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1 Introduction

In the last years one may see a strong development of the theory of differential equations and
inclusions of fractional order ([5, 13, 15, 18] etc.). The main reason is that fractional differential
equations are very useful tools in order to model many physical phenomena. In the fractional calculus
there are several fractional derivatives. From them, the fractional derivative introduced by Caputo in
[7] allows to use Cauchy conditions which have physical meaning.

Recently, a new fractional order derivative with regular kernel has been introduced by Caputo
and Fabrizio [8]. The Caputo–Fabrizio operator is useful for modelling several classes of problems
with the dynamics having the exponential decay law. This new definition is able to describe better
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heterogeneousness, systems with different scales with memory effects, the wave movement on
surface of shallow water, the heat transfer model, mass-spring-damper model etc. ([1, 2, 17, 20]).
Another good property of this new definition is that using Laplace transform of the fractional
derivative, the fractional differential equation turns into a classical differential equation of integer
order. Properties of this definition have been studied in e.g. [3, 8, 9, 19]. Some recent qualitative
results for fractional differential equations defined by Caputo–Fabrizio fractional derivative were
studied in e.g. [21, 22, 23].

In the present paper we study an initial value problem associated to a differential inclusion
defined by Caputo–Fabrizio operator. More exactly, we consider the following problem

Dσ
CFx(t) ∈ F (t, x(t)) a.e. in [0, T ], x(0) = x0, x

′(0) = x1, (1.1)

where F (., .) : [0, T ]×R→ P(R) is a set-valued map, x0, x1 ∈ R, Dσ
CF denotes Caputo–Fabrizio’s

fractional derivative of order σ ∈ (1, 2) and P(R) is the family of all non-empty subsets of R.

Our goal is to present several qualitative results for solutions of problem (1.1). First, we show
that Filippov’s ideas [14] can be suitably adapted in order to obtain the existence of solutions for
problem (1.1). We recall that for a differential inclusion defined by a Lipschitz continuous set-valued
map with non-convex values, Filippov’s theorem [14] consists in proving the existence of a solution
starting from a given almost solution. Moreover, the result provides an estimate between the starting
almost solution and the solution of the differential inclusion. Secondly, we prove the existence
of a continuous selection of the set of solutions of the considered problem. The key tool in this
approach is a result of Bressan and Colombo concerning the existence of continuous selections of
lower semicontinuous multifunctions with decomposable values. Finally, using a result from [16]
concerning the arcwise connectedness of the fixed point set of a class of set-valued contractions, we
obtain the arcwise connectedness of the solution set of problem (1.1).

The common point of all these results is that the set-valued map that defines the problem has
non-convex values. Instead of convexity, our assumption is that F is Lipschitz continuous in the state
variable. We also note that even if similar results exist in the literature for other problems defined
by fractional differential inclusions (e.g., [10, 11, 12] etc.), our results are new in the framework of
Caputo–Fabrizio fractional differential inclusions.

The paper is organized as follows. In Section 2 we recall some preliminary facts that we need in
the sequel. Section 3 is devoted to the Filippov type existence theorem. In Section 3 we obtain a
continuous version of the result from the previous section and in Section 4 we obtain the arcwise
connectedness of the solution set.

2 Preliminaries

Let us denote by I the interval [0, T ], T > 0, and let X be a real separable Banach space with the
norm |.| and with the corresponding metric d(., .). As usual, we denote by C(I,X) the Banach space
of all continuous functions x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by
L1(I,X) the Banach space of all (Bochner) integrable functions x(.) : I → X endowed with the
norm |x(.)|1 =

∫ T
0 |x(t)| dt.

Denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I , by P(X) the family
of all non-empty subsets of X and by B(X) the family of all Borel subsets of X . If A ⊂ I , then
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χA(.) : I → {0, 1} denotes the characteristic function of A. For any subset A ⊂ X we denote its
closure by A.

A subset D ⊂ L1(I,X) is said to be decomposable if for any u(·), v(·) ∈ D and any subset
A ∈ L(I) one has uχA + vχB ∈ D, where B = I \ A. We denote by D(I,X) the family of all
decomposable closed subsets of L1(I,X).

Recall that the Pompeiu–Hausdorff distance of the closed subsets A,B ⊂ X is defined by the
formula dH(A,B) = max{d∗(A,B), d∗(B,A)}, where d∗(A,B) = sup{d(a,B) : a ∈ A} and
d(x,B) = infy∈B d(x, y).

The next definitions were introduced in [8].

Definition 2.1

(a) The Caputo–Fabrizio integral of order α ∈ (0, 1) of a function f ∈ ACloc([0,∞),R) (which
means that f ′(.) is integrable on [0, T ] for any T > 0) is defined by

IαCF f(t) = (1− α)f(t) + α

∫ t

0
f(s) ds.

(b) The Caputo–Fabrizio fractional derivative of order α ∈ (0, 1) of f is defined for t ≥ 0 by

Dα
CF f(t) =

1

1− α

∫ t

0
e−

α
1−α (t−s)f ′(s) ds.

(c) The Caputo–Fabrizio fractional derivative of order σ = α + n of f , where α ∈ (0, 1) and
n ∈ N, is defined by

Dσ
CF f(t) = Dα

CF (Dn
CF f(t)).

In particular, if σ = α+ 1, then α ∈ (0, 1) and Dσ
CF f(t) = 1

1−α
∫ t
0 e
− α

1−α (t−s)f ′′(s) ds.

Definition 2.2 A mapping x(.) ∈ AC(I,R) is called a solution of problem (1.1) if there exists
a function f(.) ∈ L1(I,R) such that f(t) ∈ F (t, x(t)) a.e. (I), Dα

CFx(t) = f(t), t ∈ I , and
x(0) = x0, x′(0) = x1.

We shall use the following notation for the solution sets of (1.1):

S(x0, x1) = {x(.) : x(.) is a solution of (1.1)}.

The next result is proved in [22] (Theorem 3.4 and Remark 3.5).

Lemma 2.3 For σ = α+ 1, where α ∈ (0, 1), and f(.) ∈ L1(I,R) the initial value problem

Dσ
CFx(t) = f(t), x(0) = x0, x

′(0) = x1,

has a unique solution given by

x(t) = x0 + x1t+ (1− α)

∫ t

0
f(s) ds+ α

∫ t

0
(t− s)f(s) ds. (2.1)

Remark 2.4 If we define G(t, s) = (1− α) + α(t− s), then the solution in (2.1) may be written as
x(t) = x0+x1t+

∫ t
0 G(t, s)f(s) ds. Moreover, for any s, t ∈ I we have |G(t, s)| ≤ (1−α)+αT =:

M .
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3 An existence result

First we recall a selection result established in [4] which is a version of the celebrated Kuratowski
and Ryll–Nardzewski selection theorem.

Lemma 3.1 Let X be a separable Banach space, B be the closed unit ball in X , H : I → P(X) be
a set-valued map with non-empty closed values and g : I → X , L : I → R+ be measurable functions.
If H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e. (I), then the set-valued map t 7→ H(t) ∩ (g(t) + L(t)B) has a
measurable selection.

In the sequel we assume the following conditions on F .

Hypothesis H1

(i) F : I × R→ P(R) has non-empty closed values and F (., x) is measurable for every x ∈ R.

(ii) There exists L ∈ L1(I,R) such that for almost all t ∈ I , F (t, .) is L(t)-Lipschitz continuous
in the sense that dH(F (t, x), F (t, y)) ≤ L(t)|x− y| for all x, y ∈ R.

Theorem 3.2 Assume that hypothesis H1 is satisfied and let y(.) : I → R be such that there exists
q(.) ∈ L1(I,R) with d(Dσ

CF y(t), F (t, y(t))) ≤ q(t) a.e. (I) and y(0) = y0, y′(0) = y1. Then,
there exists a solution x(.) : I → R of problem (1.1) satisfying for all t ∈ I the following estimate

|x(t)− y(t)| ≤
(
|x0 − y0|+ t|x1 − y1|+M |q|1

)
eM

∫ t
0 L(s) ds.

Proof. The set-valued map t 7→ F (t, y(t)) is measurable with closed values and the hypothesis that
d(Dσ

CF y(t), F (t, y(t))) ≤ q(t) a.e. (I) is equivalent to F (t, y(t)) ∩ {Dσ
CF y(t) + q(t)[−1, 1]} 6= ∅

a.e. (I). It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈ F (t, y(t)) a.e.
(I) such that

|f1(t)−Dσ
CF y(t)| ≤ q(t) a.e. (I). (3.1)

Define x1(t) = x0 + x1t+
∫ t
0 G(t, s)f1(s) ds. One has

|x1(t)− y(t)| =
∣∣∣∣x0 + x1t− y0 − y1t+

∫ t

0
G(t, s)(f1(s)−Dσ

CF y(s)) ds

∣∣∣∣
≤ |x0 + x1t− y0 − y1t|+

∫ t

0
|G(t, s)|q(s) ds

≤ |x0 − y0|+ t|x1 − y1|+M |q|1.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R),
where n ≥ 1, with the following properties:

xn(t) = x0 + x1t+

∫ t

0
G(t, s)fn(s) ds, t ∈ I, (3.2)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.3)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.4)
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If this construction is realized, then from (3.3)–(3.4) for almost all t ∈ I we have

|xn+1(t)− xn(t)| ≤
∫ t

0
|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1

≤M
∫ t

0
L(t1)|xn(t1)− xn−1(t1)|dt1

≤M
∫ t

0
L(t1)

∫ t1

0
|G(t1, t2)|.|fn(t2)− fn−1(t2)| dt2 dt1

≤Mn

∫ t

0
L(t1)

∫ t1

0
L(t2) . . .

∫ tn−1

0
L(tn)|x1(tn)− y(tn)| dtn

≤
(
M
∫ t
0 L(s) ds

)n
n!

(
|x0 − y0|+ t|x1 − y1|+M |q|1

)
.

Therefore, {xn}n∈N is a Cauchy sequence in the Banach space C(I,R), and hence it converges
uniformly to some x ∈ C(I,R). Therefore, by (3.4), for almost all t ∈ I the sequence {fn(t)}n∈N
is Cauchy in R. Let f be the pointwise limit of fn.

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ |x0 − y0|+ t|x1 − y1|+M |q|1

+

n−1∑
i=1

(
M
∫ t
0 L(s) ds

)i
i!

(
|x0 − y0|+ t|x1 − y1|+M |q|1

)
≤
(
|x0 − y0|+ t|x1 − y1|+M |q|1

)
eM

∫ t
0 L(s) ds.

(3.5)

On the other hand, from (3.1), (3.4) and (3.5) for almost all t ∈ I we obtain

|fn(t)−Dσ
CF y(t)| ≤

n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)−Dσ
CF y(t)|

≤ L(t)
(
|x0 − y0|+ t|x1 − y1|+M |q|1

)
eM

∫ t
0 L(s) ds + q(t).

Hence, the sequence fn is integrably bounded, and therefore f ∈ L1(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit in (3.2), (3.3) we deduce
that x is a solution of (1.1). Finally, passing to the limit in (3.5) we obtain the desired estimate on x.

It remains to construct the sequences xn, fn with the properties described in (3.2)–(3.4). The
construction will be done by induction. Since the first step is already realized, assume that for some
N ≥ 1 we already constructed xn ∈ C(I,R) and fn ∈ L1(I,R), n = 1, 2, . . . , N , satisfying (3.2),
(3.4) for n = 1, 2, . . . , N and (3.3) for n = 1, 2, . . . , N − 1. The set-valued map t 7→ F (t, xN (t))
is measurable. Moreover, the map t 7→ L(t)|xN (t) − xN−1(t)| is measurable. By the Lipschitz
continuity of F (t, .) for almost all t ∈ I we have

F (t, xN (t)) ∩
{
fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]

}
6= ∅.

From Lemma 3.1 there exists a measurable selection fN+1(.) of F (., xN (.)) such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).
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We define xN+1 as in (3.2) with n = N + 1. Thus, fN+1 satisfies (3.3) and (3.4) and the proof is
complete. 2

The assumptions in Theorem 3.2 are satisfied with y = 0, q = L, and therefore we obtain the
following consequence of Theorem 3.2.

Corollary 3.3 Assume that hypothesis H1 is satisfied and d(0, F (t, 0)) ≤ L(t) a.e. (I). Then, there
exists a solution x(.) : I → R of problem (1.1) satisfying for all t ∈ I the estimate

|x(t)| ≤
(
|x0|+ t|x1|+M |q|1

)
eM

∫ t
0 L(s) ds.

4 A continuous selection of the solution set

In what follows (S, d) is a separable metric space and X is a real separable Banach space. We recall
that a set-valued map G(·) : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed
subset C ⊂ X , the set {s ∈ S : G(s) ⊂ C} is closed. The proof of the next two lemmas may be
found in [6].

Lemma 4.1 Let F ∗(., .) : I × S → P(X) be a closed-valued L(I)⊗ B(S) measurable set-valued
map such that F ∗(t, .) is l.s.c. for any t ∈ I . Then, the set-valued map G(.) : S → D(I,X)
defined by

G(s) = {v ∈ L1(I,X) : v(t) ∈ F ∗(t, s) a.e. (I)}
is l.s.c. with non-empty closed values if and only if there exists a continuous mapping p(.) : S →
L1(I,X) such that for every s ∈ S we have d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I).

Lemma 4.2 Let G(.) : S → D(I,X) be a l.s.c. set-valued map with closed decomposable values
and let φ(.) : S → L1(I,X), ψ(.) : S → L1(I,R) be continuous such that the set-valued map
H(.) : S → D(I,X) defined by

H(s) = cl{v ∈ G(s) : |v(t)− φ(s)(t)| < ψ(s)(t) a.e. (I)}

has non-empty values. Then, H has a continuous selection, i.e., there exists a continuous mapping
h : S → L1(I,X) such that h(s) ∈ H(s) for every s ∈ S.

Hypothesis H2

(i) S is a separable metric space and a(.), b(.) : S → R, c(.) : S → (0,∞) are continuous
mappings.

(ii) There exists continuous mappings y(.) : S → AC(I,R) and p(.) : S → R such that

d(D(y(s))σCF (t), F (t, y(s)(t)) ≤ p(s)(t) a.e. (I), s ∈ S.

Let us introduce the following notation that will be needed in the sequel; set

ξ(s)(t) = MeMm(t)
[
tc(s) + |a(s)− y(s)(0)|+ T |b(s)− (y(s))′(0)|

]
+

∫ t

0
p(s)(u)eM(m(t)−m(u)) du
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and

m(t) =

∫ t

0
L(s) ds.

Theorem 4.3 Assume that hypotheses H1 and H2 are satisfied. Then, there exist a continuous
mapping x(.) : S → C(I,R) such that for any s ∈ S, x(s)(.) is a solution of the problem

Dσ
CF z(t) ∈ F (t, z(t)), x(0) = a(s), x′(0) = b(s)

and
|x(s)(t)− y(s)(t)| ≤ ξ(s)(t), (t, s) ∈ I × S.

Proof. For n ≥ 0 let us denote εn(s) = c(s)n+1
n+2 , and let d(s) = |a(s) − y(s)(0)| + T |b(s) −

(y(s))′(0)|. Moreover, for n ≥ 1 set

pn(s)(t) = Mn

[∫ t

0
p(s)(u)

(m(t)−m(u))n−1

(n− 1)!
du+

(m(t))n−1

(n− 1)!
tεn(s)

]
+Mn−1d(s).

Set also x0(s)(t) = y(s)(t) and f0(s)(t) = g(s)(t), where s ∈ S.

We consider the set-valued maps G0(.), H0(.) defined, respectively, by

G0(s) = {v ∈ L1(I,R) : v(t) ∈ F (t, y(s)(t)) a.e.(I)},

H0(s) = cl{v ∈ G0(s) : |v(t)− g(s)(t)| < p(s)(t) + ε0(s)}.

Since d(g(s)(t), F (t, y(s)(t))) ≤ p(s)(t) < p(s)(t) + ε0(s), according to Lemma 3.1, the set H0(s)
is not-empty. Set F ∗0 (t, s) = F (t, y(s)(t)) and note that d(0, F ∗0 (t, s)) ≤ |g(s)(t)| + p(s)(t) =
p∗(s)(t) and that p∗(.) : S → L1(I,R) is continuous. Applying now Lemmas 4.1 and 4.2 we obtain
the existence of a continuous selection f0 of H0, i.e. such that

f0(s)(t) ∈ F (t, y(s)(t)) a.e. (I), s ∈ S,

|f0(s)(t)− g(s)(t)| ≤ p0(s)(t) = p(s)(t) + ε0(s), s ∈ S, t ∈ I.

We define x1(s)(t) = a(s) + tb(s) +
∫ t
0 G(t, u)f0(s)(u) du. One has

|x1(s)(t)− x0(s)(t)|

≤ |a(s)− y(s)(0)|+ T |b(s)− (y(s))′(0)|+M

∫ t

0
|f0(s)(u)− g(s)(u)| du

≤ d(s) +M

∫ t

0
(p(s)(u) + ε0(s)) du = p1(s)(t).

We construct two sequences of approximations fn(.) : S → L1(I,R) and xn(.) : S → C(I,R) with
the following properties:

(a) fn(.) : S → L1(I,R) and xn(.) : S → C(I,R) are continuous,

(b) fn(s)(t) ∈ F (t, xn(s)(t)) a.e. (I), s ∈ S,

(c) |fn(s)(t)− fn−1(s)(t)| ≤ L(t)pn(s)(t) a.e. (I), s ∈ S,
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(d) xn+1(s)(t) = a(s) + tb(s) +
∫ t
0 G(t, u)fn(s)(u) du for all t ∈ I, s ∈ S.

Suppose we have already constructed fi(.), xi(.), i = 1, . . . , n, satisfying (a)–(c) and define xn+1(.)
as in (d). From (c) and (d) one has

|xn+1(s)(t)− xn(s)(t)| ≤M
∫ t

0
|fn(s)(u)− fn−1(s)(u)| du

≤M
∫ t

0
L(u)pn(s)(u) du

< pn+1(s)(t).

(4.1)

Consider the following set-valued maps, defined for any s ∈ S,

Gn+1(s) = {v ∈ L1(I,R) : v(t) ∈ F (t, xn+1(s)(t)) a.e. (I)},
Hn+1(s) = cl{v ∈ Gn+1(s) : |v(t)− fn(s)(t)| < L(t)pn(s)(t) a.e. (I)}.

To prove that Hn+1(s) is non-empty we note first that the real function

t 7→ rn(s)(t) = c(s)
Mn+1tL(t)(m(t))n

(n+ 2)(n+ 3)n!

is measurable and strictly positive for any s. One has d(fn(s)(t), F (t, xn+1(s)(t))) ≤
L(t)|xn(s)(t) − xn+1(s)(t)| ≤ L(t)pn(s)(t) − rn(s)(t), and therefore according to Lemma 3.1
there exists v(.) ∈ L1(I,R) such that v(t) ∈ F (t, xn+1(s)(t)) a.e. (I) and

|v(t)− fn(s)(t)| < d(fn(s)(t), F (t, xn+1(s)(t))) + rn(s)(t).

Hence, Hn+1(s) is not empty. Set F ∗n+1(t, s) = F (t, xn+1(s)(t)) and note that we may write
d(0, F ∗n+1(t, s)) ≤ |fn(s)(t)|+ L(t)pn+1(s)(t) = p∗n+1(s)(t) a.e. (I) and p∗n+1(.) : S → L1(I,R)
is continuous. By Lemmas 4.1 and 4.2 there exists a continuous map fn+1(.) : S → L1(I,R) such
that for any s ∈ S,

fn+1(s)(t) ∈ F (t, xn+1(s)(t)) a.e. (I),

|fn+1(s)(t)− fn(s)(t)| ≤ L(t)pn+1(s)(t) a.e. (I).

From (4.1) and (d) we obtain

|xn+1(s)(.)− xn(s)(.)|C ≤M |fn+1(s)(.)− fn(s)(.)|1

≤ (Mm(T ))n

n!
(M |p(s)(.)|1 +MTc(s) + d(s)).

(4.2)

Therefore, fn(s)(.), xn(s)(.) are Cauchy sequences in the Banach space L1(I,R) and C(I,R),
respectively. Let f(.) : S → L1(I,R) and x(.) : S → C(I,R) be their limits. The function
s 7→M |p(s)(.)|1 +MTc(s) + d(s) is continuous, hence locally bounded. Therefore, (4.2) implies
that for every s′ ∈ S the sequence fn(s′)(.) satisfies the Cauchy condition uniformly with respect
to s′ on some neighbourhood of s. Hence, s 7→ f(s)(.) is continuous from S into L1(I,R). From
(4.2), as before, xn(s)(.) is Cauchy in C(I,R) locally uniformly with respect to s. So, s 7→ x(s)(.)
is continuous from S into C(I,R). On the other hand, since xn(s)(.) converges uniformly to x(s)(.)
and

d(fn(s)(t), F (t, x(s)(t))) ≤ L(t)|xn(s)(t)− x(s)(t)| a.e. (I), s ∈ S,
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passing to the limit with a subsequence of fn(.) converging pointwise to f(.) we obtain

f(s)(t) ∈ F (t, x(s)(t)) a.e. (I), s ∈ S.

Passing to the limit in (d) we obtain

x(s)(t) = a(s) + tb(s) +

∫ t

0
G(t, u)f(s)(u) du.

By adding inequalities (c) for all n, together with (4.1), we get

|xn+1(s)(t)− y(s)(t)| ≤
n∑
l=0

pl(s)(t) ≤ ξ(s)(t). (4.3)

Finally, passing to the limit in (4.3) we obtain the estimate in the statement of the theorem. 2

Theorem 4.3 allows to obtain the next corollary which is a general result concerning continuous
selections of the solution set of problem (1.1).

Hypothesis H3. Hypothesis H1 is satisfied and there exists r(.) ∈ L1(I,R) such that d(0, F (t, 0)) ≤
r(t) a.e. (I).

Theorem 4.4 Assume that hypothesis H3 is satisfied. Then, there exists a function x(., .) : I×R2 →
R such that

(a) x(., (ξ, η)) ∈ S(ξ, η) for every (ξ, η) ∈ R2,

(b) (ξ, η)→ x(., (ξ, η)) is continuous from R2 into C(I,R).

Proof. We take S = R × R, a(ξ, η) = ξ, b(ξ, η) = η, (ξ, η) ∈ R × R, c(.) : R × R → (0,∞) an
arbitrary continuous function, g(.) = 0, y(.) = 0, p(ξ, η)(t) = r(t), (ξ, η) ∈ R× R, t ∈ I , and we
apply Theorem 4.3 in order to obtain the conclusion of the theorem. 2

5 Arcwise connectedness of the solution set

In this section we are concerned with the more general problem

Dσ
CFx(t) ∈ F (t, x(t), H(t, x(t))) a.e. ([0, T ]), x(0) = x0, x

′(0) = x1, (5.1)

where F : I × R× R→ P(R) and H : I × R→ P(R).

We assume that F and H are closed-valued multifunctions Lipschitz continuous with respect
to the second variable and F is contractive in the third variable. Obviously, the right-hand side of
the differential inclusion in (5.1) is in general neither convex nor closed. We prove the arcwise
connectedness of the solution set to (5.1). When F does not depend on the last variable, (5.1) reduces
to (1.1) and the result remains valid for problem (1.1).

Let Z be a metric space with the distance dZ . In what follows, when the product Z = Z1 × Z2

of metric spaces Zi, i = 1, 2, is considered, it is assumed that Z is equipped with the distance
dZ((z1, z2), (z

′
1, z
′
2)) =

∑2
i=1 dZi(zi, z

′
i).
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Let X be a non-empty set and let F : X → P(Z) be a set-valued map with non-empty closed
values. The range of F is the set F (X) =

⋃
x∈X F (x). The multifunction F is called Hausdorff

continuous if for any x0 ∈ X and every ε > 0 there exists δ > 0 such that x ∈ X, dX(x, x0) < δ
implies DZ(F (x), F (x0)) < ε.

Consider a finite, positive, non-atomic measure space (T,F , µ) and let (X, |.|X) be a Banach
space. We recall that a set A ∈ F is called an atom of µ if µ(A) 6= 0 and for any B ∈ F , B ⊂ A one
has µ(B) = 0 or µ(B) = µ(A). The measure µ is called non-atomic if F does not contain atoms of
µ. For example, Lebesgue’s measure on a given interval in R is a non-atomic measure.

Next we recall some preliminary results that are the main tools in the proof of our theorem. To
simplify the notation we write E in place of L1(T,X). The next two lemmas are proved in [16].

Lemma 5.1 Assume that φ : S×E → P(E) and ψ : S×E×E → P(E) are Hausdorff continuous
multifunctions with non-empty, closed, decomposable values, satisfying the following conditions:

(a) there exists L ∈ [0, 1) such that dH(φ(s, u), φ(s, u′)) ≤ L|u−u′|E for every s ∈ S and every
u, u′ ∈ E,

(b) there exists M ∈ [0, 1) such that L+M < 1 and

dH(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E)

for every s ∈ S and every (u, v), (u′, v′) ∈ E × E.

Set Fix(Γ(s, .)) = {u ∈ E : u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)), (s, u) ∈ S × E. Then,
for every s ∈ S the set Fix(Γ(s, .)) is non-empty and arcwise connected.

Lemma 5.2 Let U : T → P(X) and V : T ×X → P(X) be two non-empty closed-valued multi-
functions satisfying the following conditions:

(a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤ r(t) for almost all
t ∈ T ,

(b) the multifunction t 7→ V (t, x) is measurable for every x ∈ X ,

(c) the multifunction x 7→ V (t, x) is Hausdorff continuous for all t ∈ T .

Let v : T → X be a measurable selection of t 7→ V (t, U(t)). Then, there exists a selection
u ∈ L1(T,X) of U(.) such that v(t) ∈ V (t, u(t)), t ∈ T .

Hypothesis H4. Let F : I × R2 → P(R) and H : I × R → P(R) be two set-valued maps with
non-empty closed values, satisfying the following assumptions:

(i) the set-valued maps t 7→ F (t, u, v) and t 7→ H(t, u) are measurable for all u, v ∈ R,

(ii) there exists l ∈ L1(I,R+) such that for every u, u′ ∈ R we have

dH(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I),
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(iii) there exist m ∈ L1(I,R+) and θ ∈ [0, 1) such that for every u, v, u′, v ∈ R we have

dH(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e. (I),

(iv) there exist f, g ∈ L1(I,R+) such that

d(0, F (t, 0, 0)) ≤ f(t) and d(0, H(t, 0)) ≤ g(t) a.e. (I).

For (x0, x1) ∈ R2 we denote by S(x0, x1) the solution set of (5.1). In what follows N(t) :=
max{l(t),m(t)}, t ∈ I .

Theorem 5.3 Assume that hypothesis H4 is satisfied and 2M
∫ T
0 N(s) ds+ θ < 1. Then, for every

(x0, x1) ∈ R2, the solution set S(x0, x1) of (5.1) is non-empty and arcwise connected in the space
C(I,R).

Proof. For ξ = (x0, x1) ∈ R2 and u ∈ L1(I,R) set Pξ(t) = x0 + tx1 and

uξ(t) = Pξ(t) +

∫ T

0
G(t, s)u(s) ds, t ∈ I.

We prove that the multifunctions φ : R2 × L1(I,R)→ P(L1(I,R)) and ψ : R2 × L1(I,R)×
L1(I,R)→ P(L1(I,R)) given by

φ(ξ, u) = {v ∈ L1(I,R) : v(t) ∈ H(t, uξ(t)) a.e. (I)},
ψ(ξ, u, v) = {w ∈ L1(I,R) : w(t) ∈ F (t, uξ(t), v(t)) a.e. (I)}

satisfy the hypotheses of Lemma 5.1. Since uξ is measurable and H satisfies hypothesis H4 (i)
and (ii), the multifunction t 7→ H(t, uξ(t)) is measurable and has non-empty closed values. Hence,
it has a measurable selection. Therefore, due to Hypothesis H4 (iv), the set φ(ξ, u) is non-empty.
The fact that the set φ(ξ, u) is closed and decomposable follows by simple computation. In the same
way we obtain that ψ(ξ, u, v) is a non-empty closed decomposable set.

Pick (ξ, u), (ξ1, u1) ∈ R2 × L1(I,R), ξ1 = (y0, y1) and choose v ∈ φ(ξ, u). For each ε > 0
there exists v1 ∈ φ(ξ1, u1) such that, for every t ∈ I , one has

|v(t)− v1(t)| ≤ dH(H(t, uξ(t)), H(t, uξ1(t))) + ε

≤ N(t)

[
|Pξ(t)− Pξ1(t)|+

∫ T

0
|G(t, s)|.|u(s)− u1(s)|ds

]
+ ε.

Hence, there exists M0 ≥ 0 such that

|v − v1|1 ≤M0|ξ − ξ1|.
∫ T

0
N(t) dt+M

∫ T

0
N(t) dt|u− u1|1 + Tε

for any ε > 0. This implies that

dL1(I,R)(v, φ(ξ1, u1)) ≤M0|ξ − ξ1|.
∫ T

0
N(t) dt+M

∫ T

0
N(t) dt|u− u1|1
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for all v ∈ φ(ξ, u). Consequently,

dH(φ(ξ, u), φ(ξ1, u1)) ≤M0|ξ − ξ1|.
∫ T

0
N(t) dt+M

∫ T

0
N(t) dt|u− u1|1,

which shows that φ is Hausdorff continuous and satisfies the assumptions of Lemma 5.1.

Pick (ξ, u, v), (ξ1, u1, v1) ∈ R2 × L1(I,R) × L1(I,R) and choose w ∈ ψ(ξ, u, v). Then, as
before, for each ε > 0 there exists w1 ∈ ψ(ξ1, u1, v1) such that for every t ∈ I ,

|w(t)− w1(t)|

≤ dH(F (t, uξ(t), v(t)), F (t, uξ1(t), v1(t))) + ε

≤ N(t)|uξ(t)− uξ1(t)|+ θ|v(t)− v1(t)|+ ε

≤ N(t)

[
|Pξ(t)− Pξ1(t)|+

∫ T

0
|G(t, s)|.|u(s)− u1(s)|ds

]
+ θ|v(t)− v1(t)|+ ε

≤ N(t)[M0|ξ − ξ1|+M |u− u1|1] + θ|v(t)− v1(t)|+ ε.

Hence,

|w − w1|1

≤M0|ξ − ξ1|
∫ T

0
N(t) dt+M

∫ T

0
N(t) dt|u− u1|1 + θ|v − v1|1 + Tε

≤M0|ξ − ξ1|
∫ T

0
N(t) dt+

(
M

∫ T

0
N(t) dt+ θ

)
dL1(I,R)×L1(I,R)((u, v), (u1, v1)) + Tε.

As above, we deduce that

dH(ψ(ξ, u, v), ψ(ξ1, u1, v1))

≤M0|ξ − ξ1|
∫ T

0
N(t) dt+

(
M

∫ T

0
N(t) dt+ θ

)
dL1(I,R)×L1(I,R)((u, v), (u1, v1)).

The multifunction ψ is thus Hausdorff continuous and satisfies the hypothesis of Lemma 5.1.

Define Γ(ξ, u) = ψ(ξ, u, φ(ξ, u)), (ξ, u) ∈ R2 × L1(I,R). According to Lemma 5.1, the set
Fix(Γ(ξ, .)) = {u ∈ L1(I,R) : u ∈ Γ(ξ, u)} is non-empty and arcwise connected in L1(I,R). We
shall prove that

Fix(Γ(ξ, .)) = {u ∈ L1(I,R) : u(t) ∈ F (t, uξ(t), H(t, uξ(t))) a.e. (I)}. (5.2)

Denote by A(ξ) the right-hand side of (5.2). If u ∈ Fix(Γ(ξ, .)), then there is v ∈ φ(ξ, v) such that
u ∈ ψ(ξ, u, v). Therefore, v(t) ∈ H(t, uξ(t)) and

u(t) ∈ F (t, uξ(t), v(t)) ⊂ F (t, uξ(t), H(t, uξ(t))) a.e. (I),

so that Fix(Γ(ξ, .)) ⊂ A(ξ). Let now u ∈ A(ξ). By Lemma 5.2, there exists a selection v ∈
L1(I,R) of the multifunction t 7→ H(t, uξ(t)) satisfying u(t) ∈ F (t, uξ(t), v(t)) a.e. (I). Hence,
v ∈ φ(ξ, v), u ∈ ψ(ξ, u, v), and thus u ∈ Γ(ξ, u). This completes the proof of (5.2).

Finally, the function T : L1(I,R)→ C(I,R) given by T (u)(t) :=
∫ T
0 G(t, s)u(s) ds for t ∈ I

is continuous and one has

S(ξ) = Pξ(.) + T (Fix(Γ(ξ, .))), ξ ∈ R2.

Since Fix(Γ(ξ, .)) is non-empty and arcwise connected in L1(I,R), the set S(ξ) has the same
properties in C(I,R). 2
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6 Conclusions

In this paper we obtained an existence result for fractional differential inclusions involving Caputo–
Fabrizio fractional derivative in the situation when the values of the set-valued map are not convex
employing a method originally introduced by Filippov. Also, we found a continuous selection of
the solution set and we proved the arcwise connectedness of the solution set of the considered
problem. Such kind of results may be useful in order to obtain qualitative results concerning the
solutions of fractional differential inclusions defined by Caputo–Fabrizio fractional derivative such
as: controllability along a reference trajectory, differentiability of solutions with respect to the initial
conditions.
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