is a contraction provided that MΓ(β+1)
1−β < 1. Using the Banach fixed point theorem,

we deduce that Λ has a unique fixed point X̄ , which is the unique bounded solution of equation (5.3).

We now prove that limt→∞E‖X̄(t)‖ = 0. To this end, fix a positive integer t0. For t ≥ t0,
using independence we have

E‖X̄(t)‖ ≤ E‖U(t)P‖E‖U−1(t0)‖E‖X(t0)‖

+
t−1∑
j=t0

E‖U(t)PU−1(j + 1)‖ γ(j)E‖X(j)‖

+

∞∑
j=t

E‖U(t)[I − P ]U−1(j + 1)‖ γ(j)E‖X(j)‖.

Now, fix ε > 0 and choose t1 large enough so that Mη
∑∞

j=t γ(j) < ε for any t ≥ t1. Also, since
equation (2.2) has a regular discrete dichotomy, we know that

E‖U(t)P U−1(j + 1)‖ ≤M

and
E‖U(t)[I − P ] U−1(j + 1)‖ ≤M.
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We can then write

E‖X̄(t)‖ ≤ E‖U(t)P‖
{
E‖U−1(t0)‖E‖X(t0)‖

+ η

t1−1∑
j=t0

E‖U−1(j + 1)‖ γ(j)

}
+ 2ηM

∞∑
j=t1

γ(j).

Hence,

E‖X̄(t)‖ ≤ E‖U(t)P‖
{
E‖U−1(t0)‖E‖X(t0)‖

+ η

t1−1∑
j=t0

E‖U−1(j + 1)‖ γ(j)

}
+ 2ε

for any t ≥ t1. Letting ε→ 0, we get

E‖X̄(t)‖ ≤ E‖U(t)P‖
{
E‖U−1(t0)‖E‖X(t0)‖

+ η

t1−1∑
j=t0

E‖U−1(j + 1)‖ γ(j)

}

for any t ≥ t1. Now, using Lemma 5.1, we conclude that limt→∞E‖X̄(t)‖ = 0. �

To study the conditional stability, let us consider the following conditional expectational differ-
ence equations

Et[Z(t+ 1)] = A(t)Z(t) + fn(t), t ∈ Z+, Z(t0) = z0, (5.5)

and
Et[Y (t+ 1)] = A(t)Y (t) + F (t, Y (t)) + fn(t), t ∈ Z+, Y (t0) = y0, (5.6)

where F satisfies (H.3) and fn is a non-random function: t 7→ fn(t) from Z+ to RN satisfying

(H.4) fn(0) = 0 and fn(t)→ 0 as n→∞ uniformly in t.

Theorem 5.4 Suppose that the conditional expectational difference equation (2.2) corresponding to
equation (5.6) has a regular discrete dichotomy with positive constants M > 0 and β ∈ (0, 1) and
that F and fn satisfy (H.3) and (H.4), respectively. Let X̄(t) be a solution of equation (5.3) and let
X̄n(t) be a solution of equation (5.6). Assume that E‖X̄n(0)− X̄(0)‖ → 0 as n→∞. Then, the
following holds

(a) X̄n(t) can be uniquely decomposed as follows: X̄n(t) = X̄(t) + Z̄n(t), where Z̄n(t) is a
solution of equation (5.5),

(b) E‖X̄n(t)− X̄(t)‖ → 0 as n→∞ uniformly in t,

(c) E‖X̄n(t)− X̄(t)‖ → 0 as t→∞ for all n.
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Proof. We first show that X̄n(t)− X̄(t) is a solution of (5.5). We have

X̄n(t+ 1)− X̄(t+ 1)

= U(t+ 1)PXn(t0) +

t∑
j=t0+1

U(t+ 1)PU−1(j + 1)[F (j,X(j)) + fn(j)]

−Et

[ ∞∑
j=t+1

U(t+ 1)[I − P ]U−1(j + 1)[F (j,X(j)) + fn(j)]

]

− U(t+ 1)PXn(t0) +
t∑

j=t0+1

U(t+ 1)PU−1(j + 1)[F (j,X(j))]

+ Et

[ ∞∑
j=t+1

U(t+ 1)[I − P ]U−1(j + 1)F (j,X(j))

]

= U(t+ 1)P [Xn(t0)−X(t0)] +
t∑

j=t0+1

U(t+ 1)PU−1(j + 1)fn(j)

−Et

[ ∞∑
j=t+1

U(t+ 1)[I − P ]U−1(j + 1)fn(j)

]

= A(t)

{
U(t)P [Xn(t0)−X(t0)] +

t∑
j=t0+1

U(t)PU−1(j + 1)fn(j)

−Et

[ ∞∑
j=t+1

U(t)[I − P ]U−1(j + 1)fn(j)

]}

= A(t)

{
U(t)P [Xn(t0)−X(t0)] +

t−1∑
j=t0+1

U(t)PU−1(j + 1)fn(j)

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)fn(j)

]}
+ U(t+ 1)PU−1(t+ 1)fn(j) + Et

[
U(t+ 1)[I − P ]U−1(t+ 1)fn(j)

]
= A(t)[Xn(t)−X(t)] +

[
P + Et[I − P ]

]
fn(t).

Taking the conditional expectation Et[ . ] on both sides, we conclude that

Et[X̄n(t+ 1)− X̄(t+ 1)] = A(t)[X̄n(t)− X̄(t)] + fn(t).

Moreover, keeping in mind that X̄(t) is a solution of equation (5.3) and that Z̄n(t) is a solution of
equation (5.5), Xn(t) can be decomposed as follows

X̄n(t) = U(t)P [Xn(t0)−X(t0)] +
t−1∑

j=t0+1

U(t)PU−1(j + 1)fn(j)

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)fn(j)

]
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+ U(t)PX(t0) +
t−1∑

j=t0+1

U(t)PU−1(j + 1)F (j,X(j))

−Et

[ ∞∑
j=t

U(t)[I − P ]U−1(j + 1)F (j,X(j))

]
.

Now, let Z be the set of solutions of equation (5.5) and X be the set of solutions of equation (5.3).

Letting Zn(t0) = Xn(t0) −X(t0), we obtain X̄n(t) = Z̄n(t) + X̄(t), and since Z ∩ X = ∅,
this decomposition is unique.

Next, let us compute limn→∞E‖X̄n(t)− X̄(t)‖. Using the independence and the property of
conditional expectation, we have

E‖X̄n(t)− X̄(t)‖
≤ E‖U(t)P‖E‖Xn(t0)−X(t0)‖

+
t−1∑

j=t0+1

E‖U(t)PU−1(j + 1)‖ ‖fn(j)‖

+

∞∑
j=t

E‖U(t)[I − P ]U−1(j + 1)‖ ‖fn(j)‖

≤ E‖U(t)P‖E‖Xn(t0)−X(t0)‖+
t−1∑

j=t0+1

Mβt−1−j ‖fn(j)‖

+
∞∑
j=t

Mβj+1−t ‖fn(j)‖.

This implies that limn→∞E‖X̄n(t)− X̄(t)‖ = 0 for all t ≥ t0.

We now prove that limt→∞E‖X̄n(t)− X̄(t)‖ = 0 for each n. To this end, fix ε > 0 and choose
B > 0 such that ‖fn(t)‖ ≤ B for all n and t, and pick t1 large enough so that

∑∞
j=t1

βj+1−t1 < ε
2B .

Then, for any t ≥ t1 > t0, we have

E‖X̄n(t)− X̄(t)‖ ≤ E‖U(t)P‖

[
E‖Xn(t0)−X(t0)‖+

t1−1∑
j=t0+1

E‖U−1(j + 1)‖ ‖fn(j)‖

]

+

∞∑
j=t1

E‖U(t)PU−1(j + 1)‖ ‖fn(j)‖

+

∞∑
j=t1

E‖U(t)[I − P ]U−1(j + 1)‖ ‖fn(j)‖

≤ E‖U(t)P‖

[
2η +

t1−1∑
j=t0+1

E‖U−1(j + 1)‖ ‖fn(j)‖

]

+ 2
∞∑
j=t1

Mβj−t1 ‖fn(j)‖

≤ E‖U(t)P‖

[
2η +

t1−1∑
j=t0+1

E‖U−1(j + 1)‖B

]
+ ε.
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Hence, limt→∞E‖X̄n(t)− X̄(t)‖ = 0 for each n. We can conclude that the assertion of the above
theorem shows us the conditional stability of the solution X̄ in the sense that if X̄(t) is a solution of
equation (5.3), there exists a sequence X̄n(t) of solutions of equation (5.6) such that

lim
n→∞

E‖X̄n(t)− X̄(t)‖ = 0

uniformly in t ≥ t0. In addition, limt→∞E‖X̄n(t)− X̄(t)‖ = 0 for each n. �

Example 5.5 In this example, the Euclidean space R2 is equipped with the norm ‖ . ‖, which is
defined for all u = (u1, u2) ∈ R2 by ‖u‖ = |u1|+ |u2|.

Let α be a random variable taking its values in (0, 1) and let ξt = (ξ1
t , ξ

2
t ), t ∈ Z+, be a

sequence of random vectors in R2 such that supt∈Z+
E‖ξt‖ ≤ L for some L > 0. Set

A(t) = α

[
βt 0
0 β−t

]
and define F : Z+ × L1(Ω,O)→ R2 by

F (t,X) =

[
βt ξ1

t tan−1X1

βt ξ2
t tan−1X2

]
,

where O = {y ∈ R2 : ‖y‖ ≤ η} for any η > 0 fixed and X = (X1, X2)T . Then, if the projection P
is given by

P =

[
1 0
0 0

]
,

we have

‖U(t) P U−1(s)‖ ≤ β
(t−s)(t+s−1)

2 ≤ βt−s for all t ≥ s,

‖U(t) [I − P ] U−1(s)‖ ≤ β
(s−t)(t+s−1)

2 ≤ βt−s for all s ≥ t,
E‖F (t,X)− F (t, Y )‖ ≤ L βt E‖X − Y ‖ = γ(t)E‖X − Y ‖,

and
∞∑
s=1

βt =
β

1− β
<∞.

Therefore, all hypotheses of Theorems 5.3 and 5.4 are satisfied.

5.2 Time-varying conditional expectational second order difference equations

Let B = Rk be the k-dimensional space of real numbers equipped with Euclidean topology. This
subsection deals with time-varying conditional expectational second-order difference equations on
Rk of the form

Et[X(t+ 1)] +A1(t)X(t) +A0(t)X(t− 1) = f(t,X(t)), t ∈ Z+, (5.7)

where A0(t) and A1(t) are invertible k × k random matrices, and the forcing term f : Z+ ×
Rk → Rk is bounded in mean and satisfies (H.3). Here Et[ . ] = E[ . | Gt] with Gt =
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σ
{(
X(s), A0(s), A1(s), F (s, .)

)
: s ≤ t

}
. We assume that A0(t) and A1(t) are independent

and independent of X(0). This assumption together with equation (5.7) imply that the sequence
(A0(t), A1(t)) is independent of the sequence {X(t)}t∈Z+ .

We now study the existence and uniqueness of solutions of equation (5.7). For that, the main idea
consists in rewriting equation (5.7) as a conditional expectational first-order difference equations on
(Rk)2 = Rk × Rk. Indeed, setting Z(t) := (X(t), X(t− 1))T , where the symbol T stands for the
transpose operation and if I denotes the identity matrix of Rk, then equation (5.7) can be rewritten in
(Rk)2 in the following form

Et[Z(t+ 1)] = A(t)Z(t) + F (t, Z(t)), t ∈ Z+, (5.8)

and its corresponding homogeneous equation

Et[Z(t+ 1)] = A(t)Z(t), t ∈ Z+, (5.9)

where A(t) is the family of time-dependent sequence matrices defined by

A(t) =

(
−A1(t) −A0(t)
I 0

)
and the function F appearing in equation (5.8) is defined by F (t, Z) = (f(t,X), 0)T .

Corollary 5.6 Under assumption (H.3), if the conditional expectational difference equation (5.9)
corresponding to equation (5.8) has a discrete regular dichotomy with dichotomy constants M > 0
and β ∈ (0, 1), then equation (5.7) has a unique bounded solution X̄ provided that

MΓ(β + 1)

1− β
< 1 with Γ = sup

t∈Z+

γ(t).

In addition, E‖X̄(t)‖ → 0 as t→∞.

Proof. Following the same lines as in the proof of Theorem 5.3 it follows that equation (5.8) has a
unique bounded solution given by the mapping

t 7→ Z(t) := (X(t), X(t− 1))T ,

provided that
MΓ(β + 1)

1− β
< 1 with Γ = sup

t∈Z+

γ(t).

In addition, E‖Z̄(t)‖ → 0 as t→∞. Therefore, equation (5.7) has a unique bounded solution X̄(t).
�

Example 5.7 To illustrate Corollary 5.6, we study the existence of solutions to some conditional
expectational second-order difference equation on R of the form

Et[X(t+ 1)] + b(t)X(t) + a(t)X(t− 1) = f(t,X(t)), t ∈ Z+, (5.10)

where f satisfies (H.3). We also assume that the sequences a = {a(t), t ∈ Z+} and b = {b(t), t ∈
Z+} of real random variables appearing in equation (5.10) are independent and independent of
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X(0). This assumption together with equation (5.10) imply that (a, b) is independent of the sequence
X = {X(t)}t∈Z+ .

Setting Z(t) := (X(t), X(t− 1))T , note that equation (5.10) can be rewritten in R2 as follows

Et[Z(t+ 1)] = A(t)Z(t) + F (t, Z(t)), t ∈ Z+, (5.11)

and its corresponding homogeneous equation

Et[Z(t+ 1)] = A(t)Z(t), t ∈ Z+, (5.12)

where A(t) is the family of time-dependent random matrices defined by

A(t) =

(
−b(t) −a(t)

1 0

)
and the function F appearing in equation (5.11) is defined by F (t, Z) = (f(t,X), 0)T .

We adopt the following assumptions.

(H.5) There exist a0, b0 > 0 such that inft∈Z+ a(t) = a0 and inft∈Z+ b(t) = b0, almost surely.

(H.6) b(t) 6= 2
√
a(t) for all t ∈ Z+, almost surely.

Next, we show that equation (5.12) has a regular discrete dichotomy. For that, let us compute the
eigenvalues of A(t). We have

Pt(λ) = det(A(t)− λIR2) = λ2 + b(t)λ+ a(t)

for all t ∈ Z+. Then, the characteristic equation is given by

λ2 + b(t)λ+ a(t) = 0

with discriminant given by D(t) = b2(t) − 4a(t) for all t ∈ Z+. Clearly, (H.6) yields either
D(t) > 0 or D(t) < 0 for all t ∈ Z+. Under assumptions (H.5) and (H.6), we have two cases.

1. If D(t) > 0 for all t ∈ Z+, then the eigenvalues of A(t) are given by

λ1(t) =
−b(t) +

√
b2(t)− 4a(t)

2
and λ1(t) =

−b(t)−
√
b2(t)− 4a(t)

2
.

Moreover, it can be shown easily that λ1(t), λ2(t) < 0 for all t ∈ Z+.

2. If D(t) < 0 for all t ∈ Z+, then the eigenvalues of A(t) are given by

λ1(t) =
−b(t) + i

√
4a(t)− b2(t)

2
and λ1(t) =

−b(t)− i
√

4a(t)− b2(t)

2
.

Moreover, it can be shown easily thatReλ1(t),Reλ2(t) < 0 for all t ∈ Z+.
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In view of the above, it follows that

U(t)U−1(s) =

t−1∏
r=s

A(r) = A(s)A(s+ 1)A(s+ 2) . . .A(t− 2)A(t− 1)

for all (t, s) ∈ T , where T = {(t, s) ∈ Z+ × Z+ : t ≥ s}, has exponential dichotomy which yields
(see Henry [7]) that equation (5.12) has discrete dichotomy.

We can now conclude that under assumptions (H.3)–(H.6), all hypotheses of Corollary 5.6 are
satisfied.

Remark 5.8 The solution process to equation (1.2) has a nice predictable compensator. One may
use Burkholder–Davis Gundy inequalities for martingale obtained as a difference between the
solution and the compensator to analyze the asymptotic behavior.
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