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1 Introduction and main result

Let Ω be a bounded and open domain of RN , N ≥ 1, with smooth boundary ∂Ω, and let T be a
positive number. In this paper we study the existence and uniqueness of a renormalized solution for
the following nonlinear parabolic problem

(Pµ)


ut − div(a(x,∇u)) = µ in Q = (0, T )× Ω,

u = u0 on {0} × Ω,

u = 0 on (0, T )× ∂Ω,

where µ is a bounded measure on Q which does not charge sets of null p(.)-capacity and u0 ∈ L1(Ω).
In the case where a(x,∇ξ) = |ξ|p(x)−2ξ, the operator −div(a(x,∇u)) is called the p(x)-Laplacian.
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As a model example the problem (Pµ) includes the p-Laplace evolution equation:
ut − div

(
|∇u|p(x)−2∇u

)
= f in Q = (0, T )× Ω,

u = u0 on {0} × Ω,

u = 0 on (0, T )× ∂Ω.

(1.1)

The existence and uniqueness of entropy and renormalized solutions to problem (1.1) with f ∈ L1(Q)
is nowadays well-known and was established by Zhang and Zhou in [18] and by Bendahmane et
al. in [1]. Our main goal here is to extend this existence and uniqueness result to a larger class of
measures which includes the L1 case.

Let us recall that the existence and uniqueness of parabolic variational inequalities with variable
exponent was studied in [6, 12]. In [14], the authors proved the existence and uniqueness of entropy
solutions to a nonlinear parabolic equation with variable exponent and L1-data.

The importance of the measures not charging sets of null capacity was first observed in the
stationary case in [3], where the authors proved that every diffuse measure µ, i.e., a measure which
does not charge sets of null p-capacity, belongs to L1(Ω) +W−1,p′(Ω). That allowed them to prove
the existence and uniqueness of an entropy solution for the following problem{

A(u) = µ in Ω,

u = 0 on ∂Ω.

In the context of variable exponent, a similar approach was used in [13] for the elliptic problem{
∇.a(x,∇u) + β(u) 3 µ in Ω,

u = 0 on ∂Ω,

where µ is a diffuse measure. In [13], the authors used the ideas of [3] to prove that for every diffuse
measure µ there exists f ∈ L1(Ω) and g ∈ W−1,p(.) such that µ = f + g. This allowed them to
prove the existence and uniqueness of an entropy solution.

In order to use a similar approach in the evolution case, we developed in [15] the theory of p(.)-
parabolic capacity and then investigated the relationships between time space dependent measures
and capacity.

Let us recall that the connection between parabolic capacity and measures was first introduced
in [8] by J. Droniou, A. Porretta and A. Prignet in the context of Sobolev spaces with constant
exponent. In their works, they proved a decomposition theorem for measures (in space and time) that
do not charge sets of null capacity. Using this result, they proved the existence and uniqueness of
renormalized solutions for nonlinear parabolic initial boundary-value problems with such measures
as right-hand sides.

Inspired by the approach developed in [8] our main goal here is to prove the existence and
uniqueness results in a larger class of measures which includes the L1 case, in the context of Sobolev
spaces with variable exponent. Namely, we prove (in the framework of renormalized solutions) that
the problem (Pµ) has a unique solution for every u0 ∈ L1(Ω) and for every measure µ which does
not charge sets of null p(.)-capacity. The notion of a p(.)-parabolic capacity and its connection with
measures are suitably developed in our previous work (cf. [15]).

The plan of the paper is the following. In the next section, we recall some basic notations and
properties of Lebesgue and Sobolev spaces with variable exponent. In section 3, we introduce our
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notion of a renormalized solution for the problem (Pµ). We also give some properties of the solution
and prove the existence and uniqueness of a renormalized solution.

2 Preliminaries

In this paper, we assume that

p(.) : Ω→ R is a continuous function such that 1 < p− ≤ p+ < +∞, (2.1)

where p− := ess infx∈Ω p(x) and p+ := ess supx∈Ω p(x).

The Lebesgue space with variable exponent Lp(.)(Ω) is the set of all measurable functions
u : Ω→ R for which the convex modular

ρp(.)(u) :=

∫
Ω
|u|p(x) dx

is finite (see [7]). If the exponent is bounded, i.e., if p+ < +∞, then the expression

‖u‖p(.) := inf{λ > 0 : ρp(.)(u/λ) ≤ 1}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space
(
Lp(.)(Ω), ‖.‖p(.)

)
is a separable

Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly convex, hence
reflexive and its dual space is isomorphic to Lp

′(.)(Ω), where 1
p(x) + 1

p′(x) = 1 for x ∈ Ω. Finally,
we have the Hölder type inequality∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
‖u‖p(.)‖v‖p′(.), (2.2)

which holds for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).

Let W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
and let ‖u‖1,p(.) := ‖u‖p(.) + ‖∇u‖p(.).

The space
(
W 1,p(.)(Ω), ‖.‖1,p(.)

)
is a separable and reflexive Banach space.

By C∞c (X) we denote the space of continuous functions with compact support in X . We also

set W 1,p(.)
0 (Ω) := C∞c (Ω)

W 1,p(.)(Ω)
.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular ρp(.) of the space Lp(.)(Ω). We have the following result.

Proposition 2.1 (see [9, 19]) Let u : Ω → R be a measurable function. Then, the following state-
ments hold:

(i) min
{
‖u‖p−p(.), ‖u‖

p+
p(.)

}
< ρp(.)(u) < max

{
‖u‖p−p(.), ‖u‖

p+
p(.)

}
if ‖u‖p(.) < +∞;

(ii) min

{
ρ

1
p−
p(.)(u), ρ

1
p+

p(.)(u)

}
< ρp(.)(u) < max

{
ρ

1
p−
p(.)(u), ρ

1
p+

p(.)(u)

}
if ρp(.)(u) < +∞;

(iii) ρp(.)
(
u/‖u‖p(.)

)
= 1 if 0 < ‖u‖p(.) < +∞.
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Following [1], we extend a variable exponent p : Ω → [1,+∞) to Q = [0, T ] × Ω by setting
p(t, x) = p(x) for all (t, x) ∈ Q. We may also consider the generalized Lebesgue space

Lp(.)(Q) =

{
u : Q→ R : u is measurable and such that

∫ ∫
Q
|u(t, x)|p(x) d(t, x) <∞

}
endowed with the norm

‖u‖Lp(.)(Q) := inf

{
λ > 0 :

∫ ∫
Q

∣∣∣∣u(t, x)

λ

∣∣∣∣p(x)

d(t, x) < 1

}
,

which shares the same properties as Lp(.)(Ω).

For the vector field a(., .) we assume that a(x, ξ) : Ω× RN → RN is a Carathéodory function
(i.e., a(., ξ) is measurable on Ω for every ξ ∈ RN and a(x, .) is continuous on RN for almost every
x in Ω) such that the following conditions hold.

• There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1

(
j(x) + |ξ|p(x)−1

)
(2.3)

for almost every x ∈ Ω and for every ξ ∈ RN , where j is a non-negative function in Lp
′(.)(Ω).

• The following inequalities hold(
a(x, ξ)− a(x, η)

)
.(ξ − η) ≥ 0 (2.4)

for almost every x ∈ Ω and for every ξ, η ∈ RN with ξ 6= η, and

a(x, ξ).ξ ≥ 1

C
|ξ|p(x) (2.5)

for almost every x ∈ Ω and for every ξ ∈ RN , where C > 0 is a constant independent of the
variables x and ξ.

In the sequel C will denote a non-negative constant that may change from line to line.

Now, let us recall the notion of a p(.)-parabolic capacity, developed in [15]. Set V = W
1,p(.)
0 (Ω)∩

L2(Ω) and endow V with the norm ‖.‖
W

1,p(.)
0 (Ω)

+ ‖.‖L2(Ω). Moreover, set

Wp(.)(0, T ) =
{
u ∈ Lp−(0, T ;V ) : ∇u ∈

(
Lp(.)(Q)

)N
, ut ∈ L(p−)′(0, T ;V ′)

}
and consider the norm ‖u‖Wp(.)(0,T ) = ‖u‖Lp− (0,T ;V )+‖∇u‖Lp(.)(Q)+‖ut‖L(p−)′ (0,T ;V ′)

. IfU ⊂ Q
is an open set, we define the p(.)-parabolic capacity of U as

Capp(.)(U) = inf
{
‖u‖Wp(.)(0,T ) : u ∈Wp(.)(0, T ), u > χU almost everywhere in Q

}
(we use the convention inf ∅ = +∞). The above definition can be extended to any Borel subset
B ⊂ Q by setting Capp(.)(B) = inf

{
Capp(.)(U) : U is an open subset of Q and B ⊂ U

}
.

We denote byMb(Q) the space of bounded measures on the σ-algebra of Borel subsets of Q
and byM+

b (Q) its subspace of non-negative measures. M0(Q) is defined as the set of bounded
measures µ satisfying µ(E) = 0 for every subset E ⊂ Q such that Capp(.)(E) = 0.
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The main property ofM0 (Q) is given by the following result.

Theorem 2.2 ([15]) Let µ be a bounded measure on Q which does not charge sets of null capacity.
Then, there exist f ∈ L1(Q), F ∈

(
Lp
′(.)(Q)

)N , g1 ∈ L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
and g2 ∈

Lp−
(
0, T ;W 1,p(.)(Ω) ∩ L2(Ω)

)
such that∫

Q
ϕdµ =

∫
Q
fϕdx dt+

∫
Q
F.∇ϕdx dt+

∫ T

0
〈g1, ϕ〉dt−

∫ T

0
〈ϕt, g2〉 dt

for all ϕ ∈ C∞c ([0, T ]× Ω).

We denote by 〈〈., .〉〉 the duality between
(
Wp(.)(0, T )

)′ and Wp(.)(0, T ). Recall that(
Wp(.)(0, T )

)′ ∩Mb(Q) is the set of all measures γ ∈
(
Wp(.)(0, T )

)′ such that there exists C > 0
satisfying |〈〈γ, ϕ〉〉| ≤ C‖ϕ‖L∞(Q) for all ϕ ∈ C∞c (Q).

Proposition 2.3 Every γ ∈
(
Wp(.)(0, T )

)′ ∩Mb(Q) can be identified by a unique linear transfor-
mation ϕ ∈ C∞c (Q) 7→

∫
Q ξ dγmeas, where γmeas belongs toMb(Q).

Proof. We define the positive linear functional F on Cc(Q) by F (ξ) = 〈〈γ, ξ〉〉. Since |F (ξ)| =
|〈〈γ, ξ〉〉| ≤ C‖ξ‖L∞(Q) for all ξ ∈ Cc(Q), by the Riesz representation theorem (see [10]) there
exists a unique γmeas ∈Mb(Q) such that the relation F (ξ) =

∫
Q ξ dγmeas holds for all ξ ∈ Cc(Q).

�

Proposition 2.4 Let g ∈ L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
. Then, there exists G = (g1, g2, · · · , gN ) ∈(

Lp
′(.)(Q)

)N such that

〈g, ϕ〉 =

∫ T

0

∫
Ω
G.∇ϕdx dt (2.6)

for any ξ ∈Wp(.)(0, T ).

Proof. We start by introducing the following functional space

H :=
{
f ∈ Lp−

(
0, T ;W

1,p(.)
0 (Ω)) : |∇f | ∈ Lp(.)(Q)

}
which, endowed with the norm

‖f‖H := ‖∇f‖Lp(.)(Q),

or the equivalent norm

‖f‖H := ‖f‖
Lp− (0,T ;W

1,p(.)
0 (Ω))

+ ‖∇f‖Lp(.)(Q),

is a separable and reflexive Banach space (see [20]). Moreover, we have

L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
↪→ H′,

where H′ is the dual space of H and one can represent the elements of H′ as follows: if T ∈ H′,
then there exists F = (f1, · · · , fn) ∈

(
Lp
′(.)(Q)

)N such that T = divx(F ) in the sense that

〈T, ξ〉 =

∫
Q
F.∇ξ dx dt
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for any ξ ∈ H. Consequently, since g ∈ L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
↪→ H′ and Wp(.)(0, T ) ↪→ H,

it follows that

〈g, ϕ〉 =

∫ T

0

∫
Ω
G.∇ϕdx dt

for any ξ ∈Wp(.)(0, T ). �

Consequently, Theorem 2.2 can be reformulated as follows.

Lemma 2.5 Let µ be a bounded measure on Q which does not charge sets of null p(.)-capacity.
Then, there exist f ∈ L1(Q), G1 ∈

(
Lp
′(.)(Q)

)N , and g2 ∈ Lp−(0, T ;V ) such that∫
Q
ϕdµ =

∫
Q
fϕdx dt+

∫
Q
G1.∇ϕdx dt−

∫ T

0
〈ϕt, g2〉 dt

for all ϕ ∈ C∞c ([0, T ]× Ω).

Moreover, from Proposition 2.4, Lemma 4.2 in [15] can be rewritten as follows.

Lemma 2.6 Let g ∈
(
Wp(.)(0, T )

)′. Then, there exist G1 ∈
(
Lp
′(.)(Q)

)N , g2 ∈ Lp−(0, T ;V ) and
g3 ∈ L(p−)′

(
0, T ;L2(Ω)

)
such that

〈〈g, u〉〉 =

∫
Q
G1.∇udx dt+

∫ T

0
〈ut, g2〉dt+

∫
Q
g3udx dt for all u ∈Wp(.)(0, T ).

Moreover, we can choose (G1, g2, g3) such that

‖G1‖(Lp′(.)(Q))N + ‖g2‖Lp− (0,T ;V ) + ‖g3‖L(p−)′ (0,T ;L2(Ω))
≤ C‖g‖(

Wp(.)(0,T )
)′ . (2.7)

Definition 2.7 For L ∈
(
Wp(.)(0, T )

)′, we say that (G1, g2, g3, h1, h2) is a pseudo-decomposition

of L if G1 ∈
(
Lp
′(.)(Q)

)N , g2 ∈ Lp−(0, T ;V ), g3 ∈ L(p−)′(0, T ;L2(Ω)), h1 ∈ Lp
′(.)(Q) and

h2 ∈ L2(0, T ;L2(Ω)), and

〈〈L,ϕ〉〉 =

∫ T

0
〈div(G1), ϕ〉 dt+

∫ T

0
〈ϕt, g2〉dt

+

∫
Q
g3ϕdx dt+

∫
Q
h1ϕdx dt+

∫
Q
h2ϕdx dt

(2.8)

for all ϕ ∈W 1,p(.)
0 (Ω).

Using Lemma 4.3 in [15] (see eq. (119) and eq. (120)), we get.

Proposition 2.8 Let ρn be a sequence of symmetric regularizing kernels in R × RN and let θ ∈
C∞c ([0, T ] × Ω). If (G1, g2, g3) is a decomposition of a measure ν according to Lemma 2.6, then
(θG1, θg2, θg3,−θG1∇θ, θtg2) is a pseudo-decomposition of µ = θν and

(
(θG1) ∗ ρn, (θg2) ∗

ρn, (θg3) ∗ ρn, (−θG1∇θ) ∗ ρn, (θtg2) ∗ ρn
)

is a pseudo-decomposition of µmeas ∗ ρn.
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For readers’ convenience, we provide the proof of the following result, which can also be found
in our previous article (cf. [15]).

Theorem 2.9 Let µ ∈ M0(Q). Then, there exist g ∈
(
Wp(.)(0, T )

)′ and h ∈ L1(Q) such that
µ = g + h in the sense that ∫

Q
ϕdµ = 〈〈g, ϕ〉〉+

∫
Q
hϕdx dt (2.9)

for all ϕ ∈ C∞c ([0, T ]× Ω).

Proof. Since µ belongs toM0(Q), by the Hahn–Banach decomposition of µ we have µ+, µ− ∈
M0(Q). So, we can assume that µ ∈ M+

0 (Q). Hence, from Proposition 4.1 in [15], there exist
γ ∈

(
Wp(.)(0, T )

)′ ∩M+
0 (Q) and a non-negative Borel function f ∈ L1(Q,dγmeas) such that

µ(B) =

∫
B
f dγmeas for all Borel subsets B of Q.

Since γmeas is a regular measure and C∞c (Q) is dense in L1(Q,dγmeas), there exists a sequence
(fn)n∈N in C∞c (Q) such that fn converges strongly to f in L1(Q,dγmeas). Moreover, we have∑∞

n=0 ‖fn − fn−1‖L1(Q,dγmeas) < ∞. Define νn = (fn − fn−1)γ ∈
(
Wp(.)(0, T )

)′. Then, thanks
to [15, Lemma 4.3], we infer that ν ∈

(
Wp(.)(0, T )

)′ ∩Mb(Q) and
∑∞

n=0 ν
meas
n =

∑∞
n=0(fn −

fn−1)γmeas strongly converges to µ in Mb(Q). Therefore, we can consider µ as a compactly
supported measure. Taking a standard sequence of mollifiers ρl ∈ D(R), from [15, Lemma 4.3],
we deduce that ρl ∗ νmeas

n strongly converges to νn in
(
Wp(.)(0, T )

)′. Hence, we can extract a
subsequence ln such that ‖ρln ∗ νmeas

n − νn‖(Wp(.)(0,T ))′ ≤ 1
2n .

Let us rewrite
∑n

k=0 ν
meas
k as follows:

n∑
k=0

νmeas
k =

n∑
k=0

ρlk ∗ ν
meas
k +

n∑
k=0

(νmeas
k − ρlk ∗ ν

meas
k ). (2.10)

In the following we denote respectively by mn and hn the first and second term in (2.10) and we
define the sequence gn by gn =

∑n
k=0(νk − ρlk ∗ νmeas

k ). So, mn is a measure with compact support,
hn is a function in C∞c (Q) and gn belongs to

(
Wp(.)(0, T )

)′. Take θn in C∞c (Q) so that θn ≡ 1 on
a neighborhood of

(
supp(f0) ∪ · · · ∪ supp(fn)

)
∩ supp(

∑n
k=0 ρlk ∗ νmeas

k ). Then, we can write
gn = θngn.

Since all terms in (2.10) have compact support, we can use ϕ ∈ C∞c ([0, T ]×Ω) as a test function
in (2.10) to obtain ∫

Q
ϕdmn =

∫
Q
hnϕdx dt+ 〈〈gn, ϕ〉〉. (2.11)

Since ∫
Q
ϕdgmeas

n =

∫
Q
θnϕdgmeas

n = 〈〈gn, θnϕ〉〉 = 〈〈gn, ϕ〉〉,

we have

‖h‖L1(Q) ≤
∞∑
k=0

‖ρlk ∗ ν
meas
k ‖L1(Q) ≤

∞∑
k=0

‖νmeas
k ‖Mb(Q) <∞,
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which implies the existence of a subsequence of (hn)n∈N converging to an element h in L1(Q). We
also have

‖gn‖ ≤
∞∑
k=0

‖νk − ρlk ∗ ν
meas
n ‖(Wp(.)(0,T ))′ ≤

∞∑
k=0

1

2k
<∞,

hence (hn)n∈N converges strongly to an element g in
(
Wp(.)(0, T )

)′. Then, it follows that

〈〈gn, ϕ〉〉+

∫
Q
hnϕdx dt→ 〈〈g, ϕ〉〉+

∫
Q
hϕdx dt (2.12)

for every ϕ ∈ C∞c ([0, T ]× Ω).

Now, we prove that
∫
Q ϕdmn converges to

∫
Q ϕdµ. For that we recall that the mappingm 7→ m̃,

where m̃(f) =
∫
Q f dm, is a continuous linear injection of Mb(Q) into

(
C(Q̄)

)′. Thus, if mn

strongly converges to µ inMb(Q), m̃n strongly converges in
(
C(Q̄)

)′ to µ̃, and so we have∫
Q
ϕdmn = m̃n(ϕ)→ µ̃(ϕ) =

∫
Q
ϕdµ. (2.13)

Combining (2.11)–(2.13), we get (2.9). �

Using the previous theorem, we prove the following approximation result, which will play an
important role in the proof of the existence of renormalized solutions of (Pµ).

Proposition 2.10 Let µ ∈M0(Q). Then, there exists a decomposition (f,G1, g2) of µ in the sense
of Lemma 2.5 and an approximation µn of µ satisfying

µn ∈ C∞c (Q), ‖µn‖Mb(Q) ≤ C

and ∫
Q
ϕdµn =

∫
Q
fnϕdx dt+

∫
Q
Gn1∇ϕdx dt−

∫ T

0
〈ϕt, gn2 〉 dt

for all ϕ ∈ C∞c ([0, T ]× Ω), where

fn ∈ C∞c (Q) and fn → f strongly in L1(Q),

Gn1 ∈
(
C∞c (Q)

)N and Gn1 → G1 strongly in
(
Lp
′(.)(Q)

)N ,

gn2 ∈ C∞c (Q) and gn2 → g2 strongly in Lp−(0, T ;V ).

Proof. We will prove that there exists a decomposition (f,G1, g2) of µ such that for all ε > 0 we
can find µε ∈ C∞c (Q) satisfying ‖µε‖L1(Q) ≤ C and∫

Q
ϕµεϕdx dt =

∫
Q
fεϕdx dt+

∫
Q
Gε1∇ϕdx dt−

∫ T

0
〈ϕt, gε2〉 dt

for all ϕ ∈ C∞c ([0, T ] × Ω) with fε ∈ C∞c (Q) such that ‖fε − f‖L1(Q) ≤ Cε, Gε1 ∈
(
C∞c (Q)

)N
such that ‖Gε1−G1‖(Lp′(.)(Q))N ≤ Cε, and gε2 ∈ C∞c (Q) such that ‖gε2− g2‖Lp− (0,T ;V ) ≤ Cε (with
C not depending on ε).

We use the notation introduced in the proof of Theorem 2.9. Recalling that νk = (fk− fk−1)γ ∈(
Wp(.)(0, T )

)′, we choose ξk ∈ C∞c (Q) such that ξk ≡ 1 on a neighborhood of supp(fk − fk−1).
Then, there exists C(ξk) > 0, depending only on ξk, such that
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• if E∈
{(
Lp
′(.)(Q)

)N
, Lp−(0, T ;V ), L(p−)′(0, T ;L2(Ω))

}
and h ∈ E, then ‖ξkh‖E ≤

‖h‖EC(ξk),

• if H1 ∈
(
Lp
′(.)(Q)

)N , then ‖H1∇ξk‖Lp′(.)(Q) ≤ C(ξk)‖H1‖(Lp′(.)(Q))N ,

• if h ∈ Lp−(0, T ;L2(Ω)), then ‖(ξk)th‖Lp− (0,T ;L2(Ω)) ≤ C(ξk)‖h‖Lp− (0,T ;L2(Ω)).

Instead of the index l chosen in the proof of Theorem 2.9, here we take lk such that ‖ρlk ∗ νmeas
n −

νn‖(Wp(.)(0,T ))′ ≤ 1/(2k(C(ξk) + 1)) and ξk ≡ 1 on a neighborhood of supp(ρlk ∗ νmeas
k ). With this

choice and taking (Bk
1 , b

k
2, b

k
3) as a decomposition of νk− ρlk ∗ νmeas

k given by Lemma 2.6, satisfying
moreover

‖Bk
1‖(Lp′(.)(Q))N + ‖bk2‖Lp− (0,T ;V ) + ‖bk3‖L(p−)′ (0,T ;L2(Ω))

≤ C‖ρlk ∗ ν
meas
k − νmeas

k ‖(Wp(.)(0,T ))′

with C not depending on k, we deduce that∑
k≥1

ξkB
k
1 converges to an element G1 in

(
Lp
′(.)(Q)

)N ,

∑
k≥1

ξkb
k
2 converges to an element g2 in Lp−(0, T ;V ),

∑
k≥1

ξkb
k
3 converges to an element f1 in L(p−)′(0, T ;L2(Ω)),

∑
k≥1

Bk
1∇ξk converges to an element f2 in Lp

′(.)(Q),

∑
k≥1

(ξk)tb
k
2 converges to an element f3 in Lp−(0, T ;L2(Ω)).

(2.14)

Notice also that the last three convergences imply in particular the convergence in L1 (Q). We know
that νk−ρlk ∗νmeas

k = ξk(νk−ρlk ∗νmeas
k ) ∈

(
Wp(.)(0, T )

)′ and that (Bk
1 , b

k
2, b

k
3) is a decomposition

of νk − ρlk ∗ νmeas
k . Then, by Remark 2.7 we deduce that (ξkB

k
1 , ξkb

k
2, ξkb

k
3,−Bk

1∇ξk, (ξk)tbk2) is a
pseudo-decomposition of νk − ρlk ∗ νmeas

k .

Since from the definition of the sequence (gn)n given in the proof of Theorem 2.9 we have

〈〈gn, ϕ〉〉 =

〈〈
n∑
k=0

(νk − ρlk ∗ ν
meas
k ), ϕ

〉〉

for all ϕ ∈ C∞c ([0, T ]× Ω), using (2.11) it follow that∫
Q
ϕdmn =

∫
Q
ϕhn dx dt+

∫ T

0

〈
div

(
n∑
k=0

ξkB
k
1

)
, ϕ

〉
dt

+

∫ T

0

〈
ϕt,

n∑
k=0

ξkb
k
2

〉
dt+

∫ T

0

n∑
k=0

ξkb
k
3ϕdx dt

+

∫
Q

n∑
k=0

(
−Bk

1∇ξk
)
ϕdx dt+

∫
Q

n∑
k=0

(ξk)t b
k
2ϕdx dt
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for all ϕ ∈ C∞c ([0, T ] × Ω). Hence, using (2.14) and the fact that mn converges to µ and hn
converges to h, we obtain∫

Q
ϕdµ =

∫
Q

(h+ f1 − f2 + f3)ϕdx dt+

∫ T

0
〈div(G1), ϕ〉dt−

∫ T

0
〈ϕt, g2〉 dt,

which is equivalent to saying that (f = (h+ f1 +F2− f2 + f3),div(G1), g2) is a decomposition of
µ in the sense of Lemma 2.5.

Let ε > 0 be fixed. Taking n large enough, we have∥∥∥∥∥
n∑
k=0

ξkB
k
1 −G1

∥∥∥∥∥
(Lp′(.)(Q))N

≤ ε, (2.15)

∥∥∥∥∥
n∑
k=0

ξkb
k
2 − g2

∥∥∥∥∥
Lp− (0,T ;V )

≤ ε (2.16)

and ∥∥∥∥∥hn +

n∑
k=0

ξkb
k
3 −

n∑
k=0

Bk
1∇ξk +

n∑
k=0

(ξk)tb
k
2 − f

∥∥∥∥∥
L1(Q)

≤ ε. (2.17)

Since νk − ρlk ∗ νmeas
k = ξk(νk − ρlk ∗ νmeas

k ) and (Bk
1 , b

k
2, b

k
3) is its decomposition, thanks to

Remark 2.7,
(
(ξkB

k
1 ) ∗ ρj , (ξkbk2) ∗ ρj , ((ξk)tbk3) ∗ ρj , (−Bk

1∇ξk) ∗ ρj , ((ξk)tbk2) ∗ ρj
)

represents a
pseudo-decomposition of (νk − ρlk ∗ νmeas

k ) ∗ ρj for j large enough. Now, we take jn such that for
all k ∈ {0, · · · , n} we have∥∥(ξkB

k
1 ) ∗ ρjn − ξkBk

1

∥∥
(Lp′(.)(Q))N

≤ ε

n+ 1
, (2.18)∥∥(ξkb

k
2) ∗ ρjn − ξkbk2

∥∥
Lp− (0,T ;V )

≤ ε

n+ 1
(2.19)

and ∥∥(ξkb
k
3) ∗ ρjn − ξkbk3

∥∥
L1(Q)

+
∥∥(Bk

1∇ξk) ∗ ρjn −Bk
1∇ξk

∥∥
L1(Q)

+
∥∥((ξk)tbk2) ∗ ρjn − (ξk)tb

k
2

∥∥
L1(Q)

≤ ε

n+ 1
.

(2.20)

Let us define Gε1 =
∑n

k=0(ξkB
k
1 ) ∗ ρjn ∈

(
C∞c (Q)

)N . Then, by (2.15) and (2.18), we have
‖Gε1 − G1‖(Lp′(.)(Q)N ≤ 2ε. If we set gε2 = −

∑n
k=0(ξkb

k
2) ∗ ρjn ∈ C∞c (Q), then using (2.16)

and (2.19) we obtain ‖gε2 − g2‖Lp− (0,T ;V ) ≤ 2ε. Now, if we define fε = hn +
∑n

k=0(ξkb
k
3) ∗

ρjn −
∑n

k=0(Bk
1∇ξk) ∗ ρjn +

∑n
k=0((ξk)tb

k
2) ∗ ρjn ∈ C∞c (Q), then by (2.17) and (2.20) we get

‖fε − f‖L1(Q) ≤ ε.

We define µε = fε + div(Gε1) + (gε2)t ∈ C∞c (Q). It remains to prove that ‖µε‖L1(Q) ≤ C

with C not depending on ε. To see this, we recall that
(
(ξkB

k
1 ) ∗ ρjn , (ξkbk2) ∗ ρjn ,

(
(ξk)tb

k
3

)
∗

ρjn , (−Bk
1∇ξk) ∗ ρjn ,

(
(ξk)tb

k
2

)
∗ ρjn

)
is a pseudo-decomposition of (νk − ρlk ∗ νmeas

k ) ∗ ρjn so that

µε = hn +

n∑
k=0

(νmeas
k − ρlk ∗ ν

meas
k ) ∗ ρjn

= hn +

(
n∑
k=0

(νmeas
k − ρlk ∗ ν

meas
k )

)
∗ ρjn = hn + gmeas

n ∗ ρjn .
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Thanks to (2.10), we have gmeas
n = mn − hn. Then, it follows that ‖µε‖L1(Q) ≤ 2‖hn‖L1(Q) +

‖mn‖L1(Q). Since hn converges in L1(Q) and mn converges inMb(Q), we infer that 2‖hn‖L1(Q) +
‖mn‖L1(Q) is bounded. This implies that ‖µε‖L1(Q) ≤ C with C not depending on ε. �

3 The initial boundary value problem with data inM0(Q)

3.1 Definition and properties of renormalized solutions

In this part of the work we define a new concept of solution for the problem (Pµ) and prove the
uniqueness result. We work with a measure µ which does not charge sets of null p(.)-parabolic
capacity. Recall that such a measure belongs to L1(Q) +

(
Wp(.)(0, T )

)′. And if we deal with a data
which belongs to L1(Q), the notion of a solution in the sense of distribution is not strong enough to
guarantee uniqueness of solutions. To overcome this difficulty, we will work in a larger space than
the Sobolev space in which the concept of a gradient is meaningful.

For any k > 0, we define the truncation function Tk at height k by the formula

Tk (s) = max{−k,min{k, s}} for s ∈ R.

Moreover, the primitive of the truncation function at height k is denoted by Θk, that is, Θk : R→ R
is given by

Θk(r) =

∫ r

0
Tk(s) ds =

{
r2

2 , if |r| ≤ k,

k|r| − k2

2 , if |r| ≥ k.

It is not difficult to see that for every k > 0 and all s ∈ R we have

Tk(s)
2

2
≤ Θk(s) ≤ k|s|.

We set

T 1,p(.)
0 (Q) =

{
u : Ω× (0, T ]→ R :

u is measurable and Tk(u) ∈ Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
with ∇Tk(u) ∈

(
Lp(.)(Q)

)N for every k > 0

}
.

Next, we define the weak gradient of a measurable function u ∈ T 1,p(.)
0 (Q).

Proposition 3.1 (cf. [2]) For every measurable function u ∈ T 1,p(.)
0 (Q) there exists a unique mea-

surable function v : Q → RN , which we call the weak gradient of u and denote v = ∇u, such
that

∇Tk(u) = vχ{|u|≤k} almost everywhere inQ and for every k > 0.

If u belongs to L1(0, T ;W 1,1
0 (Ω)), then this gradient coincides with the usual gradient in the

distributional sense.
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We introduce the following concept of a renormalized solution for the problem (Pµ).

Definition 3.2 Let u0 ∈ L1(Ω), µ ∈ M0(Q) and let (f,G1, g2) be a decomposition of µ given in
Theorem 2.2. A measurable function u is a renormalized solution of (Pµ) if

u− g2 ∈ L∞
(
0, T ;L1(Ω)

)
∩ T 1,p(.)

0 (Q), (3.1)

lim
n→∞

∫
{n≤|u−g2|≤n+1}

|∇u|p(x) dx dt = 0, (3.2)

and for every S ∈W 2,∞(R) such that S′ has compact support,

(S(u− g2))t − div(a(x,∇u)S′(u− g2)) + S′′(u− g2)a(x,∇u)∇(u− g2)

= S′(u− g2)f +G1S
′′(u− g2)∇(u− g2)− div(G1S

′(u− g2)) in
(
C∞c (Q)

)′ (3.3)

with
S(u− g2)(0) = S(u0) in L1(Ω). (3.4)

Remark 3.3 Notice that the distributional meaning of each term in (3.3) is well-defined. Indeed,
since S′ has compact support, there exists M > 0 such that supp(S′) ⊂ (−M,M). Then, it follows
that S′(u− g2) = S′′(u− g2) = 0 for |u− g2| ≥M . Moreover, by (3.1) we have∇TM (u− g2) ∈(
Lp(.)(Q)

)N . Therefore, everywhere in (3.3) we can replace ∇(u − g2) by ∇TM (u − g2) ∈(
Lp(.)(Q)

)N and ∇u by ∇TM (u − g2) + ∇g2 ∈
(
Lp(.)(Q)

)N . (Recall that a(., 0) = 0.) Since

S(u− g2) = S(TM (u− g2)) ∈ Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, from (3.3) we deduce that (S(u− g2))t ∈

L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
+ L1(Q), which implies that S(u− g2) belongs to C(0, T ;L1(Ω)) (see

[16]). Thus, (3.4) is well-defined. Notice also that since (S(u−g2))t ∈ L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
+

L1(Q), we can use as test functions in (3.3) not only functions in
(
C∞c (Q)

)′ but also functions in

Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
∩ L∞(Q). Using the fact that g2 ∈ Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
and that u− g2

is almost everywhere finite, one can show that (3.2) is equivalent to

lim
n→∞

∫
{n≤|u−g2|≤n+1}

|∇(u− g2)|p(x) dx dt = 0. (3.5)

In what follows, we need the following auxiliary functions of real variable.

Definition 3.4 We define:

θn(s) = T1(s− Tn(s)), hn(s) = 1− |θn(s)|, Sn(s) =

∫ s

0
hn(r) dr for s ∈ R.

3.2 Proofs of the existence and uniqueness theorems

First, we introduce the approximate problems. Let µn ∈ C∞c (Ω) be an approximation of µ given by
Proposition 2.10 and let u0n ∈ C∞c (Ω) be strongly convergent to u0 inL1(Ω) such that ‖u0n‖L1(Ω) ≤
‖u0‖L1(Ω). Then, we consider the approximate problem

(un)t − div(a(x,∇un)) = µn in (0, T )× Ω,
un = 0 on (0, T )× ∂Ω,
un(0) = u0n in Ω.

(3.6)
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Let
H :=

{
f ∈ Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
: |∇f | ∈ Lp(.)(Q)

}
.

Thanks to [14, Proposition 4.7], there exists a unique weak solution un for the Cauchy–Dirichlet
problem (3.6) in the sense that un ∈ H and

(un)t − div(a(x,∇un)) = µn in
(
C∞c (Q)

)′ (3.7)

and
un(0) = u0n.

Then, it follows that∫ t

0
〈(un)t, ϕ〉 ds+

∫ t

0

∫
Ω
a(x,∇un)ϕdx ds =

∫ t

0

∫
Ω
ϕµn dx ds (3.8)

for any ϕ ∈ C∞c (Q) and any t ∈ (0, T ). Moreover, from Proposition 2.10, there exist gn1 , g
n
2 , fn ∈

C∞c (Q) such that∫ t

0
〈(un − gn2 )t, ϕ〉 ds+

∫ t

0

∫
Ω
a(x,∇un)∇ϕdx ds =

∫ t

0

∫
Ω
fnϕdx ds

+

∫ t

0

∫
Ω
Gn1∇ϕdx ds

(3.9)

for any ϕ ∈ C∞c (Q) and any t ∈ (0, T ). Since the space C∞c (Q) is dense inH (see [1]), the equality
(3.9) remains true for all ϕ ∈ H.

Now, let us give some a priori estimates on un.

Proposition 3.5 Let un be the solution of (3.6). Then, we have

(i) ‖un‖L∞(0,T ;L1(Ω)) ≤ C,

(ii)
∫ T

0
‖∇Tk(un)‖p−p(.) dt ≤ C,

(iii) ‖un − gn2 ‖L∞(0,T ;L1(Ω)) ≤ C,

(iv)
∫ T

0
‖∇Tk(un − gn2 )‖p−p(.) dt ≤ C,

(v) lim
h→∞

(
sup
n

∫
{h≤|un−gn2 |≤h+k}

|∇un|p(x) dx dt

)
= 0 for every k > 0.

Moreover, there exists a measurable function u such that u − g2 belong to L∞
(
0, T ;L1(Ω)

)
∩

T 1,p(.)
0 (Q) and, up to a subsequence, for any k > 0:

un → u a.e. in Q,

Tk(un − gn2 )→ Tk(u− g2) weakly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
a.e. in Q.

(3.10)

Finally, for every k > 0 we have

lim
h→∞

∫
{h≤|un−gn2 |≤h+k}

|∇u|p(x) dx dt = 0. (3.11)
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Proof of Proposition 3.5. We take Tk(un) as a test function in (3.6) and we integrate over (0, t) to
obtain ∫

Ω
Θk(un)(t) dx+

∫ t

0

∫
Ω
a(x,∇un)∇Tk(un) dx ds

=

∫ t

0

∫
Ω
µnTk(un) dx ds+

∫
Ω

Θk(u0n) dx.

(3.12)

Now, we use the hypothesis (2.5) and the properties of Θk to get∫
Ω

Θk(un)(t) dx+
1

C

∫ t

0

∫
Ω
|∇Tk(un)|p(x) dx ds = k

(
‖µn‖L1(Q) + ‖u0n‖L1(Q)

)
. (3.13)

Since Θk(s) ≥ 0 and |s| − 1 ≤ |Θ1(s)| ≤ Θk(s), we have∫
Ω
|un(t)|dx+

1

C

∫ t

0

∫
Ω
|∇Tk(un)|p(x) dx ds

= k
(
‖µn‖L1(Q) + ‖u0n‖L1(Q)

)
+ meas(Ω).

(3.14)

Finally, taking the supremum over [0, T ] and using the fact that ‖µn‖L1(Q), ‖u0n‖L1(Q) and Ω are
bounded we deduce that

‖un‖L∞(0,T ;L1(Ω)) ≤ C(k + 1) and
∫ T

0
|∇Tk(un)|p− dt ≤ C(k + 1). (3.15)

Combining (3.15) with Proposition 2.1 and the Hölder inequality type, we deduce that∫ T

0
‖∇Tk(un)‖p−p(.) dt

≤
∫ T

0
max

{∫
Ω
|∇Tk(un)|p(x) dx,

(∫
Ω
|∇Tk(un)|p(x) dx

) p−
p+

}
dt

≤
∫ T

0

∫
Ω
|∇Tk(un)|p(x) dx dt+ T 1−p−/p+

(∫ T

0

∫
Ω
|∇Tk(un)|p(x) dx dt

) p−
p+

≤ C(k + 1) + T 1−p−/p+(C(k + 1))
p−
p+ .

(3.16)

For the estimates on un − gn2 , we take Tk(un − gn2 ) as a test function in (3.8) and we use the
integration by parts formula, while having in mind that un(0)− gn2 (0) = un(0) = u0n. Because gn2
has compact support, this gives∫

Ω
Θk(un − gn2 )(t) dx+

∫ t

0

∫
Ω
a(x,∇un)∇unχ{|un−gn2 |≤k} dx ds

≤
∫

Ω
Θk(u0n) dx+

∫ t

0

∫
Ω
fnTk(un − gn2 ) dx ds

+

∫ t

0

∫
Ω
a(x,∇un)∇gn2χ{|un−gn2 |≤k} dx ds

+

∫ t

0

∫
Ω
Gn1∇unχ{|un−gn2 |≤k} dx ds−

∫ t

0

∫
Ω
Gn1∇gn2χ{|un−gn2 |≤k} dx ds.

(3.17)
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Therefore, using the hypothesis (2.3), (2.5) and the Young inequality, we obtain

∫
Ω

Θk(un − gn2 )(t) dx+
1

2C

∫ t

0

∫
Ω
|∇un|p(x)χ{|un−gn2 |≤k} dx ds

≤ k
(
‖u0n‖L1(Q) + ‖fn‖L1(Q)

)
+ C1

∫ T

0

∫
Ω

(
jp
′(x) + |Gn1 |p

′(x) + |Fn|p
′(x) + |∇gn2 |p(x)

)
.

(3.18)

As Gn1 is bounded in
(
Lp
′(.)(Q)

)N , ∇gn2 is bounded in
(
Lp(.)(Q)

)N , fn is bounded in L1(Q) and
u0n is bounded in L1(Q), we deduce that

∫
Ω

Θk(un − gn2 )(t) dx+
1

2C1

∫ t

0

∫
Ω
|∇un|p(x)χ{|un−gn2 |≤k} dx ds ≤ C(k + 1). (3.19)

This implies that

∫
Ω
|un − gn2 |(t) dx+

1

2C1

∫ t

0

∫
Ω
|∇un|p(x)χ{|un−gn2 |≤k} dx ds ≤ C(k + 1) + meas(Ω). (3.20)

Consequently, we have

‖un − gn2 ‖L∞(0,T ;L1(Ω)) ≤ C(k + 2) (3.21)

and ∫ t

0

∫
Ω
|∇un|p(x)χ{|un−gn2 |≤k} dx ds ≤ C(k + 2), (3.22)

which implies that ∫ t

0

∫
Ω
|∇Tk(un − g2)|p(x) dx ds ≤ C(k + 2). (3.23)

Similarly as in (3.16), we obtain

∫ T

0
‖∇Tk(un − g2)‖p−p(.) dt ≤ C(k + 2) + T 1−p−/p+(C(k + 2))

p−
p+ . (3.24)

For the condition (v), we consider the function ψ(s) = Tk(s− Th(s)) since

∫ t

0
〈(un − gn2 )t, ψ(un − gn2 )〉ds

=

∫ t

0
〈(un − gn2 − Th(un − gn2 ))t,Θ

′
k(un − gn2 − Th(un − gn2 ))〉 ds

+

∫ t

0
〈(Th(un − gn2 ))t,Θ

′
k(un − gn2 − Th(un − gn2 ))〉 ds

=

∫ t

0
〈(un − gn2 − Th(un − gn2 ))t,Θ

′
k(un − gn2 − Th(un − gn2 ))〉 ds.

(3.25)
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Then, taking ψ(un − gn2 ) as a test function in (3.9) we get∫
Ω

Θk(un − gn2 − Th(un − gn2 ))(t) dx+

∫ t

0

∫
Ω
a(x,∇un)∇unχ{h≤|un−gn2 |≤k+h} dx ds

≤
∫

Ω
Θk(u0n − Th(u0n)) dx+

∫ t

0

∫
Ω
fnψ(un − gn2 ) dx ds

+

∫ t

0

∫
Ω
a(x,∇un)∇gn2χ{h≤|un−gn2 |≤k+h} dx ds

+

∫ t

0

∫
Ω
Gn1 .∇unχ{h≤|un−gn2 |≤k+h} dx ds−

∫ t

0

∫
Ω
Gn1 .∇gn2χ{h≤|un−gn2 |≤h+k} dx ds.

(3.26)

Using the Young inequality and the assumptions (2.3)–(2.5), we deduce that∫
Ω

Θk(un − gn2 − Th(un − gn2 ))(t) dx+
1

2C1

∫ t

0

∫
Ω
|∇un|p(x)χ{h≤|un−gn2 |≤k+h} dx ds

≤ k
∫
{|u0n|>h}

|u0n| dx+ k

∫
{|un−gn2 |>h}

|fn| dx dt

+ C

∫
{|un−gn2 |>h}

(
jp
′(x) + |Gn1 |p

′(x) + |∇gn2 |p(x)
)

dx dt.

(3.27)

We know that the sequence un − gn2 is bounded in L∞
(
0, T ;L1(Ω)). Then,

lim
h→∞

sup
n

meas{|un − gn2 | > h} = 0. (3.28)

Consequently, as the sequences fn, jp
′(.), |Gn1 |p

′(.), |∇gn2 |p(.) and u0n are equi-integrable, from (3.27)
we deduce that

lim
h→∞

(
sup
n

∫
{h≤|un−gn2 |≤k+h}

|∇un|p(x) dx dt

)
= 0. (3.29)

For the proof of the last part of Proposition 3.5, we will show that un converges (up to subse-
quences) almost everywhere in Q to a measurable function u. We take a non-decreasing function
τk in C2(R) such that τk(s) = s for |s| ≤ k

2 and τk(s) = sign(s)k for |s| > k. If we multiply
pointwise equation (3.6) by τ ′k(un − gn2 ) or if we take τ ′k(un − gn2 )ψ as a test function in (3.9) with
ψ ∈ C∞c (Q), we get

(τk(un − gn2 ))t − div(a(x,∇un))τ ′k(un − gn2 ) + a(x,∇un)∇(un − gn2 )τ ′′k (un − gn2 )

= τ ′k(un − gn2 )fn − div(Gn1τ
′
k(un − gn2 )) + τ ′′k (un − gn2 )Gn1 .∇(un − gn2 ).

(3.30)

Since τk has compact support and |∇un|p(.)χ{|un−gn2 |≤k} is bounded in L1(Q), we can use the hy-
pothesis (2.4) to prove that the sequence a(x,∇un)∇(un−gn2 )τ ′′k (un−gn2 ) is bounded in L1(Q) and
so is τ ′′k (un−gn2 )(Gn1 )∇(un−gn2 ) (sinceGn1 is bounded inLp

′(.)(Q)). By the same arguments we can
prove that the sequences (a(x,∇un))τ ′k(un− gn2 ) and Gn1τ

′
k(un− gn2 ) are bounded in

(
Lp
′(.)(Q)

)N .
Hence, by (3.27) it follows that (τk(un − gn2 ))t is bounded in L(p−)′

(
0, T ;W 1,p′(.)(Ω)

)
+ L1(Q).

Since we have just proven that τk(un − gn2 ) is bounded in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, a classical com-

pactness result (see [17]) allows us to deduce that τk(un − gn2 ) is compact in L1(Q). Thus, up to
a subsequence, it also converges in measure. Let then σ > 0, and given ε > 0 let us fix h such
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that meas{|un − gn2 | ≤ h
2} ≤ ε for every n. Since τh(un − gn2 ) converges in measure, for n and m

sufficiently large we have

meas
{
|τh(un − gn2 )− τh(um − gm2 )| > σ

}
≤ ε.

This implies that

meas
{
|(un − gn2 )− (um − gm2 )| > σ

}
≤ meas

{
|un − gn2 | ≤ h

2

}
+ meas

{
|um − gm2 | ≤ h

2

}
+ meas

{
|τh(un − gn2 )− τk(um − gm2 )| > σ

}
.

Hence, the choice of h implies for n and m sufficiently large that

meas
{
|(un − gn2 )− (um − gm2 )| > σ

}
≤ 3ε,

which proves that the sequence un−gn2 is a Cauchy sequence in measure and thus, up to a subsequence,
converges almost everywhere to some measurable function inQ. Moreover, we know that gn2 strongly
converges to g2 in Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
. Therefore, un = (un − gn2 ) + gn2 almost everywhere

converges to some function u in Q. Consequently, the sequence Tk(un − gn2 ) weakly converges
to Tk(u − g2) in Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
. Thanks to (3.14) u ∈ L∞

(
0, T ;L1(Ω)

)
(indeed, apply

Fatou’s lemma to the first term on the left-hand side of (3.14)), and Tk(un) weakly converges to
Tk(u) in Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
.

Now, we prove the last part of Proposition 3.5. For that we use the function ψ(s) = Tk(s−Th(s))
to obtain the following estimate∫

Q
|∇ψ(un − gn2 )|p(x) dx dt =

∫
{k≤|un−gn2 |k+h}

|∇ψ(un − gn2 )|p(x) dx dt

≤
∫
Q
|∇Tk+h(un − gn2 )|p(x) dx dt ≤ C,

which implies that (ψ(un − gn2 ))n is bounded in W 1,p(.)
0 (Q). Then, up to a subsequence, we infer

that (ψ(un − gn2 ))n weakly converges to vk in W 1,p(.)
0 (Q) and, by compact embedding it converges

strongly to vk in Lp−(Q) and a.e. in Q. Using the continuity of ψ and the fact that un−gn2 → u−g2

a.e. in Q, we deduce that ψ(un − gn2 )→ ψ(u− g2) a.e. in Q, and vk = ψ(u− g2) a.e. in Q.

In Proposition 2.1, we replace Ω by Q to obtain∫
Q
|∇ψ(u− g2)|p(x) dx dt ≤ ‖∇ψ(u− g2)‖p+

Lp(.)(Q)
+ ‖∇ψ(u− g2)‖p−

Lp(.)(Q)

≤ C
(
‖ψ(u− g2)‖p+

W
1,p(.)
0 (Q)

+ ‖ψ(u− g2)‖p−
W

1,p(.)
0 (Q)

)
.

(3.31)

Since (ψ(un − gn2 ))n weakly converges to vk in W 1,p(.)
0 (Q), we have

‖∇ψ(u− g2)‖
W

1,p(.)
0 (Q)

≤ lim inf
n→∞

‖∇ψ(un − gn2 )‖
W

1,p(.)
0 (Q)

. (3.32)
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From (3.31)–(3.32) and Proposition 2.1, we have∫
Q
|∇ψ(u− g2)|p(x) dx dt

≤ C lim inf
n→∞

(
‖ψ(un − gn2 )‖p+

W
1,p(.)
0 (Q)

+ ‖ψ(un − gn2 )‖p−
W

1,p(.)
0 (Q)

)
≤ C lim inf

n→∞

(
‖∇ψ(un − gn2 )‖p+

Lp(.)(Q)
+ ‖∇ψ(un − gn2 )‖p−

Lp(.)(Q)

)
≤ C lim inf

n→∞

(
max

{∫
Q
|∇ψ(un − gn2 )|p(x) dx dt,

(∫
Q
|∇ψ(un − gn2 )|p(x) dx dt

) p+
p−

}

+ max

{∫
Q
|∇ψ(un − gn2 )|p(x) dx dt,

(∫
Q
|∇ψ(un − gn2 )|p(x) dx dt

) p−
p+

})

≤ C lim inf
n→∞

(∫
Q
|∇ψ(un − gn2 )|p(x) dx dt+

(∫
Q
|∇ψ(un − gn2 )|p(x) dx dt

) p+
p−

+

(∫
Q
|∇ψ(un − gn2 )|p(x) dx dt

) p−
p+

)
.

(3.33)

Also, we have∫
Q
|∇ψ(un − gn2 )|p(x) dx dt ≤ C

∫
{h≤|un−gn2 |≤h+k}

(
|∇un|p(x) + |∇g2

n|p(x)
)

dx dt. (3.34)

Combining (3.29) and (3.33)–(3.34), we obtain

lim
h→∞

∫
{h≤|un−gn2 |≤h+k}

|∇(un − gn2 )|p(x) dx dt = 0. (3.35)

This ends the proof of Proposition 3.5. �

In order to prove the strong convergence of Tk(un − gn2 ) in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
we follow

the method introduced in [16]. So, need to recall the following definition of a time-regularization of
Tk(u), which was first introduced in [11]. Let zν be a sequence of functions such that:

• zν ∈W 1,p(.)
0 (Ω) ∩ L∞(Ω) and ‖zν‖L∞(Ω) ≤ k,

• zν → Tk(u0) a.e. in Ω as ν tends to infinity,

• 1
ν ‖zν‖W 1,p(.)

0 (Ω)
→ 0 as ν →∞.

For k > 0 fixed and ν > 0, (Tk(u))ν is the unique solution of the problem
∂Tk(u)ν
∂t

= ν(Tk(u)− Tk(u)ν) in D′(Q),

Tk(u)ν(0) = zν in Ω.
(3.36)

Then, (Tk(u))ν ∈ Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
∩ L∞(Q) and following [11] we can prove that

∂Tk(u)ν
∂t

∈ Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
∩ L∞(Q), ‖(Tk(u))ν‖L∞(Q) ≤ k. (3.37)

Moreover, Tk(u)ν → Tk(u) and a.e. in Q, weak* in L∞(Q) and strongly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
.
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Proposition 3.6 Let un be the solution of (3.6), where µn is given by Proposition 2.10, and let u be
given by Proposition 3.5. Then, there exists a subsequence not relabelled such that

Tk(un − gn2 )→ Tk(u− g2) strongly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
for any k > 0. (3.38)

Proof. We consider a subsequence un such that un converges almost everywhere to u in Q, where
u is given by Proposition 3.5. We set vn = un − gn2 and v = u − g2. Thanks to Proposition 3.5
v ∈ L∞

(
0, T ;L1(Ω)

)
and it is almost everywhere finite. Moreover, Tk(v) ∈ Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
for every k > 0 and

Tk(vn)→ Tk(v) weakly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
a.e. in Q. (3.39)

Let (Tk(v))ν be the approximation of Tk(v) given by (3.36). We define the function wn by

wn = T2k(vn − Th(vn) + Tk(vn)− Tk(v)ν) with h > 2k.

We have
∇wn = ∇(vn − Th(vn) + Tk(vn)− Tk(v)ν)χEn ,

where En =
{
|vn − Th(vn) + Tk(vn) − Tk(v)ν | ≤ 2k

}
. Notice that ∇wn = 0 if |vn| > h + 2k.

From Proposition 3.5, wn is bounded in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, and since vn converges almost every

where to v, we deduce that

wn → T2k(vn − Th(vn) + Tk(vn)− Tkv)ν) weakly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
a.e. in Q. (3.40)

In the following, we setM = h+4k and we denote by ω (n, ν, h) all quantities (possibility different)
such that

lim
h→∞

lim
ν→∞

lim sup
n→∞

|ω(n, ν, h)| = 0.

Similarly, we will write ω(n) or ω(n, ν) to mean that the limits are taken only with respect to the
specified parameters. Taking wn as a test function in (3.8), we obtain∫ T

0
〈(vn)t, wn〉 dt+

∫
Q
a(x,∇un)∇wn dx dt =

∫
Q
fnwn dx dt+

∫
Q
Gn1 .∇wn dx dt. (3.41)

Therefore, from (3.40) we get

lim
n→∞

∫
Q
fnwn dx dt =

∫
Q
fT2k(v − Th(v) + Tk(v)− Tk(v)ν) dx dt,

lim
n→∞

∫
Q
Gn1∇wn dx dt =

∫
Q
G1∇T2k(v − Th(v) + Tk(v)− Tk(v)ν) dx dt.

Moreover, since Tk(v)ν converges to Tk(v) strongly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
and almost every-

where in Q as ν tends to infinity, we have

lim
n→∞

∫
Q
fnwn dx dt =

∫
Q
fT2k(v − Th(v)) dx dt,

lim
n→∞

∫
Q
Gn1∇wn dx dt =

∫
Q
G1∇(T2k(v − Th(v))) dx dt.
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From the Lebesgue theorem we obtain limn→∞
∫
Q fnwn = 0. We have

∫
Q
G1∇(T2k(v − Th(v))) dx dt =

∫
Q
∇vχ{h≤|v|≤h+2k} dx dt.

For simplicity, let us also set

J1 :=

(∫
{h≤|v|≤h+2k}

|∇v|p(x) dx dt

) 1
p+

,

J2 :=

(∫
{h≤|v|≤h+2k}

|∇v|p(x) dx dt

) 1
p−
,

J3 :=

(∫
{h≤|v|≤h+2k}

|∇(u− g2)|p(x) dx dt

) 1
p+

,

J4 :=

(∫
{h≤|v|≤h+2k}

|∇(u− g2)|p(x) dx dt

) 1
p−
.

Then, using the Hölder inequality and Proposition 2.1 we obtain∫
Q
G1∇vχ{h≤|v|≤k+h} dx dt

≤ 2‖G1‖(Lp′(.)(Q))N ‖∇vχ{h≤|v|≤h+2k}‖Lp(.)(Q)

≤ 2‖G1‖(Lp′(.)(Q))N max{J1, J2}

≤ 2‖G1‖(Lp′(.)(Q))N max{J3, J4}.

(3.42)

Therefore, by (3.42) we deduce that

lim
h→∞

∫
Q
G1∇(T2k(v − Th(v))) dx dt = 0.

Hence, we can write ∫
Q
fnwn dx dt+

∫
Q
Gn1∇wn dx dt = ω(n, ν, h). (3.43)

For the second term in (3.41), we have∫
Q
a(x,∇un)∇wn dx dt =

∫
Q
a(x,∇unχ{|vn|≤M})∇wn dx dt,

because∇wn = 0 if |vn| ≥M = h+ 2k. Now, we use the fact that

∇wn = ∇(vn − Th(vn) + Tk(vn)− Tk(v)ν)χEn with h > 2k
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to obtain∫
Q
a(x,∇un)∇wn dx dt

=

∫
Q
a(x,∇unχ{|vn|≤k})∇(vn − Tk(v)ν) dx dt

+

∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(vn − Th(vn))χEn dx dt

−
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇Tk(v)νχEn dx dt := I1 + I2 + I3.

(3.44)

Let us estimate I2. Since vn − Th(vn) = 0 if |vn| ≤ h, we have∣∣∣∣∣
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(vn − Th(vn))χEn dx dt

∣∣∣∣∣
≤
∫
Q
|a(x,∇unχ{|vn|≤M})||∇(vn − Th(vn))| dx dt

≤
∫
{h≤|vn|≤h+2k}

|a(x,∇un)||∇(un − gn2 )|dx dt.

(3.45)

From (2.3) and the Young inequality we deduce that∫
{h≤|vn|≤h+2k}

|a(x,∇un)||∇(un − gn2 )|dx dt

≤ C

(∫
{h≤|vn|≤h+2k}

|∇un|p(x) dx dt

+

∫
{h≤|vn|≤h+2k}

|∇gn2 |p(x) dx dt

+

∫
{h≤|vn|≤h+2k}

|j(x)|p(x) dx dt

)
.

(3.46)

Hence, from (3.46) and the fact that |∇gn2 |p(.) is integrable and meas{h ≤ |vn| ≤ h+ 2k} converges
to zero as h tends to infinity uniformly with respect to n, we obtain

lim
h→∞

lim sup
n→∞

∣∣∣∣∣
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(vn − Th(vn))χEn dx dt

∣∣∣∣∣ = 0,

which means that I2 = ω(n, h). To estimate the third term we rewrite I3 as

I3 =−
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(Tk(v)ν − Tk(v))χEn dx dt

−
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇Tk(v)χEn dx dt.

Using (2.3) and the fact that ∇unχ{|vn|≤M} is bounded in
(
Lp(.)(Q)

)N , we infer that
|a(x,∇unχ{|vn|≤M})| is bounded in Lp

′(.)(Q). Since vn converges to v almost everywhere,



86 Stanislas Ouaro, Urbain Traore, J. Nonl. Evol. Equ. Appl. 2020 (2020) 65–93

|∇Tk(v)|χ{|vn|>k} strongly converges to zero in Lp(.)(Q). Consequently,

lim
n→∞

∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇Tk(v)χEn dx dt = 0.

Using the fact that |a(x,∇unχ{|vn|≤M})| is bounded in Lp
′(.)(Q) and thanks to (3.38), we can apply

the Lebesgue dominated convergence theorem to obtain∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(Tk(v)ν − Tk(v))χEn dx dt = ω(n, ν),

which is equivalent to saying

I3 = −
∫
{|vn|>k}

a(x,∇unχ{|vn|≤M})∇(Tk(v)ν − Tk(v))χEn dx dt = ω(n, ν).

Since I2 and I3 converge to zero, by (3.40) we deduce that∫
Q
a(x,∇un)∇wn dx dt =

∫
Q
a(x,∇unχ{|vn|≤k})∇(vn − Tk(v)ν) dx dt+ ω(n, ν, h). (3.47)

Combining (3.41), (3.43) and (3.47), we can write∫ T

0
〈(vn)t, wn〉dt+

∫
Q
a(x,∇unχ{|vn|≤k})∇(vn − Tk(v)ν) dx dt = ω(n, ν, h). (3.48)

As far as the first term is concerned, that is∫ T

0
〈(vn)t, T2k(vn − Th(vn) + Tk(vn)− Tk(v)ν)〉 dt,

we can apply [16, Lemma 2.1] to the function vn, using the fact that u0n and zν strongly converge in
L1(Ω) to u0 and Tk(u), respectively. The above-mentioned lemma, together with the monotonicity
properties of the time-regularization Tk(v)ν , gives∫ T

0
〈(vn)t, wn〉dt ≥ ω(n, ν, h).

Hence, (3.48) becomes∫
Q
a(x,∇unχ{|vn|≤k})∇(vn − Tk(vn)ν) dx dt ≤ ω(n, ν, h). (3.49)

Since χ{|vn|≤k} almost everywhere converges to χ{|v|≤k} (see [4, Lemma 3.2] ), from the strong

convergence of gn2 in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
we deduce that a(x,∇(gn2 + Tk(v)χ{|vn|≤k})) strongly

converges to a(x,∇(g2 + Tk(v)χ{|v|≤k})) in
(
Lp(.)(Q)

)N . Hence, since Tk(vn) weakly converges

to Tk(v) in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
we obtain

lim
n→∞

∫
Q
a(x,∇(gn2 + Tk(v)χ{|vn|≤k}))∇(vn − Tk(v)) dx dt

= lim
n→∞

∫
Q
a(x,∇(gn2 + Tk(v)χ{|vn|≤k}))∇(Tk(vn)− Tk(v)) dx dt = 0.
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We know that (Tk(v))ν strongly converges to Tk(v) in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
. Then, from (3.49)

we deduce that

lim
n→∞

∫
Q

[
a(x,∇unχ{|vn|≤k})− a(x,∇(gn2 + Tk(v)χ{|vn|≤k}))

]
×

× (∇un −∇(gn2 − Tk(v))) dx dt = 0.

(3.50)

Using the fact that χ{|vn|≤k} almost everywhere converges to χ{|v|≤k} and that gn2 strongly converges

to g2 in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, by the standard monotonicity argument which relies on (2.4) (see [5,

Lemma 5]), from (3.50) we can deduce that

∇unχ{|vn|≤k} → ∇(gn2 + Tk(v))χ{|vn|≤k} = ∇uχ{|v|≤k} a.e. in Q,

and then that a(x,∇unχ{|vn|≤k})∇un strongly converges to a(x,∇uχ{|v|≤k})∇u in L1(Q). Finally,
together with (2.3), this proves that the sequence |∇un|p(.)χ{|v|≤k} is equi-integrable in Q, which, as

a consequence of Vitali’s theorem and since gn2 strongly converges in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, yields

Tk(un − gn2 )→ Tk(u− g2) strongly in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
.

Since we have proved it for almost every k, the result holds true for any k as well. �

Now, we have at our disposal all the necessary tools for the proof of the existence of renormalized
solutions for the problem (Pµ).

Theorem 3.7 Assume that (2.3), (2.4), (2.5) hold true, and let µ ∈ M0(Q), u0 ∈ L1(Ω). Then,
there exists a renormalized solution u of the problem (Pµ) in the sense of Definition 3.2. Moreover, u
belongs to L∞

(
0, T ;L1(Ω)

)
and Tk(u) ∈ Lp−

(
0, T ;W

1,p(.)
0 (Ω)

)
for every k > 0.

Proof. We consider the sequence un of solutions of (3.6) and the function u ∈ L∞
(
0, T ;L1(Ω))

given by Proposition 3.5. Let us recall that from Proposition 3.5 and Proposition 3.6 we know that

un → u a.e. in Q,

Tk(un − gn2 )→ Tk(u− g2) strongly in Lp−
(
0, T ;W 1,p(Ω)

)
for any k > 0 and a.e. in Q.

(3.51)

We consider ϕ ∈ C∞c (Q) and S ∈W 2,∞(R) such that S′ has compact support. Taking S′(un−gn2 )ϕ
as a test function in (3.9), we get

−
∫
Q
ϕtS(un − gn2 ) dx dt+

∫
Q
a(x,∇un)∇ϕS′(un − gn2 ) dx dt

+

∫
Q
S′′(un − gn2 )a(x,∇un)∇(un − gn2 )∇ϕdx dt

=

∫
Q
fnS

′(un − gn2 )ϕdx dt+

∫
Q
Gn1∇ϕS′(un − gn2 ) dx dt

+

∫
Q
S′′(un − gn2 )Gn1∇(un − gn2 )ϕdx dt.

(3.52)

Using the compactness of supp(S), we can write

a(x,∇un)S′(un − gn2 ) = a(x,∇TM (un − gn2 ) +∇gn2 )S′(un − gn2 ),
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where M > 0. And, as gn2 converges strongly in Lp−
(
0, T ;W 1,p(.)(Ω)

)
, from hypothesis (2.3) we

deduce that

a(x,∇un)S′(un − gn2 )→ a(x,∇u)S′(u− g2) strongly in
(
Lp
′(.)(Q)

)N .

Similarly, we have that

S′′(un − gn2 )a(x,∇un)∇(un − gn2 )

→ S′′(u− g2)a(x,∇u)∇(u− g2) strongly in L1(Q)

and
S′′(un − gn2 )∇(un − gn2 )→ S′′(u− g2)∇(u− g2) strongly in

(
Lp(.)(Q)

)N .

Consequently, using (3.51) and the Lebesgue dominated convergence theorem, we can pass to the
limit in (3.52) as n tends to infinity and obtain

−
∫
Q
ϕtS(u− g2) dx dt+

∫
Q
a(x,∇u)∇ϕS′(u− g2) dx dt

+

∫
Q
S′′(u− g2)a(x,∇u)∇ϕ∇(u− g2)∇ϕdx dt

=

∫
Q
fS′(u− g2)ϕdx dt+

∫
Q
G1∇ϕS′(u− g2) dx dt

+

∫
Q
S′′(u− g2)G1∇(u− g2)ϕdx dt,

(3.53)

which is equivalent to saying that u satisfies (3.3). As regards (3.2) it suffices to take k = 1 in (3.11)
given by Proposition 3.5. Finally, passing to the limit written in distributional sense (thanks to (3.51),
(3.52)) we have

(S(un − gn2 ))t is strongly convergent in L(p−)′
(
0, T ;W−1,p′(.)(Ω)

)
+ L1(Q).

Since S(un − gn2 ) strongly converges in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
, we deduce that

S(un − gn2 )→ S(u− g2) strongly in C
(
0, T ;L1(Ω)

)
(see [16, Theorem 1.1]). In particular, we have S(un − gn2 )(0) = S(u0n). This concludes the proof
that u is a renormalized solution of the problem (Pµ). �

Now, we prove the uniqueness of the renormalized solution of the problem (Pµ).

Theorem 3.8 Assume that (2.3), (2.4), (2.5) hold true. Let µ ∈M(Q). Then, there exists a unique
renormalized solution of (Pµ).

Remark 3.9 One can remark that in the proof of this theorem we do not use the fact that u− g2 ∈
L∞
(
0, T ;L1(Q)

)
but only the fact that the renormalized solution is almost everywhere finite.
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Proof of Theorem 3.8. Assume on the contrary that there are two renormalized solutions u1, u2 of
problem (Pµ). Let (f,G1, g2) be a decomposition of µ, so that u1 and u2 both satisfy (3.3).

We consider the sequence Sn given by Definition 3.4. Then, we have that Sn(u1 − g2) and
Sn(u2 − g2) belong to Lp−

(
0, T ;W 1,p(.)(Ω)

)
. We take Tk(Sn(u1 − g2) − Sn(u2 − g2)) as a test

function in both the equations solved by u1 and u2; subtracting the equations we then have∫ T

0
〈(Sn(v1)− Sn(v2))t, Tk(Sn(v1)− Sn(v2))〉 dt

+

∫
Q

[S′n(v1)a(x,∇u1)− S′n(v2)a(x,∇u2)]∇Tk(Sn(v1)− Sn(v2)) dx dt

=

∫
Q
f(S′n(v1)− S′n(v2))Tk(Sn(v1)− Sn(v2)) dx dt

+

∫
Q
G1(S′n(v1)− S′n(v2))∇Tk(Sn(v1)− Sn(v2)) dx dt

+

∫
Q

(S′′n(v1)G1∇v1 − S′′n(v2)G1∇v2)Tk(Sn(v1)− Sn(v2)) dx dt

+

∫
Q

(S′′n(v2)a(x,∇u2)∇v2 − S′′n(v1)a(x,∇u1)∇v1)Tk(Sn(v1)− Sn(v2)) dx dt,

(3.54)

where v1 = u1 − g2 and v2 = u2 − g2. We set (A)–(F ) for the integrals above. We will study the
limit of each of those integrals as n tends to infinity. Since Sn(s) converges to 1 for every s in R,
then using the Lebesgue theorem we obtain

lim
n→∞

(C) = 0.

For the study of the limit of (E), we set (E) = (E1) + (E2), where

(E1) =

∫
Q
S′′n(v1)G1∇v1Tk(Sn(v1)− Sn(v2)) dx dt.

Recalling that S′′n(s) = − sign(s)χn≤|s|≤n+1, we have

|(E1)| ≤ k
∫
{n≤|v1|≤n+1}

|G1||∇v1|dx dt.

So, using Hölder’s inequality and Proposition 2.1 we get

|(E1)| ≤ k‖G1‖Lp′(.)(Q) max

{∫
{n≤|u1−g2|≤n+1}

|∇v1 −∇g2|p(x) dx dt

+

(∫
{n≤|u1−g2|≤n+1}

|∇v1 −∇g2|p(x) dx dt

) 1
p−

}
.

Thus, by (3.2) written for u1, we get that (E1) converges to zero as n tends to infinity. The same is
true for (E2), hence we deduce that limn→∞(E) = 0. Similarly, for (F ) we write (F ) = (F1)+(F2)
with

(F1) =

∫
Q
S′′n(v2)a(x,∇u2)∇v2Tk(Sn(v1)− Sn(v2)) dx dt.
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Because of the symmetry between (F1) and (F2), it is enough to prove that (F1) tends to zero. Using
again the properties of S′′n and (2.3) we have

|(F1)| = C1k

∫
{n≤|v2|≤n+1}

|∇v2|
(
|j(x)|+ |∇u2|p(x)−1

)
dx dt,

which by Young’s inequality yields

(F1) ≤ C

(∫
{n≤|u2−g2|≤n+1}

(
|j(x)|p′(x) + |∇g2|p(x)

)
dx dt

∫
{n≤|u2−g2|≤n+1}

|∇u2|p(x) dx dt

)
.

Since u2 − g2 is almost everywhere finite and thanks to (3.2) written for u2, we conclude that (F1) –
and (F2) as well – converges to zero. So,

lim
n→∞

(F ) = 0.

Now we focus our attention on (D). Since S′n(v1)− S′n(v2) = 0 in {|v1| ≤ n, |v2| ≤ n} ∪ {|u1| >
n, |v2| > n+ 1}, we split the integral (D) as follows∫
{|Sn(v1)−Sn(v2)|≤k}

G1(S′n(v1)− S′n(v2))∇(S′n(v1)− S′n(v2))χ{|v1|≤n}χ{|v2}|>n dx dt

+

∫
{|Sn(v1)−Sn(v2)|≤k}

G1(S′n(v1)− S′n(v2))∇(S′n(v1)− S′n(v2))χ{n≤|v1|<n+1} dx dt

+

∫
{|Sn(v1)−Sn(v2)|≤k}

G1(S′n(v1)− S′n(v2))∇(S′n(v1)− S′n(v2))χ{|v2|≤n+1}χ{|v1|>n+1} dx dt.

(3.55)

By (D1)–(D3) we denote the three terms of (3.55). Using the properties of Sn and S′n (recall that
Sn(t) = |t| if |t| ≤ n, Sn is non-decreasing and supp(S′n) ⊂ [−n− 1, n+ 1]) we have

(D1) ≤
∫
{n−k≤|u1−g2|≤n}

|G1||∇(u1 − g2)| dx dt

+

∫
{n≤|u2−g2|≤n+1}

|G1|∇(u2 − g2) dx dt.

Applying Hölder’s inequality, Proposition 2.1 and using property (3.2) we get that (D1) converges to
zero as n tends to infinity. As |Sn(t)| > n− k implies |t| > n− k, we have

(D2) ≤
∫
{n≤|u1−g2|≤n+1}

|G1|∇(u1 − g2) dx dt

+

∫
{n−k≤|u2−g2|≤n+1}

|G1|∇(u2 − g2) dx dt.

Then, as in the case of (D1), we deduce that (D2) converges to zero as well. Using the same method
(recall that S′n(t) = 0 if |t| > n+ 1 ), one can show that (D3) also tends to zero. Consequently,

lim
n→∞

(D) = 0.
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As regards the term (B), we decompose it as follows

(B) =

∫
B1

[a(x,∇u1)− a(x,∇u2)](∇u1 −∇u2) dx dt

+

∫
B2

[S′n(v1)a(x,∇u1)− S′n(v2)a(x,∇u2)]∇(S′n(v1)− S′n(v2))dx dt

+

∫
B3

[S′n(v1)a(x,∇u1)− S′n(v2)a(x,∇u2)]∇(S′n(v1)− S′n(v2)) dx dt,

where

B1 =
{
|v1 − v2| ≤ k, |v1| ≤ n, |v2| ≤ n

}
,

B2 =
{
|Sn(v1)− Sn(v2)| ≤ k, |v1| ≤ n, |v2| > n

}
,

B3 =
{
|Sn(v1)− Sn(v2)| ≤ k, |v1| > n

}
.

By (B1)–(B3) we denote the three integrals above. Since
{
|Sn(v1) − Sn(v2)| ≤ k, |v1| > n

}
⊂{

|v1| > n, |v2| > n− k
}

, using the fact that S′n(t) = 0, if |t| > n+ 1, we have

|(B3)|≤
∫
{n≤|u1−g2|≤n+1}

|a(x,∇u1)||(∇u2 −∇u2)|dx dt

+

∫
{n≤|u1−g2|≤n+1}

|a(x,∇u1)||(∇u2 −∇g2)|χ{n−k≤|u2−g2|≤n+1} dx dt

+

∫
{n≤|u1−g2|≤n+1}

|a(x,∇u2)||(∇u1 −∇g2)|χ{n−k≤|u2−g2|≤n+1} dx dt

+

∫
{n−k≤|u2−g2|≤n+1}

|a(x,∇u2)||(∇u2 −∇g2)|dx dt.

(3.56)

Using assumption (2.3), Young’s inequality and the condition (3.2) for renormalized solutions, we
can conclude, as we did before, that all the four terms on the right-hand side of (3.56) converge to
zero. Thus we get that (B3) converges to zero. Changing the roles of u1 and u2, the same arguments
prove that (B2) also converges to zero as n tends to infinity. Thus, using Fatou’s lemma in (B1), we
conclude that

lim inf
n→∞

(B) ≥
∫
|u1−u2|≤k

[a(x,∇u1)− a(x,∇u2)](∇u1 −∇u2) dx dt.

Since Sn(v1), Sn(v2) ∈ C
(
[0, T ];L1(Ω)

)
and Sn(v1)(0) = Sn(v2)(0) = Sn(v0), we can integrate

the term (A) to obtain

(A) =

∫
Ω

Θk(Sn(v1)− Sn(v2))(T ) dx,

where Θk(s) =
∫ s

0 Tk(t) dt. Since Θk is non-negative, we conclude that (A) ≥ 0.

Using the above estimates concerning the integrals (A)–(F ) and passing to the limit in (3.54),
we get ∫

{|u1−u2|≤k}
[a(x,∇u1)− a(x,∇u2)](∇u1 −∇u2) dx dt ≤ 0.

Then, letting k tend to infinity (recall that u1 and u2 are finite a.e. on Q) we obtain∫
Q

[a(x,∇u1)− a(x,∇u2)](∇u1 −∇u2) dx dt ≤ 0.
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The strict monotonicity assumption (2.4) then implies that ∇u1 = ∇u2 almost everywhere in Q.
Let ξn = T1(Tn+1(v1)− Tn+1(v2)). We have ξn ∈ Lp−

(
0, T ;W

1p(.)
0 (Ω)

)
and, since ∇v1 = ∇v2

almost everywhere,

ξn =


0 on

{
|v1| ≤ n+ 1, |v2| ≤ n+ 1

}
,

∇v1χ{|v1−Tn+1(v2)|≤1} on
{
|v1| ≤ n+ 1, |v2| > n+ 1

}
,

∇v1χ{|Tn+1(v1)−v2|≤1} on
{
|v1| > n+ 1, |v2| ≤ n+ 1

}
,

so that ∫
Q
|ξn|p(x) dx dt ≤

∫
{n≤v1≤n+1}

|∇v1|p(x) dx dt+

∫
{n≤v2≤n+1}

|∇v2|p(x) dx dt.

Thanks to (3.2), we deduce that ξn tends to 0 in Lp−
(
0, T ;W

1,p(.)
0 (Ω)

)
and, since ξn tends to

T1(v1 − v2) almost everywhere, T1(u1 − u2) = T1(v1 − v2) = 0. Hence, u1 = u2. �
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