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Abstract. In this paper, we consider partially observed control problems for a class of nonlinear
coupled evolution equations on the product of a pair of Banach spaces. The observer dynamics is
subject to (possibly) impulsive perturbation. We use relaxed controls covering non-convex control
problems. We prove existence of mild solutions and their regularity properties. Then we prove
continuous dependence of solutions with respect to control measures. These results are then used to
prove existence of optimal feedback control laws.
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1 Introduction

It is known that the class of impulsive systems is contained in the broader class of systems driven
by vector and operator valued measures as studied extensively by the author and his former stu-
dents [2–9]. In a recent paper [2], we considered optimal control of a large class of nonlinear
systems on Banach spaces driven by finitely additive measures thereby generalizing purely impul-
sive systems [7, 8]. In our paper [6], we considered impulsive systems which are finite dimensional
version of [2] and applied to several control problems of systems related to ecology and (geosyn-
chronous) communication satellites. For computation of optimal impulsive controls, we used some
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variants of the computational techniques developed in [12, 14]. Here, in this paper, we consider a
large class of non-convex partially observed optimal control problems in Banach spaces. The sys-
tem consists of a pair of coupled evolution equations on Banach spaces, one of which represents
the main system to be controlled and the second represents the dynamics of the observer (monitor)
which monitors the state of the main system. The observer state is fully accessible and it is this
state that is fed back to the main system to be controlled. To the best of knowledge of the author, no
such work seems to exist in the current literature. The results of this paper are applicable to control
problems involving partial differential equations as well as ordinary differential equations.

The rest of the paper is organised as follows. In Section 2, we introduce the system dynamics
and the partially observed output feedback control problem. In Section 3, we state the basic assump-
tions and present some results on existence and uniqueness of (mild) solutions and their regularity
properties. In Section 4, we consider optimal control problems, in particular, the Bolza problem.
First we prove continuous dependence of solutions with respect to control measures (weak star to
strong). Using this result, we prove existence of optimal controls. We conclude the paper with some
remarks on open problems.

2 System Dynamics and the Control Problem

Let the state space be given by a Banach space X and the space of observation (measured data)
be given by another Banach space denoted by Y. Let U be a compact Polish space (for example,
a complete separable metric space) and I ≡ [0, T ] a closed bounded interval. Let ΣU denote
the sigma algebra of subsets of the set U and M0(ΣU ) denote the space of regular Borel Prob-
ability measures. Let C(U) denote the Banach space of bounded continuous functions endowed
with supnorm topology and let L1(I, C(U)) denote the space of Bochner integrable functions de-
fined on I and taking values in the Banach space C(U). Since the Banach space C(U) does not
have the RNP (Radon Nikodym Property), the topological dual of L1(I, C(U)) is not given by
L∞(I,MB(ΣU )). However, by virtue of the theory of lifting [13, Theorem 7, p. 93], it is given
by the space of weak star measurable essentially bounded functions defined on I and taking val-
uesMB(ΣU ), and it is denoted by Lw∞(I,MB(ΣU )). For admissible controls, we choose the set
Mad ≡ Mw

∞(I,M0(ΣU )) ⊂ Lw∞(I,MB(ΣU )). By Alaoglu’s theorem [11, Theorem V.4.2], the
set Mw

∞(I,M0(ΣU )) is weak star (w∗) compact.

We consider the following system of evolution equations on Banach spaces X and Y respec-
tively,

dx(t) = Ax(t) dt+ F (t, x(t)) dt+

∫
U
G(t, y(t), ξ)µt(dξ), t ∈ I, x(0) = x0 (2.1)

dy(t) = A0y(t) dt+ F0(t, y(t)) dt+G0(t, x(t))γ(dt), t ∈ I, (2.2)

where the first equation denotes the main system to be controlled whose state is inaccessible and the
second equation denotes the observer (monitor) whose state is fully accessible. The main system
is to be controlled on the basis of the observation y through the feedback operator G which in turn
is controlled by the measure valued function µt, t ∈ I. The observer receives state information
through the operator G0 which may be occasionally cutoff by the measure γ whenever the null set
N(γ) ≡ {V ∈ ΣI : γ(V ) = 0} 6= ∅. During this time intervals (blank periods) the system (2.1)
operates on the basis of information generated by the system (2.2) in the absence of G0. These
periods can be considered as the periods of partial blackout (system failure) and the process y used
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to control the system (2.1) does not carry current state x information though it does carry the past
information till the cutoff time. In any case, whatever information is available, the measure µ is
required to adjust the controller (actuator) G so as to achieve the objective as closely as possible.
The objective functional is given by

J(µ) ≡
∫
I×U

`(t, x(t), y(t), ξ)µt(dξ) dt+ Φ(x(T ), y(T )) (2.3)

considered as the cost functional. The objective is to choose a control measure µ ∈ Mad that
minimizes the functional (2.3). This is the problem we consider in this paper. We prove existence
of optimal controls and develop necessary conditions of optimality.

3 Existence and Uniqueness of Solutions

In this section we consider the question of existence, uniqueness and regularity properties of solu-
tions of the evolution equations (2.1)-(2.2). In the first equation, the operator A is the infinitesimal
generator of a C0 semigroup {S(t), t ≥ 0} ⊂ L(X), and the functions F : I × X −→ X and
G : I × Y × U −→ X are Borel measurable maps and µ ∈ Mw

∞(I,M0(ΣU )). Similarly, in the
second equation which represents the observer, the operator A0 is the infinitesimal generator of a
C0 semigroup {S0(t), t ≥ 0} ⊂ L(Y ), and the functions F0 : I ×Y −→ Y and G0 : I ×X −→ Y
are Borel measurable maps. The measure γ ∈ Mca(ΣI , R) ≡Mca(ΣI), whereMca(ΣI) denotes
the space of countably additive real valued measures having bounded total variation. Endowed with
the total variation norm, it is a Banach space.

It is well known [1] that in general these equations do not have strong solutions and hence we are
interested in the mild solutions which are solutions of the associated integral equations. Using the
semigroup and variation of constants formula (Duhamels formula), the differential equation (2.1)
can be written as an integral equation on the Banach space X as follows:

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s)) ds+

∫ t

0

∫
U
S(t− s)G(s, y(s), ξ)µs(dξ) ds, t ∈ I. (3.1)

Similarly, the differential equation (2.2) can be written as an integral equation on the Banach space
Y as follows,

y(t) = S0(t)y0 +

∫ t

0
S0(t− s)F0(s, y(s)) ds+

∫ t

0
S0(t− s)G0(s, x(s))γ(ds), t ∈ I. (3.2)

Under suitable assumptions on the operators {A,A0, F,G, F0, G0}, we will prove that these equa-
tions have solutions. The observer represented by equation (2.2) observes the state of the main
system (2.1) through the operator G0 and the measure γ. In case U consists of a finite set {vi}ni=1,
the integral equation (3.1) takes the form

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s)) ds+

n∑
i=1

∫ t

0
S(t− s)G(s, y(s), vi)µs({vi}) ds, t ∈ I. (3.3)

Since µ ∈Mw
∞(I,M0(ΣU )), it is clear that µs({vi}) ≥ 0 for all i = 1, 2, · · · , n and

n∑
i=1

µs({vi}) = 1,∀s ∈ I.
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In other words, µs(dξ) =
∑
µs({vi})δvi(dξ). Controls of this form are called chattering controls.

We consider general case containing the chattering controls as special case.

Basic Assumptions

We need the following basic assumptions.

(A1) The operators A and A0 are the infinitesimal generators of C0-semigroups {S(t), t ≥ 0}
and {S0(t), t ≥ 0} of bounded linear operators in the Banach spaces X and Y respectively
satisfying sup{‖S(t)‖L(X), t ∈ I} ≤M and sup{‖S0(t)‖L(Y ), t ∈ I} ≤M0 with {M,M0}
being finite positive numbers.

(A2) F : I ×X −→ X is Borel measurable and there exists a constant K1 > 0 such that

(1) : ‖F (t, x)‖X ≤ K1(1 + ‖x‖X), x ∈ X, t ∈ I,
(2) : ‖F (t, x1)− F (t, x2)‖X ≤ K1‖x1 − x2‖X , x1, x2 ∈ X, t ∈ I.

(A3) G : I × Y × U −→ X is Borel measurable and there exists a Borel measurable function
K2 : U −→ R0 ≡ [0,∞) such that

(1) : ‖G(t, y, ξ)‖X ≤ K2(ξ)(1 + ‖y‖Y ), y ∈ Y, t ∈ I, ξ ∈ U,
(2) : ‖G(t, y1, ξ)−G(t, y2, ξ)‖X ≤ K2(ξ)‖y1 − y2‖Y , y1, y2 ∈ Y, t ∈ I, ξ ∈ U,

(3) : sup{
∫
U
K2(ξ)µt(dξ), µ ∈Mad, t ∈ I} ≡ K̂2 <∞.

The last condition is trivially satisfied if K2 is continuous and U a compact Polish space.

(A4) F0 : I × Y −→ Y is Borel measurable and there exists a constant K3 > 0 such that

(1) : ‖F0(t, y)‖Y ≤ K3(1 + ‖y‖Y ), y ∈ Y, t ∈ I,
(2) : ‖F0(t, y1)− F0(t, y2)‖Y ≤ K3‖y1 − y2‖Y , y1, y2 ∈ Y, t ∈ I.

(A5) G0 : I ×X −→ Y is Borel measurable and there exists a constant K4 > 0 such that

(1) : ‖G0(t, x)‖Y ≤ K4(1 + ‖x‖X), x ∈ X, t ∈ I,
(2) : ‖G0(t, x1)−G0(t, x2)‖Y ≤ K4‖x1 − x2‖X , x1, x2 ∈ X, t ∈ I.

Let Z ≡ X × Y denote the linear space of the Cartesian product of the Banach spaces X and
Y. Let z ≡ (x, y) ∈ X × Y and define the norm topology on Z by

‖z‖ ≡ ‖x‖X + ‖y‖Y .

The space Z endowed with this norm topology is a Banach space. We need the Banach spaces
B∞(I,X) and B∞(I, Y ) and their Cartesian product B∞(I,X)×B∞(I, Y ) ≡ B∞(I,Z). These
are function spaces defined on the interval I and taking values from the Banach spaces as indicated.
Endowed with sup-norm topology, these are Banach spaces.

Theorem 3.1 Consider the system of evolution equations (2.1)-(2.2) with the admissible control
measure µ ∈ Mad ≡ Mw

∞(I,M0(ΣU )) and γ ∈ Mca(ΣI , R) non-atomic having bounded total
variation and suppose the assumptions (A1), (A2), (A3), (A4) and (A5) hold. Then, for every
x0 ∈ X, and µ ∈Mad, the system (2.1)-(2.2) has a unique mild solution z ∈ B∞(I,Z).
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Proof. For proof we use Banach fixed point theorem. For any given z0 ≡ (x0, y0) ∈ X × Y ≡ Z
and µ ∈Mad, we introduce the operator Γ ≡ (Γ1,Γ2) as follows:

Γ1(x, y)(t) ≡ S(t)x0 +

∫ t

0
S(t− s)F (s, x(s)) ds+

∫ t

0

∫
U
S(t− s)G(s, y(s), ξ)µs(dξ) ds, t ∈ I. (3.4)

Γ2(x, y)(t) ≡ S0(t)y0 +

∫ t

0
S0(t− s)F0(s, y(s)) ds+

∫ t

0
S0(t− s)G0(s, x(s))γ(ds), t ∈ I. (3.5)

Under the assumptions (A1), (A2), (A3), (A4), (A5), we show that, Γ maps B∞(I,Z) to itself.
Since {S(t), t ≥ 0} and {S0(t), t ≥ 0} are C0-semigroups of operators on X and Y respec-
tively and I ≡ [0, T ] is a finite interval, there exist finite positive numbers M and M0 such that
sup{‖S(t)‖L(X), t ∈ I} ≤ M and sup{‖S0(t)‖L(Y ), t ∈ I} ≤ M0. Computing the X norm of
Γ1(x, y)(t) using the assumptions (A2) and (A3), it follows from triangle inequality that for each
t ∈ I,

‖Γ1(x, y)(t)‖X ≤M‖x0‖X +MK1t(1 + sup
0≤s≤t

‖x(s)‖X)

+M(1 + sup
0≤s≤t

‖y(s)‖Y )

∫ t

0

∫
U
K2(ξ)µs(dξ) ds. (3.6)

Since µt, t ∈ I, is a probability measure valued function satisfying (A3)(3), the above inequality
can be rewritten as

‖Γ1(x, y)(t)‖X ≤M‖x0‖X +M(K1t)(1 + sup
0≤s≤t

‖x(s)‖X)

+M(K̂2t)(1 + sup
0≤s≤t

‖y(s)‖Y ), t ∈ I. (3.7)

It follows from this inequality and the fact that I ≡ [0, T ] is a finite interval, that

‖Γ1(x, y)‖B∞(I,X) ≤ M‖x0‖X +MK1T
(
1 + ‖x‖B∞(I,X)

)
+MK̂2T

(
1 + ‖y‖B∞(I,Y )

)
. (3.8)

Similarly, considering Γ2(x, y)(t) and computing its Y norm and using the assumptions (A4)-(A5),
one can easily verify that

‖Γ2(x, y)‖B∞(I,Y ) ≤M0‖y0‖Y +M0K3T
(
1+‖y‖B∞(I,Y )

)
+M0K4|γ|(I)

(
1+‖x‖B∞(I,X)

)
. (3.9)

It follows from the inequalities (3.8)-(3.9) that there exist positive constants C0, C1, C2 dependent
on the parameters {M0,M,K1,K2,K3,K4, T, |γ|(I)} such that

‖Γ(z)‖B∞(I,Z) ≤ C0 + C1‖z0‖Z + C1‖z‖B∞(I,Z). (3.10)

This proves that the operator Γ maps B∞(I,Z) into itself. Following similar steps while using the
Lipschitz conditions in the assumptions (A2), (A3), (A4), (A5), one can verify that

‖Γ1(z1)(t)− Γ1(z2)(t)‖X ≡ ‖Γ1(x1, y1)(t)− Γ1(x2, y2)(t)‖X

≤MK1

∫ t

0
‖x1(s)− x2(s)‖X ds+MK̂2

∫ t

0
‖y1(s)− y2(s)‖Y ds. (3.11)

Similarly, considering the second component Γ2 of the operator Γ we obtain the following inequality

‖Γ2(z1)(t)− Γ2(z2)(t)‖Y ≡ ‖Γ2(x1, y1)(t)− Γ2(x2, y2)(t)‖Y

≤M0K3

∫ t

0
‖y1(s)− y2(s)‖Y ds+M0K4

∫ t

0
‖x1(s)− x2(s)‖X |γ|(ds), (3.12)
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where |γ|(·) denotes the nonnegative measure induced by the variation of the signed measure γ ∈
Mca(ΣI , R). Define the measure α ∈M+

ca(ΣI) by

α(σ) ≡
∫
σ
(ds+ |γ|(ds)), σ ∈ ΣI

and note that it is also a countably additive bounded positive measure. Clearly, the function β
defined by β(t) ≡

∫ t
0 α(ds), t ≥ 0, is a nonnegative increasing function of bounded total variation

on I. Introducing the constants D1 ≡ max{MK1,M0K4} and D2 ≡ max{MK̂2,M0K3} and
summing the expressions (3.11)-(3.12), we obtain the following inequality

‖Γ(z1)(t)−Γ(z2)(t)‖Z ≤ D1

∫ t

0
‖x1(s)−x2(s)‖X dβ(s)+D2

∫ t

0
‖y1(s)−y2(s)‖Y dβ(s), t ∈ I.

(3.13)
Next defining D ≡ max{D1, D2} and using the above inequality, we obtain the following expres-
sion

‖Γ(z1)(t)− Γ(z2)(t)‖Z ≤ D
∫ t

0
‖z1(s)− z2(s)‖Z dβ(s), t ∈ I. (3.14)

For any pair z1, z2 ∈ B∞(I,Z) and t ∈ I, define

ρt(z1, z2) ≡ sup{‖z1(s)− z2(s)‖Z , 0 ≤ s ≤ t}

and note that ρT (z1, z2) = ‖z1−z2‖B∞(I,Z).Using this notation we observe that the inequality 3.14
is equivalent to the following inequality,

ρt(Γ(z1),Γ(z2)) ≤
∫ t

0
ρs(z1, z2) dβ(s), t ∈ I. (3.15)

Considering the second iteration of the operator Γ (i.e. Γ2 ≡ Γ ◦ Γ), it follows from the above
expression and the fact that t −→ ρt(z1, z2) is a nondecreasing function of t ≥ 0, that, for each
t ∈ I, we have

ρt(Γ
2(z1),Γ

2(z2)) ≤
∫ t

0
ρs(Γ(z1),Γ(z2)) dβ(s) ≤

∫ t

0

(∫ s

0
ρθ(z1, z2) dβ(θ)

)
dβ(s).

By assumption the measure γ is non-atomic and hence α is non-atomic and therefore |α|({0}) = 0
and consequently β(0) = 0. Thus it follows from the above inequality that

ρt(Γ
2(z1),Γ

2(z2)) ≤
∫ t

0
ρs(z1, z2)β(s) dβ(s), t ∈ I (3.16)

and hence we have
ρt(Γ

2(z1),Γ
2(z2)) ≤ ρt(z1, z2)

(
β2(t)/2

)
, t ∈ I. (3.17)

Continuing this iterative process m times, it is easy to verify that

ρt(Γ
m(z1),Γ

m(z2)) ≤
(
βm(t)/m!

)
ρt(z1, z2), t ∈ I. (3.18)

Thus, for t = T, we have

‖Γm(z1)− Γm(z2)‖B∞(I,Z) ≤ ηm‖z1 − z2‖B∞(I,Z), (3.19)



OPTIMAL MEASURE CONTROLS FOR EVOLUTION EQUATIONS 155

where ηm = ((β(T ))m/m!). Since β(T ) is finite, for m ∈ N sufficiently large, ηm < 1 and hence
the m-th iteration of the operator Γ is a contraction on the Banach space B∞(I,Z). Thus it follows
from Banach fixed point theorem that Γm has a unique fixed point z∗ ∈ B∞(I,Z). Using this fact
one can easily verify that z∗ is also the unique fixed point of the operator Γ itself. This proves the
existence of a unique mild solution z∗ = (x∗, y∗) of the system of evolution equations (2.1)-(2.2)
in the Banach space B∞(I,Z). �

Under the assumptions of Theorem 3.1, we show that the solution set is a bounded subset of the
Banach space B∞(I,Z). For µ ∈ Mad ≡ Mw

∞(I,M0(ΣU )), let z(µ) denote the mild solution of
the system of evolution equations (2.1)-(2.2).

Corollary 3.2 Consider the system (2.1)-(2.2) and suppose the assumptions of Theorem 3.1 hold.
Then the solution set

S ≡ {z ∈ B∞(I,Z) : z = z(µ) ≡ (x(µ), y(µ)) for µ ∈Mad} (3.20)

is a bounded subset of B∞(I,Z).

Proof. It follows from Theorem 3.1 that, for each µ ∈ Mad, the system of evolution equa-
tions (2.1)-(2.2) has a unique mild solution z(µ) ≡ (x(µ), y(µ)) ∈ B∞(I,X × Y ) ≡ B∞(I,Z).
Thus z(µ) satisfies the following system of integral equations:

x(µ)(t) =S(t)x0 +

∫ t

0
S(t− s)F (s, x(µ)(s)) ds

+

∫ t

0

∫
U
S(t− s)G(s, y(µ)(s), ξ)µs(dξ) ds, t ∈ I, (3.21)

y(µ)(t) =S0(t)y0 +

∫ t

0
S0(t− s)F0(s, y(µ)(s)) ds

+

∫ t

0
S0(t− s)G0(s, x(µ)(s))γ(ds), t ∈ I. (3.22)

By taking the X norm of x(µ)(t) and the Y norm of y(µ)(t) and summing these norms, it fol-
lows equations (3.21) and (3.22) and the assumptions (A1)-(A5) that there exist constants C3, C4

dependent on the parameters {M,M0,K1,K2, K̂2,K3,K4, β(T )} such that

‖z(µ)(t)‖Z ≡ ‖x(µ)(t)‖X+‖y(µ)(t)‖Y ≤ C3+C4

∫ t

0
‖z(µ)(s)‖Z dβ(s), t ∈ I, ∀ µ ∈Mad. (3.23)

By virtue of generalized Gronwall inequality [2, Lemma 5, p. 268], it follows from the above ex-
pression that

sup{‖z(µ)(t)‖Z , t ∈ I} ≤ C3 exp{C4β(T )}, µ ∈Mad. (3.24)

In view of the assumption (A3)(3), this inequality holds uniformly with respect to µ ∈Mad. Hence
we have

sup{‖z(µ)‖B∞(I,Z), µ ∈Mad} ≤ C3 exp{C4β(T )} <∞. (3.25)

Thus the solution set S is a bounded subset of B∞(I,Z). �
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4 Optimal Control

In this section we consider the question of existence of optimal controls. For this purpose we use
the continuity of the control to solution map µ −→ z(µ) with respect to the weak star topology on
Mw
∞(I,ΣU ) and the strong norm topology on B∞(I,Z).

Theorem 4.1 Consider the partially observed system (2.1)-(2.2) with the operator A being the
generator of a compact C0−semigroup {S(t), t > 0} in X, and the assumptions of Theorem 3.1
and Corollary 3.2 hold with γ ∈ Mca(ΣI) being non-atomic. Then the map µ −→ z(µ) from
Mad = Mw

∞(I,M0(ΣU )) to B∞(I,Z) is continuous with respect to the relative weak* topology
onMad and the norm topology on B∞(I,Z).

Proof. Let {µn, µo} ∈ Mad and suppose µn w∗−→ µo. Let zn ≡ (x(µn), y(µn)) and zo ≡
(x(µo), y(µo)) denote the unique mild solution of the system of evolution equations (2.1)-(2.2)
corresponding to the same initial states, (x(µn)(0), y(µn)(0)) = (x(µo)(0), y(µo)(0)) = (x0, y0)
and control measures µn and µo respectively. This means that {zn, zo} satisfy the following system
of integral equations:

xn(t) =S(t)x0 +

∫ t

0
S(t− s)F (s, xn(s)) ds+

∫ t

0

∫
U
S(t− s)G(s, yn(s), ξ)µns (dξ) ds, t ∈ I, (4.1)

yn(t) =S0(t)y0 +

∫ t

0
S0(t− s)F0(s, y

n(s)) ds+

∫ t

0
S0(t− s)G0(s, x

n(s))γ(ds), t ∈ I, (4.2)

xo(t) =S(t)x0 +

∫ t

0
S(t− s)F (s, xo(s)) ds+

∫ t

0

∫
U
S(t− s)G(s, yo(s), ξ)µos(dξ) ds, t ∈ I, (4.3)

yo(t) =S0(t)y0 +

∫ t

0
S0(t− s)F0(s, y

o(s)) ds+

∫ t

0
S0(t− s)G0(s, x

o(s))γ(ds), t ∈ I, (4.4)

where xn(t) ≡ x(µn)(t), xo(t) ≡ x(µo)(t), yn(t) ≡ y(µn)(t) and yo(t) ≡ y(µo)(t), t ∈ I.
Subtracting the expression (4.3) from (4.1) term by term and suitably rearranging terms, we obtain
the following identity

xn(t)− xo(t) =

∫ t

0
S(t− s)[F (s, xn(s))− F (s, xo(s))] ds

+

∫ t

0

∫
U
S(t− s)[G(s, yn(s), ξ)−G(s, yo(s), ξ)]µns (dξ) ds

+

∫ t

0

∫
U
S(t− s)G(s, yo(s), ξ)

(
µns − µos)(dξ) ds, t ∈ I. (4.5)

For convenience we denote the last term of the above expression by en giving

en(t) ≡
∫ t

0

∫
U
S(t− s)G(s, yo(s), ξ)

(
µns − µos)(dξ) ds, t ∈ I. (4.6)

Evaluating the X norm on either side of the expression (4.5) and using the assumptions (A2)
and (A3) and triangle inequality, we obtain the following inequality

‖xn(t)− xo(t)‖X ≤
∫ t

0
MK1‖xn(s)− xo(s)‖X ds

+

∫ t

0

∫
U
MK2(ξ)‖yn(s)− yo(s)‖Y µns (dξ) ds+ ‖en(t)‖X , t ∈ I. (4.7)
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Next, using the assumption (A3)(3) related to the function K2, it follows from the above inequality
that

‖xn(t)− xo(t)‖X ≤
∫ t

0
MK1‖xn(s)− xo(s)‖X ds

+MK̂2

∫ t

0
‖yn(s)− yo(s)‖Y ds+ ‖en(t)‖X , t ∈ I. (4.8)

Similarly, subtracting the expression (4.4) from (4.2) term by term, we obtain the following expres-
sion

yn(t)− yo(t) =

∫ t

0
S0(t− s)[F0(s, y

n(s))− F0(s, y
o(s))] ds

+

∫ t

0
S0(t− s)[G0(s, x

n(s))−G0(s, x
o(s))]γ(ds), t ∈ I. (4.9)

Computing the Y norm on either side of the above expression and using the assumptions (A4)-(A5)
and triangle inequality, we obtain the following inequality

‖yn(t)− yo(t)‖Y ≤M0K3

∫ t

0
‖yn(s)− yo(s)‖Y ds

+M0K4

∫ t

0
‖xn(s)− xo(s)‖X |γ|(ds), t ∈ I. (4.10)

Again, without loss of generality we can add up (4.8) and (4.10) term by term and using the (aug-
mented) measure α(σ) ≡

∫
σ[ds+ |γ|(ds)], σ ⊂ I, σ ∈ ΣI , we obtain the following inequality

‖xn(t)− xo(t)‖X + ‖yn(t)− yo(t)‖Y

≤‖en(t)‖X + (MK1 +M0K4)

∫ t

0
‖xn(s)− xo(s)‖Xα(ds)

+ (MK̂2 +M0K3)

∫ t

0
‖yn(s)− yo(s)‖Y α(ds), t ∈ I. (4.11)

Defining the constant

C ≡ max{(MK1 +M0K4), (MK̂2 +M0K3)}

and recalling that ‖zn(t) − zo(t)‖Z = ‖xn(t) − xo(t)‖X + ‖yn(t) − yo(t)‖Y , we can rewrite the
above inequality in the following compact form

‖zn(t)− zo(t)‖Z ≤ ‖en(t)‖X + C

∫ t

0
‖zn(s)− zo(s)‖Zα(ds), t ∈ I. (4.12)

It follows from generalized Gronwall inequality [3, Lemma 5, p. 268], applied to the above expres-
sion, that

‖zn(t)− zo(t)‖Z ≤ ‖en(t)‖X +
(
C exp(Cα(I))

) ∫ t

0
‖en(s)‖Xα(ds), t ∈ I. (4.13)

It suffices to show that en(t), given by the expression (4.6), converges to zero strongly in X
uniformly on I. Here, we use the compactness of the semigroup {S(t), t > 0} and the weak*
convergence of µn to µo. For any ε > 0, we can rewrite the expression (4.6) as

en(t) = e(1)n (t) + e(2)n (t), t ∈ I,



158 Nasir Uddin Ahmed, J. Nonl. Evol. Equ. Appl. 2020 (2020) 149–162

where

e(1)n (t) ≡ S(ε)

(∫ t−ε

0

∫
U
S(t− ε− s)G(s, yo(s), ξ)

(
µns − µos)(dξ) ds

)
, t ∈ [ε, T ],

e(2)n (t) =

∫ t

t−ε

∫
U
S(t− s)G(s, yo(s), ξ)(µns − µos)(dξ) ds, t ∈ [ε, T ].

Dealing with the first term e
(1)
n , it follows from weak* convergence of µn to µo that the in-

tegral within the round bracket converges weakly to zero in the Banach space X. Since by as-
sumption the semigroup is compact, the operator S(ε) is compact and hence the first term con-
verges strongly to zero uniformly with respect to t ∈ [ε, T ] for any ε > 0. In other words,
limn→∞ sup{‖e(1)n (t)‖X , t ∈ [ε, T ]} = 0 for any ε > 0. Considering the second term e

(2)
n and

computing its norm and recalling the assumption (A3)(3), we obtain the following estimate

‖e(2)n (t)‖X ≤ 2MK̂2

∫ t

t−ε

(
1 + ‖yo(s)‖Y

)
ds, t ∈ [ε, T ].

Since yo ∈ B∞(I, Y ), it is clear that

‖e(2)n (t)‖X ≤ 2MK̂2(1 + ‖yo‖B∞(I,Y )) ε

for all t ∈ I. Hence the above integral converges to zero as ε ↓ 0 uniformly on I. Thus,
‖en‖B∞(I,X)

s−→ 0, and hence it follows from Lebesgue bounded convergence theorem that the
expression on the righthand side of the inequality (4.13) converges to zero uniformly with respect
to t ∈ I. Hence zn −→ zo in the norm topology of B∞(I,Z). This proves the continuity of the
map µ −→ z(µ) in the sense as stated in the theorem. �

We make use of the above result to prove the existence of optimal controls. This is presented in
the following theorem.

Theorem 4.2 Consider the partially observed system (2.1)-(2.2) with the cost functional given by

J(µ) ≡
∫
I×U

`(t, z(t), ξ)µt(dξ) dt+ Φ(z(T )) ≡ J1(µ) + J2(µ), (4.14)

where z ∈ B∞(I,Z) ≡ B∞(I,X) × B∞(I, Y ) is the mild solution of the system (2.1)-(2.2)
corresponding to the control µ ∈ Mad. Suppose the assumptions of Theorem 4.1 hold and the
functions ` : I×Z×U −→ R and Φ : Z −→ R are all Borel measurable and satisfy the following
properties:

(1) `(t, z, ξ) is a real valued Borel measurable function defined on I ×Z × U, continuous in the
last two arguments, and for each t ∈ I it is continuous on Z uniformly with respect to the
third argument ξ ∈ U, and there exist a ∈ L+

1 (I) and b ≥ 0 and p ∈ [1,∞) such that

|`(t, z, ξ)| ≤ a(t) + b‖z‖pZ .

(2) Φ : Z −→ R is lower semicontinuous and there exist c, d ≥ 0 such that

|Φ(z)| ≤ c+ d‖z‖pZ .
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Then, there exists an optimal control measure at which J attains its minimum.

Proof. Since by Alaoglu’s theorem [11, Theorem V.4.2, p. 424],Mad ≡Mw
∞(I,M0(U)) is com-

pact in the weak star topology, it suffices to verify that the map µ −→ J(µ) is weak star lower
semicontinuous onMad. Let µn w∗−→ µo inMad. Then it follows from Theorem 4.1 that, (along
a subsequence if necessary) zn ≡ z(µn)

s−→ z(µo) ≡ zo in the norm topology of the Banach
space B∞(I, Z). First we verify that J1 is weak star lower semicontinuous. Define the functions
`n(t, ξ) ≡ `(t, zn(t), ξ), `o(t, ξ) ≡ `(t, zo(t), ξ) for (t, ξ) ∈ I × U. By Corollary 3.2, the so-
lution set S is a bounded subset of B∞(I,Z). Thus it follows from the property (1) (of `) that
`n, `o ∈ L1(I, C(U)). Now note that for each h ∈ L1(I, C(U)) and µ ∈Mad ⊂ Lw∞(I,MB(U)),
we have the natural duality pairing as follows:

< h, µ >≡
∫
I×U

h(t, ξ)µt(dξ) dt.

Since t −→ µt is a probability measure valued function defined on I , it is clear that

| < h, µ > | ≤ ‖h‖L1(I,C(U)).

Returning to our problem, note that for µo ∈ Mad and `o ∈ L1(I, C(U)), as defined above, we
have

J1(µ
o) =< `o, µ

o >=

∫
I×U

`o(t, ξ)µ
o
t (dξ) dt. (4.15)

Clearly, by definition of the functional J1, we have

J1(µ
o) =< `o, µ

o >=< `o, µ
o − µn > + < `o − `n, µn > + < `n, µ

n >

=< `o, µ
o − µn > + < `o − `n, µn > +J1(µ

n). (4.16)

Since µn w∗−→ µo, it is clear that the first term on the righthand side of the above expression con-
verges to zero. Thus for any ε > 0, there exists an integer n1(ε) such that

| < `o, µ
o − µn > | < ε

2
, ∀ n > n1(ε). (4.17)

Considering the second term, < `o− `n, µn >, we show that this also converges to zero as n→∞.
By definition

< `o − `n, µn >≡
∫
I×U

(
`o(t, ξ)− `n(t, ξ)

)
µnt (dξ) dt. (4.18)

Since zn s−→ zo in B∞(I,Z), zn(t)
s−→ zo(t) in Z for almost all t ∈ I. Hence it follows from

condition (1) as stated in the theorem, `n
s−→ `o in the norm topology of L1(I, C(U)). Since {µn}

are probability measure valued functions, it is clear that

| < `o − `n, µn > | ≤
∫
I×U
|
(
`o(t, ξ)− `n(t, ξ)

)
|µnt (dξ) dt ≤

∫
I
‖`o − `n‖C(U)(t) dt. (4.19)

It follows from continuity of ` on Z uniformly with respect to ξ ∈ U, that

‖`o − `n‖C(U)(t) −→ 0 for almost all t ∈ I.

Next, it follows from the growth property (1) of ` and the fact that the solution set S (see Corol-
lary 3.2) is a bounded subset ofB∞(I,Z), that the function given by the integrand ‖`o−`n‖C(U)(t)
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is dominated by an integrable function on I. Hence it follows from Lebesgue dominated conver-
gence theorem that

lim
n→∞

∫
I
‖`o − `n‖C(U)(t) dt −→ 0. (4.20)

Thus for every ε > 0, there exists an integer n2(ε) such that

| < `o − `n, µn > | <
ε

2
, ∀ n > n2(ε). (4.21)

Define n(ε) ≡ max{n1(ε), n2(ε)}.Using the inequalities (4.17) and (4.21) in the expression (4.16),
we conclude that

J1(µ
o) ≤ ε+ J1(µ

n), ∀ n > n(ε). (4.22)

Since ε > 0 is arbitrary, it follows from the above expression that

J1(µ
o) ≤ lim J1(µ

n). (4.23)

Hence J1 is weak star lower semicontinuous onMad. Next, we consider the second term J2(µ
n) ≡

Φ(zn(T )). Since zn(T )
s−→ zo(T ) in Z as µn w∗−→ µo and Φ is lower semicontinuous on Z , it is

clear that
J2(µ

o) ≡ Φ(zo(T )) ≤ lim Φ(zn(T )) ≡ lim J2(µ
n). (4.24)

In other words, J2 is also weak star lower semicontinuous on Mad. Since finite sum of lower
semicontinuous functions is lower semicontinuous, it follows from (4.23) and (4.24) that J(µo) ≤
lim J(µn). This proves that J is weak star lower semicontinuous onMad and sinceMad is weak
star compact, we conclude that there exists a µo ∈ Mad at which J attains its minimum. This
completes the proof. �

Remark 4.3 Since µ −→ x(µ) is rarely a convex map, it is clear from the expression for J(µ)
given by (4.14) that it is not convex. Hence we cannot expect uniqueness of the control measure.
However, using the fact that J is weak star lower semi-continuous onMad, one can prove that the
set of minimizers,

Op ≡
{
µ ∈Mad : J(µ) = inf{J(%), % ∈Mad}

}
,

is a weak star closed subset ofMad and hence a weak star compact subset ofMad.

Remark 4.4 Let M(I, U) denote the class of Borel measurable functions defined on I and taking
values in the compact Polish space U. For each u ∈ M(I, U), define the Dirac measure νu ≡
δu(t)(dξ), t ∈ I. Then for any h ∈ L1(I, C(U)), we have

νu(h) =

∫
I×U

h(t, ξ)δu(t)(dξ) dt =

∫
I
h(t, u(t)) dt

and it follows from this expression that

|νu(h)| ≤
∫
I

sup{|h(t, ξ)|, ξ ∈ U}dt ≡
∫
I
‖h(t)‖C(U) dt <∞.

This shows that M(I, U) can be embedded in the topological space Mw
∞(I,M0(U)). Let i denote

the embedding operator: M(I, U)
i
↪→ Mw

∞(I,M0(U)). In fact i(M(I, U)) is the set of extreme
points of Mw

∞(I,M0(U)) and one has

co(i(M(I, U)))
w∗

= Mw
∞(I,M0(U)).
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This follows from Krein-Milman theorem [11, Theorem V.8.4, p. 440] which, in this particular case,
states that a weak star compact convex set coincides with the weak star closed convex hull of its
extreme points. Thus if µo ∈ Mw

∞(I,M0(U)) is optimal, then, for every ε > 0, there exists a
sequence {uok ∈M(I, U), αk ≥ 0,

∑
αk = 1} such that for every h ∈ L1(I, C(U))∫

I

∣∣ ∫
U
h(t, ξ)µot (dξ)−

∑
k≥1

αkh(t, uok(t))
∣∣ dt < ε.

Some Open Problems:

(P1): In Theorem 3.1 we assumed that γ ∈ Mca(ΣI) is non-atomic. For a wider scope of appli-
cations, in particular where it may be necessary to include measures containing both regular
and singular components, it is important to relax this assumption.

(P2): We have not developed the necessary (and or sufficient) conditions of optimality. For compu-
tation of optimal control laws this is of great importance.
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