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Abstract. In this paper we investigate further properties of the new concept of deformable derivative
and use the results to study the existence (and uniqueness) of mild solutions to the Cauchy problem
for the nonlinear differential equation with non-local conditions Dαx(t) = f(t, x(t)), t ∈ (0, T ],
x(0) + g(x) = x0, where Dαx(t) is the deformable derivative of x, 0 < α < 1. We use the
Krasnoselskii’s theorem to achieve our main result.
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1 Introduction

In their paper [8], F. Zulfeqarr, A. Ujlayan and P. Ahuja introduced the new concept of deformable
derivative using limit approach as in the usual derivative. They called it ,,deformable” because of
its intrinsic property of continuously deforming function to derivative. This derivative is linearly
related to the usual derivative. Deformable derivatives can be viewed as derivatives of the fractional
order. Recently, A. Meraj, D. N. Pandey [5] used this concept to study the existence and uniqueness
of solutions to the Cauchy problem Dαx(t) = Ax(t) + f(t, x(t)), t ∈ (0, T ], x(0) = x0, where A
is the infinitesimal generator of a C0-semigroup of bounded linear operators (T (t))t≥0 on a Banach
space X (using the Banach fixed point theorem) and the approximate controllability to the related
problem (using the Schauder fixed point theorem).
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In the present paper, we first review some elementary properties of deformable derivatives and
then study the existence of mild solutions to the Cauchy problem for the differential equation with
non-local conditions Dαx(t) = f(t, x(t)), t ∈ (0, T ], x(0) + g(x) = x0, where Dαx(t) is the
deformable derivative of x, 0 < α < 1. This problem has been studied by the second author in the
context of fractional derivative in the sense of Caputo (cf. [6]).

Throughout the paper we denote by C := C([0, T ],R) the Banach space of all real-valued
continuous functions defined on [0, T ], endowed with the topology of uniform convergence. The
norm in this space will be denoted by ‖f‖C = supt∈[0,T ] |f(t)|.

2 Deformable derivative

Definition 2.1 ([8]) Let f be a real valued-function on [a, b], α ∈ [0, 1]. The deformable derivative
of f of order α at t ∈ (a, b) is defined as

Dαf(t) = lim
ε→0

(1 + εβ)f(t+ εα)− f(t)

ε
,

where α+ β = 1. If the limit exists, we say that f is α-differentiable at t.

Remark 2.2 If α = 1, then β = 0 and we recover the usual derivative.

Definition 2.3 ([8]) For a continuous function f defined on [a, b], the α-integral of f is given by

Iαa f(t) =
1

α
e
−β
α
t

∫ t

a
e
β
α
xf(x) dx, t ∈ [a, b],

where α+ β = 1 and α ∈ (0, 1]. When a = 0, we use the notation

Iαf(t) =
1

α
e
−β
α
t

∫ t

0
e
β
α
xf(x) dx.

Remark 2.4 If α = 1, then β = 0 and we recover the usual Riemann integral.

Theorem 2.5 ([1]) A differentiable function f at a point t ∈ (a, b) is always α-differentiable at that
point for any α. Moreover, we have Dαf(t) = βf(t) + αDf(t), where α+ β = 1 and D := d

dt is
the usual derivative.

Theorem 2.6 ([1]) Let f be differentiable at a point t for some α. Then, it is continuous there.

Theorem 2.7 ([1]) Let f be defined in (a, b). For any α, f is α-differentiable if and only if it is
differentiable.

The operators Dα and Iαa possess the following properties.

Theorem 2.8 ([4]) Let α, α1, α2 ∈ (0, 1] be such that α + β = 1 and αi + βi = 1 for i = 1, 2.
Then,
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(a) Dα(af + bg) = aDαf + bDαg (linearity of Dα),

(b) Dα1 ·Dα2 = Dα2 ·Dα1 (commutativity of Dα),

(c) Dα(c) = βc for any constant c,

(d) Dα(fg) = (Dαf)g + αfDg,

(e) Iαa (bf + cg) = bIαa f + cIαa g (linearity of Iαa ),

(f) Iα1
a Iα2

a = Iα2
a Iα1

a (commutativity of Iαa ).

Theorem 2.9 (Taylor’s theorem, see [8]) Suppose f is n-times α-differentiable and such that all
α-derivatives are continuous on [a, a+ h]. Then,

f(a+ h) =

n−1∑
k=0

hk

k!αk

[
Dα
k f(a)− β (1− θ)(k−n+1)h

αn
Dα
k f(a+ θh)

]
+

hn

n!α
Dα
nf(a+ θh),

where Dα
k = DαDα . . . Dα (k times) and 0 < θ < 1.

We state and prove the following result.

Theorem 2.10 The operator Dα possesses also the following property

Dα(fg−1) =
gDα(f)− αf

g2
.

Proof. We have

Dα(fg−1) = β(fg−1) + αD(fg−1)

= β(fg−1) + α[Dfg−1 + fDg−1]

= βfg−1 + αDfg−1 + αfDg−1

= [βf + αDf ]g−1 + αfDg−1

=
gDα(f)− αf

g2
.

The proof is complete. �

Theorem 2.11 Suppose f and g are α-differentiable. Then,

Dα(f ◦ g)(t) = β(f ◦ g)(t) + αD(f ◦ g)(t) = β(f ◦ g)(t) + αf ′(g(t))g′(t).

Proof. Since

Dαf(t) = lim
ε→0

(1 + εβ)f(t+ εα)− f(t)

ε
= lim

ε→0

[
f(t+ ε α)− f(t)

ε
+ βf(t+ εα)

]
,
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we have

Dαf(g(t)) =lim
ε→0

[
f(g(t+ εα))− f(g(t))

ε
+ βf(g(t+ εα))

]
=lim
ε→0

[
f(g(t+ εα))− f(g(t))

g(t+ εα)− g(t)
· g(t+ εα)− g(t)

ε
+ βf(g(t+ εα))

]
=lim
ε→0

[
f(g(t) + ε0)− f(g(t))

ε0
· g(t+ εα)− g(t)

ε
+ βf(g(t+ εα))

]
,

where ε0 → 0 as ε→ 0. We obtain

Dαf(g(t)) = lim
ε0→0

f(g(t) + ε0)− f(g(t))

ε0
· lim
ε→0

g(t+ εα)− g(t)

ε
+ lim
ε→0

βf(g(t+ εα))

=f ′(g(t))αg′(t) + βf(g(t))

=αD[f(g(t))] + βf(g(t))

=βf(g(t)) + αD[f(g(t))].

The proof is now complete. �

Theorem 2.12 ([8]) Let f be continuous on [a, b]. Then, Iαa f is α-differentiable in (a, b), and we
have

Dα(Iαa f)(t) = f(t) and Iαa (Dαf)(t) = f(t)− e
β
α
(a−t)f(a).

3 Application to evolution equations

We consider the following Cauchy problem with non-local condition

Dαx(t) = f(t, x(t)), t ∈ (0, T ], (3.1)

x(0) + g(x) = x0, (3.2)

where Dα is the deformable derivative of order α ∈ (0, 1), and g : C → R is a continuous function.

Theorem 3.1 The system (3.1)–(3.2) is equivalent to the following integral equation

x(t) = [x0 − g(x)]e
−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds. (3.3)

Proof. Assume (3.1)–(3.2). Then, Iα(Dαx)(t) = Iαf(t, x(t)). Using Theorem 2.12 and Defini-
tion 2.3, we get

x(t)− e
−β
α
tx(0) =

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds.

Using (3.2), we get

x(t)− [x0 − g(x)]e
−β
α
t =

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds.
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Therefore,

x(t) = [x0 − g(x)]e
−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds.

Conversely, assuming (3.3) and applying Dα to both sides of the equation, we get

Dαx(t) = β

(
[x0 − g(x)]e

−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds

)
+ αD

(
[x0 − g(x)]e

−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds

)
= β[x0 − g(x)]e

−β
α
t +

β

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds− β[x0 − g(x)]e

−β
α
t

+ f(t, x(t))− β

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds

= f(t, x(t)).

The proof is complete. �

Definition 3.2 A function x ∈ C is said to be a mild solution to (3.1)–(3.2) if

x(t) = [x0 − g(x)]e
−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds, t ∈ (0, T ],

provided the integral exists.

Now, let us investigate the Cauchy problem (3.1)–(3.2) with the following assumptions:

(H1) f : [0, T ]× R→ R is jointly continuous,

(H2) |f(t, x)− f(t, y)| ≤ L|x− y| for all t ∈ [0, T ] and x, y ∈ R,

(H3) g : C → R is continuous and G = supx∈C |g(x)| <∞; moreover, there exists b > 0 such that
|g(x)− g(y)| ≤ b‖x− y‖C for all x, y ∈ C.

Theorem 3.3 ([3]) Under assumptions (H1)–(H3), if b < 1
2 and L ≤ β

2 , then the Cauchy prob-
lem (3.1)–(3.2) has a unique mild solution.

Proof. Define F : C → C by

(Fx)(t) := [x0 − g(x)]e
−β
α
t +

1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds.

Let M = supt∈[0,T ] |f(t, 0)|. Clearly M <∞. Choose r > 2(|x0|+G+ M
β ). Then, we can show
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that F (Br) ⊂ Br, where Br := {x ∈ C : ‖x‖ ≤ r}. Indeed, let x ∈ Br; then, we get

|Fx(t)| ≤ |x0|+G+
1

α
e
−β
α
t

∫ t

0
e
β
α
s|f(s, x(s))| ds

≤ |x0|+G+
1

α
e
−β
α
t

∫ t

0

(
e
β
α
s|f(s, x(s))− f(s, 0)|+ |f(s, 0)|

)
ds

≤ |x0|+G+ (Lr +M)
1

α
e
−β
α
t

∫ t

0
e
β
α
s ds

≤ |x0|+G+ (Lr +M)
1

β

(
1− e

−β
α
t
)

≤ |x0|+G+ (Lr +M)
1

β

< r,

by the choice of L and r. Now, take x, y ∈ Br. Then, we get

|(Fx)(t)− (Fy)(t)| ≤ |g(x)− g(y)|+ 1

α
e
−β
α
t

∫ t

0
e
β
α
s|f(s, x(s))− f(s, y(s))|ds

≤ b‖x− y‖C +
1

α
e
−β
α
tL‖x− y‖C

α

β

(
e
β
α
t − 1

)
≤ b‖x− y‖C +

L

β
‖x− y‖C

=

(
b+

L

β

)
‖x− y‖C

≤ Ω‖x− y‖C ,

where Ω = Ωb,L,β := (b+ L
β ) depends on the parameters of the problem.

Since Ω < 1 and ‖Fx− Fy‖C ≤ Ω‖x− y‖C , the mapping F is a contraction. Therefore, F has
a unique fixed point, which is the solution of the Cauchy problem. The proof is complete. �

Let us recall our tool.

Theorem 3.4 (Krasnoselskii) LetM be a closed convex and non-empty subset of a Banach spaceX .
Let A, B be two operators such that

(1) Ax+By ∈M , whenever x, y ∈M ,

(2) A is compact and continuous,

(3) B is a contraction mapping.

Then, there exists z ∈M such that z = Az +Bz.

Now, let

(H4) |f(t, x)| ≤ µ(t) for all (t, x) ∈ [0, T ]× R, where µ ∈ L1([0, T ],R+).
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Then, we can state and prove our main result.

Theorem 3.5 Assume (H1), (H3) with b < 1, and (H4). Then the Cauchy problem (3.1)–(3.2) has
at least one mild solution on [0, T ].

Proof. Choose r ≥ |x0|+G+
‖µ‖L1

α and consider Br := {x ∈ C : ‖x‖ ≤ r}. Now, define on Br
the operators A and B by

A(x)(t) :=
1

α
e
−β
α
t

∫ t

0
e
β
α
sf(s, x(s)) ds,

B(x)(t) := [x0 − g(x)]e
−β
α
t.

Let us observe that if x, y ∈ Br, then Ax+By ∈ Br. Indeed, we have

|A(x)(t) +B(y)(t)| =

∣∣∣∣∣ 1αe−βα t

∫ t

0
e
β
α
sf(s, x(s)) ds+ [x0 − g(x)]e

−β
α
t

∣∣∣∣∣
≤ 1

α
e
−β
α
t

∫ t

0
e
β
α
s|f(s, x(s))|ds+ |x0 − g(x)|e

−β
α
t

≤ 1

α
e
−β
α
te

β
α
t

∫ t

0
|f(s, x(s))|ds+ |x0|+G

≤ 1

α

∫ t

0
µ(s) ds+ |x0|+G

≤ 1

α

∫ T

0
µ(s) ds+ |x0|+G

≤ 1

α
‖µ‖L1 + |x0|+G

≤ r.

By (H3), it is also clear that B is a contraction mapping for b < 1.

Since x is continuous, then A(x)(t) is continuous in view of (H1). Suppose now that xn → x
in Br. Then, given ε > 0 there exists N large enough such that ‖xn − x‖C < ε whenever n > N .
Now, for such n we get

|A(xn)(t)−A(x)(t)| ≤ 1

α
e−

β
α
t

∫ t

0
e
β
α
s|f(s, xn(s))− f(s, x(s))|ds

≤ L

α
e−

β
α
t

∫ t

0
e
β
α
s|xn(s)− x(s)|ds.

Continuing the calculation we obtain

||A(xn)−A(x)||C ≤
εL

β
,

which shows that A is a continuous operator from Br to C.

Let us now note thatA is uniformly bounded onBr. This follows from the inequality ‖A(x)‖C ≤
‖µ‖L1

α , because

|A(x)(t)| ≤ 1

α
e
−β
α
t

∫ t

0
e
β
α
s|f(s, x(s))|ds
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for any x ∈ Br.

Now let’s prove that A(Br) is equicontinuous. Let t1, t2 ∈ [0, T ], t2 ≤ t1 and
x ∈ Br. Using the fact that f is bounded on the compact set [0, T ] × [−r, r] (and thus
K := sup(t,x)∈[0,T ]×[−r,r] |f(t, x)| <∞), we will get

|Ax(t1)−Ax(t2)|

=
1

α

∣∣∣∣e−βα t1

∫ t1

0
e
β
α
sf(s, x(s)) ds− e

−β
α
t2

∫ t2

0
e
β
α
sf(s, x(s)) ds

∣∣∣∣
=

1

α

∣∣∣∣ ∫ t1

0
e
−β
α
t1e

β
α
sf(s, x(s)) ds−

∫ t2

0
e
−β
α
t2e

β
α
sf(s, x(s)) ds

∣∣∣∣
=

1

α

∣∣∣∣ ∫ t1

t2

e
−β
α
t1e

β
α
sf(s, x(s)) ds−

∫ t2

0

[
e
−β
α
t2 − e

−β
α
t1
]
e
β
α
sf(s, x(s)) ds

∣∣∣∣
=

1

α

∣∣∣∣e−βα t1

∫ t1

t2

e
β
α
sf(s, x(s)) ds−

[
e
−β
α
t2 − e

−β
α
t1
] ∫ t2

0
e
β
α
sf(s, x(s)) ds

∣∣∣∣
≤ 1

α

∣∣∣∣e−βα t1

∫ t1

t2

e
β
α
sf(s, x(s)) ds

∣∣∣∣+
1

α

∣∣∣∣[e−βα t2 − e
−β
α
t1
] ∫ t2

0
e
β
α
sf(s, x(s)) ds

∣∣∣∣
≤ K

β

∣∣∣e−βα t1
(
e
β
α
t1 − e

β
α
t2
)

+
(
e
−β
α
t2 − e

−β
α
t1
)(
e
β
α
t2 − 1

)∣∣∣
≤ K

β

∣∣∣(1− e
β
α
(t2−t1)

)
+
(

1− e
−β
α
t2 − e

β
α
(t2−t1) + e

−β
α
t1
)∣∣∣

=
K

β

∣∣∣2− 2e
β
α
(t2−t1) − e

−β
α
t2 + e

−β
α
t1
∣∣∣

≤ K

β

∣∣∣2− 2e
−β
α

(t1−t2)
∣∣∣

=
2K

β

∣∣∣e−βα (t1−t2) − 1
∣∣∣,

which is independent of x and |Ax(t1) − Ax(t2)| → 0 as t2 → t1. Therefore, Ax(t) is equicon-
tinuous. So, by Arzela–Ascoli’s theorem, A(Br) is a relatively compact subset of C. This, in turn,
implies that the operator A is compact. We finally complete the proof using Krasnoselskii’s theorem.

�
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