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Abstract. We study the existence of solutions of the nonlinear parabolic equation with variable
exponents of the type:

∂b(x , u)

∂t
− div(a(x , t , ∇u)) = µ in Ω× (0 , T ),

where the right side is a diffuse measure, b(x , u) is an unbounded function of u and
−div(a(x , t , ∇u)) is a Leray–Lions type operator with growth |∇u|p(·)−1 in ∇u.
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1 Introduction

This paper is devoted to the study of the following nonlinear problem:
∂b(x , u)

∂t
− div(a(x , t , ∇u)) = µ in Q,

b(x , u)|t=0 = b(x , u0(x)) in Ω,
u(x , t) = 0 on ∂Ω× (0 , T ).

(1.1)

In Problem (1.1) the framework is the following: Q is the cylinder Ω × (0 , T ), Ω is a bounded
open subset of RN , T > 0 and N ≥ 2. Moreover p : Ω → [1 , +∞) is a continuous function and
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let p− = min
x∈Ω

p(x) and p+ = max
x∈Ω

p(x) with 1 < p(·) < N . The operator −div(a(x , t , ∇u)) is

a Leray-Lions operator defined from the generalized Sobolev space V ⊂ Lp
−

(0 , T ;W
1 , p(·)
0 (Ω)),

into its dual V ∗ ⊂ L(p+)
′
(0 , T ;W−1 , p′(·)(Ω)) (see (2.4) and (2.6) for the definition), the operator

is coercive and which grows like |∇u|p(x)−1 with respect to ∇u. The function b : Ω × R −→ R is
a Carathéodory function such that for every x ∈ Ω, b(x , ·) is a strictly increasing C1-function, the
data µ is a bounded Radon measure on Q and the function u0 is measurable in Ω such that b(· , u0)
in L1(Ω).

Under our assumptions, it is natural to use Lebesgue and Sobolev spaces with variable expo-
nents. The study of differential equations with variable exponents has been a very active field in
recent years. Our motivations for studying (1.1) comes from applications to electro-rheological
fluids (see [32]) and image processing (see [33]).

In the case where p(·) = p is a constant, b(x , u) = u, and the right hand side is a bounded
measure, the existence of a distributional solution was proved in [1], but due to the lack of regularity
of solution, the distributional formulation is not strong enough to provide uniqueness. To overcome
this difficulty the notion of renormalized solutions firstly introduced by DiPerna and Lions [27] for
the study of Boltzmann equation was adapted to parabolic equations (and elliptic equations) with
L1 data (see [2, 3, 22]).

Concerning the datum µ (where p(·) = p is a constant), the existence and uniqueness of renor-
malized solution of (1.1) has proved in [28] in the case where b(x , u) = u, u0 ∈ L1(Ω) and
for every measure µ which do not charge the sets of zero p-capacity (see Section 2 for the defini-
tion of p(x)-capacity), the so-called diffuse measures or soft measures, and we will use the symbol
µ ∈ M0(Q) to denote them. The importance of the measures not charging sets of null p-capacity
was first observed in the stationary case in [9], and developed in the evolution case in [28].

In the case of problem (1.1) in the classical Sobolev spaces, Redwane [29, 30] proved the exis-
tence and uniqueness of a renormalized solution of problem (1.1) where µ ∈ L1(Q).

For µ ∈ M0(Q), b(x , u) = b(u) and u0 ∈ L1(Ω), the existence and uniqueness of renormal-
ized solution was proved in [7] (see also [11]), and with the parabolic term on b(x , u), the existence
of renormalized solution was proved in [31].

In the case of p(x)-Laplace, where b(x , u) = u and µ ∈ L1(Q), Bendahmane, Wittbold and
Zimmermann (see [12]) have proved the existence and uniqueness of renormalized solution. We
also point out that the existence and uniqueness of renormalized (or entropy) solutions to parabolic
equations with variable exponents can be found in [13].

Our goal of this paper is to extend the results of [12, 13, 29, 32], and our main ideas and methods
come from [3, 16, 28].

The paper is organized as follows. In Section 2, we collect some important propositions and
results of variable exponents, Lebesgue-Sobolev spaces that will be used throughout the paper. In
Section 3, we give our basic assumptions and the definition of a renormalized solution of (1.1). In
Section 4, we establish the existence of such solution (Theorem 4.1).
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2 Some preliminaries and notations

In what follows, we recall some definitions and basic properties of Lebesgue and Sobolev spaces
with variable exponents.

2.1 Sobolev spaces with variable exponents

We first state some elementary results for the generalized Lebesgue spaces Lp(·)(Ω), and the gen-
eralized Lebesgue-Sobolev spaces W 1 , p(·)(Ω). We refer to [15] for further properties of vari-
able exponent Lebesgue-Sobolev spaces. Let p : Ω → [1 , +∞) be a continuous function, let
p− = minx∈Ω p(x) and p+ = maxx∈Ω p(x) with 1 < p(·) < N . The Lebesgue space with variable
exponents defined by

Lp(·)(Ω) =

{
u : Ω→ R; u is measurable with

∫
Ω
|u(x)|p(x) dx <∞

}
,

we define a norm, the so-called Luxemburg norm, on this space by the formula

‖u‖Lp(·)(Ω) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

The following inequality will be used later

min
{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(·)(Ω)

}
≤
∫

Ω
|u(x)|p(x) dx ≤ max

{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(·)(Ω)

}
. (2.1)

If p− > 1, then Lp(·)(Ω) is reflexive and the dual space of Lp(·)(Ω) can be identified with Lp
′(·)(Ω),

where 1
p(·) + 1

p′(·) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the Hölder type inequality:∣∣∣ ∫
Ω
u v dx

∣∣∣ ≤ ( 1

p−
+

1

(p+)′

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) , (2.2)

holds true.

Extending a variable exponent p : Ω → [1 , ∞) to Q = [0 , T ] × Ω by setting p(t , x) = p(x)
for all (t , x) ∈ Q, we may also consider the generalized Lebesgue space

Lp(·)(Q) =

{
u : Q→ R;u is measurable with

∫
Q
|u(t , x)|p(x) d(t , x) <∞

}
endowed with the norm

‖u‖Lp(·)(Q) = inf

{
µ > 0;

∫
Q

∣∣∣∣u(t , x)

µ

∣∣∣∣p(x)

d(t , x) ≤ 1

}
,

which share the same type of properties as Lp(·)(Ω). We define also the variable Sobolev space

W 1 , p(·)(Ω) =
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
,

which is Banach space equipped with the following norm ‖u‖W 1 , p(·)(Ω) = ‖u‖Lp(·)(Ω) +

‖∇u‖Lp(·)(Ω), and denote W 1 , p(·)
0 (Ω) = C∞c (Ω)

W 1 , p(·)(Ω)
. Assuming 1 < p− ≤ p+ < ∞,

the spaces W 1 , p(·)(Ω) and W 1 , p(·)
0 (Ω) are separable and reflexive Banach spaces. We denote the

dual space of W 1 , p(·)
0 (Ω) by W−1 , p′(·)(Ω).
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Remark 2.1 The variable exponent p : Ω → [1 , ∞) is said to satisfy the log-continuity condition
(p ∈ Clog(Ω)) if

∀ x1 , x2 ∈ Ω , |x1 − x2| < 1 , |p(x1)− p(x2)| < w(|x1 − x2|) , (2.3)

where w : (0 , ∞)→ R is a nondecreasing function with lim supα→0+w(α) ln( 1
α) < +∞.

Lemma 2.2 ([14]) Let p ∈ Clog(Ω) such that 1 ≤ p− ≤ p+ < N , we have

∀ u ∈W 1 , p(·)
0 (Ω) , ||u||Lp∗(·)(Ω) ≤ C||∇u||Lp(·)(Ω)

with C = C(N , Clog(p) , p+) and 1
p∗(·) = 1

p(·) −
1
N for p(x) < N a.e. x ∈ Ω. p∗(·) = ∞

otherwise.

Let introduce the functional space

V =
{
v ∈ Lp−(0 , T ;W

1 , p(·)
0 (Ω)); |∇v| ∈ Lp(·)(Q)

}
, (2.4)

which, endowed with the norm
‖v‖V = ‖∇v‖Lp(·)(Q) ,

or, the equivalent norm

‖v‖V = ‖v‖
Lp− (0 , T ;W

1 , p(·)
0 (Ω))

+ ‖∇v‖Lp(·)(Q) ,

is a separable and reflexive Banach space. We state some further properties of V in the following
lemma.

Lemma 2.3 ([12]) Let V be defined as in (2.4) and its dual space be denoted by V ∗. Then
(i) we have the following continuous dense embedding:

Lp
+

(0 , T ;W
1 , p(·)
0 (Ω)) ↪→ V ↪→ Lp

−
(0 , T ;W

1 , p(·)
0 (Ω)) . (2.5)

In particular, since D(Q) is dense in Lp
+

(0 , T ;W
1 , p(·)
0 (Ω)), it is dense in V and for the corre-

sponding dual space. We have

L(p−)
′
(0 , T ;W−1 , p′(·)(Ω)) ↪→ V ∗ ↪→ L(p+)

′
(0 , T ;W−1 , p′(·)(Ω)) . (2.6)

(ii) One can represent the elements of V ∗ as follows: if T ∈ V ∗, then there exists
F = (f1 , · · · , fN ) ∈ (Lp(·)(Q))N such that T = divx(F ) and

< T , ξ >V ∗ , V =

∫ T

0

∫
Ω
F · ∇ξ dxdt

for any ξ ∈ V , moreover, we have, ‖T‖V ∗ = max
{
‖fi‖Lp(·)(Q), i = 1 , · · · , n

}
.

Remark 2.4 Remark that V ∩ L∞(Q), endowed with the norm

‖v‖V ∩L∞(Q) := max
{
‖v‖V , ‖v‖L∞(Q)

}
∀v ∈ V ∩ L∞(Q) ,

is a Banach space. In fact, it is the dual space of the Banach space V ∗ + L1(Q), endowed with the
norm

‖v‖V ∗+L1(Q) = inf
{
‖v1‖V ∗ + ‖v2‖L1(Q); such that v = v1 + v2, with v1 ∈ V ∗ , v2 ∈ L1(Q)

}
.
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Lemma 2.5 ([16]) We have

W =
{
u ∈ V ; ut ∈ V ∗ + L1(Q)

}
↪→ C([0 , T ];L1(Ω)) , (2.7)

and
W ∩ L∞(Q) ↪→ C([0 , T ];L2(Ω)) . (2.8)

2.2 Parabolic capacity and measures

In this part, we introduce the notion of capacity, following the approach developed in [28].

Definition 2.6 Let us define X = W
1 , p(·)
0 (Ω) ∩ L2(Ω), endowed with its natural norm

‖ · ‖
W

1 , p(·)
0 (Ω)

+ ‖ · ‖L2(Ω) and the space

Wp(·)(0 , T ) =
{
u ∈ Lp−(0 , T ;X); ∇u ∈ (Lp(·)(Q))N , ut ∈ L(p−)′(0 , T ;X ′)

}
endowed with its natural norm

‖u‖Wp(·)(0 , T ) = ‖u‖
Lp− (0 , T ;X)

+ ‖∇u‖(Lp(·)(Q))N + ‖ut‖L(p−)′ (0 , T ;X′)
.

Since W 1 , p(·)
0 (Ω) and L2(Ω) are separable and reflexive Banach spaces, it follows that X is a

separable and reflexive Banach space. Consequently, the following result can be proved similarly to
that in [17].

Theorem 2.7 [16] The space Wp(·)(0 , T ) is a separable and reflexive Banach space.

We now give the definition and some properties of capacity.

Definition 2.8 If U ⊂ Q is an open set, we define the parabolic p(·)-capacity of U as

Capp(·)(U) = inf
{
‖u‖Wp(·)(0 , T ); u ∈Wp(·)(0 , T ), u ≥ χU almost everywhere in Q

}
,

where as usual we set inf ∅ = +∞. For any Borel set B ⊂ Q we then define

Capp(·)(B) = inf
{
Capp(·)(U); U is an open set of Q, B ⊂ U

}
.

Proposition 2.9 [16] If u is cap-quasi continuous and belongs to Wp(·)(0 , T ), then for all k > 0,

Capp(·)({|u| > k}) =
C

k
max

{
‖u‖

p−

(p′)−

Wp(·)(0 , T ) , ‖u‖
(p−)′

p−

Wp(·)(0 , T )

}
.

Let us denote withMb(Q) the set of all Radon measures with bounded variation on Q, andM0(Q)
will denote the set of all measures with bounded variation over Q that do not charge the sets of zero
p(·)-capacity.
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Definition 2.10 We define

M0(Q) =
{
µ ∈Mb(Q); µ(E) = 0 for all E ⊂ Q, such that Capp(·)(E) = 0

}
.

In [16] (see also [28]) the authors also proved the following decomposition theorem:

Theorem 2.11 [16] Let µ ∈ M0(Q) then there exists (f , F , g1 , g2) such that f ∈ L1(Q), F ∈
(Lp

′(·)(Q))N , g1 ∈ L(p−)′(0 , T ;W−1 , p′(·)(Ω)), g2 ∈ Lp
−

(0 , T ;X) such that∫
Q
ϕdµ =

∫
Q
f ϕ dxdt+

∫
Q
F · ∇udxdt+

∫ T

0
〈g1 , ϕ〉 dt−

∫ T

0
〈ϕt , g2〉 dt (2.9)

∀ϕ ∈ C∞c ([0 , T ] × Ω), where 〈· , ·〉 denote the duality between X ′ and X . Such a triplet
(f , F , g1 , g2) will be called a decomposition of µ.

Remark 2.12 (i) Notice that the decomposition of µ ∈ M0(Q) given by the previous theorem is
not unique.

(ii) Observe that, by Lemma 2.3 the embedding ofL(p−)′(0 , T ;W−1 , p′(·)(Ω)) into V ∗ is continuous
and since g1 ∈ L(p−)′(0 , T ;W−1 , p′(·)(Ω)), then there exists F ∈ (Lp(·)(Q))N such that g1 =
divx(F ). Applying (2.9) of Theorem 2.7, we deduce that for µ ∈ M0(Q), there exists (f , G , g)
(with G = F + F and g2 = g) such that f ∈ L1(Q), F ∈ (Lp

′(·)(Q))N and g ∈ Lp−(0 , T ;X)
such that∫

Q
ϕdµ =

∫
Q
f ϕ dxdt+

∫
Q
G · ∇udxdt−

∫ T

0
〈ϕt , g〉 dt ∀ϕ ∈ C∞c ([0 , T ]×Ω) . (2.10)

Here are some notations we will use throughout the paper. For any nonnegative real number k we
denote by Tk(r) = min(k , max(r , −k)) the truncation function at level k. By 〈· , ·〉 we mean the
duality between suitable spaces in which functions are involved. In particular we will consider both
the duality between W 1 , p(·)

0 (Ω) and W−1 , p′(·)(Ω) and the duality between W 1 , p(·)
0 (Ω) ∩ L∞(Ω)

and W−1 , p′(·)(Ω) + L1(Ω).

3 Assumptions and statement of main results

Throughout the paper, we assume that the following assumptions hold true: Ω is a bounded open
set on RN (N ≥ 1), T > 0 is given and we set Q = Ω× (0 , T ).

b,
∂b

∂s
≡ bs : Ω× R→ R and ∇xb : Ω× R→ RN (3.1)

are Carathéodory functions such that, for almost every x ∈ Ω, b(x , s) is a strictly increasing C1-
function with b(x , 0) = 0. For every s ∈ R, the function b(x , s) is in W 1 , p(·)(Ω).

There exist λ, Λ > 0 such that

λ ≤ bs(x , s) ≤ Λ , (3.2)
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for almost every x ∈ Ω, for every s ∈ R. There exists a function B in Lp(·)(Ω) such that∣∣∣∇xb(x , s)∣∣∣ ≤ B(x) , (3.3)

for almost every x ∈ Ω, for every s ∈ R.

a : Q× R× RN → RN is a Carathéodory function , (3.4)

a(x , t , ξ) · ξ ≥ α|ξ|p(·) , (3.5)

for almost every (x , t) ∈ Q, for every ξ ∈ RN , where α > 0 is a given real number.

|a(x , t , ξ)| ≤ β(L(x , t) + |ξ|p(x)−1) , (3.6)

for almost every (x , t) ∈ Q, for every ξ ∈ RN , where β > 0 is a given real number, L is a non
negative function in Lp

′(·)(Q).

[a(x , t , ξ)− a(x , t , ξ′)] · [ξ − ξ′] > 0 , (3.7)

for any (ξ , ξ′) ∈ R2N and for almost every (x , t) ∈ Q.

µ ∈M0(Q) , (3.8)

u0 is a measurable function in Ω such that b(x , u0) ∈ L1(Ω) . (3.9)

The definition of a renormalized solution for Problem (1.1) is given below.

Definition 3.1 Let µ ∈ M0(Q), (f , G , g) be a decomposition of µ. A measurable function u
defined on Q (let v := b(x , u)− g) is a renormalized solution of Problem (1.1) if

Tk(v) ∈ Lp−(0 , T ;W
1 , p(·)
0 (Ω)) , ∇Tk(v) ∈ (Lp(·)(Q))N , ∀k ≥ 0 and v ∈ L∞(0 , T ;L1(Ω)) ,

(3.10)∫
{(t , x)∈Q ; n≤|v|≤n+1}

a(x , t , ∇u) · ∇udxdt −→ 0 as n→ +∞ , (3.11)

and if, for every function S in W 2 ,∞(R), which is piecewise C1 and such that S′ has a compact
support, we have

∂S(v)

∂t
− div

(
S′(v)a(x , t , ∇u)

)
+ S′′(v)a(x , t , ∇u) · ∇v (3.12)

= f S′(v)− div
(
GS′(v)

)
+ S′′(v)G · ∇v in D′(Q) ,

S(v)(t = 0) = S(b(x , u0)) in L1(Ω) . (3.13)

Remark 3.2 Note that, all terms in (3.12) are well defined, indeed, let k > 0 such that supp(S′) ⊂
[−k , k] we have:∫

Q
|∇S(v)|p(x) dxdt ≤ max

(
‖S′‖p

−

L∞(R) , ‖S
′‖p

+

L∞(R)

)∫
Q
|∇Tk(v)|p(x) dxdt .
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Then S(v) ∈ Lp
−

(0 , T ;W
1 , p(·)
0 (Ω)) and

∂S(v)

∂t
∈ D′(Q). Since ∇Tk(v) = ∇(b(x , u) −

g)χ{|v|≤k} =
(
bs(x , u)∇u + ∇xb(x , u) − ∇g

)
χ{|v|≤k}, the term S′(v)a(x , t , ∇u) identifies

with:

S′(Tk(v))a
(
x , t , (bs(x , u))−1(∇Tk(v) + (∇g −∇xb(x , u))χ{|v|≤k})

)
a.e. in Q .

Assumptions (3.2) and (3.6) imply that∫
Q
|S′(v)a(x , t , ∇u)|p′(x) dxdt

≤
∫
Q
βp(x) ‖S′‖p(x)

L∞(R)

∣∣∣L(x , t) +
∣∣∣ 1
λ
|∇Tk(v) +∇g −∇xb(x , u)|

∣∣∣p(x)−1∣∣∣p′(x)
dxdt

≤ max
(

(β‖S′‖L∞(R))
(p−)′ , (β‖S′‖L∞(R))

(p+)′
)[

2(p−)′−1

∫
Q
|L(x , t)|p′(x) dxdt (3.14)

+ max
{( 2

λ

)(p+)′

,
( 2

λ

)(p−)′}(∫
Q
|∇Tk(v)|p(x) dxdt+

∫
Q

(|∇g|+ |B(x)|)p(x) dxdt
)]
.

Using (3.4), (3.10) and (3.14) it follows that:

S′(v)a(x , t , ∇u) ∈ (Lp
′(·)(Q))N . (3.15)

The term S′′(v)a(x , t , ∇u) · ∇v identifies with

S′′(Tk(v))a
(
x , t , (bs(x , u))−1(∇Tk(v) + (∇g −∇xb(x , u))χ{|v|≤k})

)
· ∇Tk(v) a.e. in Q

and in view of (3.4), (3.10), (3.15) and by Hölder inequality we obtain

S′′(v)a(x , t , ∇u) · ∇v ∈ L1(Q) .

Finally f S′(v) and G · ∇S′(v) belongs to L1(Q) and GS′(v) ∈ (Lp
′(·)(Q))N .

We also have S(v) ∈ V and
∂S(v)

∂t
∈ V ∗ + L1(Q), which implies by Lemma 2.5 that S(v) ∈

C0([0 , T ] , L1(Ω)) and (3.13) makes sense.

Note that the formulation of renormalized solution does not depend on the decomposition of µ, the
proof of this fact relies on the following result.

Lemma 3.3 Let µ ∈M0(Q), and let (f , G , g) and (f , G , g) be two different decompositions of
µ according to Theorem 2.11 (see also Remark 2.12). Then we have (g−g)t = f−f−div

(
G−G

)
in distributional sense, g − g ∈ C([0 , T ];L1(Ω)) and (g − g)(0) = 0.

Proof. See [28] and [16]. �

Proposition 3.4 Let u be a renormalized solution of (1.1). Then u satisfies (3.10)–(3.13) for every
decomposition (f , G , g) of µ.

Proof. The proof of Proposition 3.4 follows the same lines as the proof of the corresponding result
in the case of a constant exponent p, Proposition 4.2 of [7], and therefore is omitted here. �
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4 Existence result

This section is devoted to establish the following existence theorem.

Theorem 4.1 Under assumptions (3.1)–(3.9) there exists at least a renormalized solution u of Prob-
lem (1.1).

Proof. The proof is divided into 3 steps. In Step 1, we introduce an approximate problem, es-
tablish a few a priori estimates, the limit u of the approximate solutions uε is introduced and
v := b(x , u) − g is shown to belong to L∞(0 , T ;L1(Ω)) and to satisfy (3.10). In Step 2, we
define a time regularization of the field Tk(u) and we establish Lemma 4.2, which allows us to con-
trol the parabolic contribution that aries in the monotonicity method when passing to the limit and
we prove an energy estimate Lemma 4.3. At last, Step 3 is devoted to prove that u satisfies (3.11),
(3.12), and (3.13) of the Definition 3.1.
? Step 1. For ε > 0 fixed, let us introduce the following regularization of the data

uε0 ∈ C∞c (Ω) : b(x , uε0)→ b(x , u0) in L1(Ω) as ε→ 0 . (4.1)

µε ∈ C∞c (Q) : ‖µε‖L1(Q) ≤ C and µε = f ε − div(Gε) +
∂gε

∂t
(4.2)

and such that
f ε ∈ C∞c (Q) : f ε → f in L1(Q) as ε→ 0 , (4.3)

Gε ∈ (C∞c (Q))N : Gε → G in (Lp
′(·)(Q))N as ε→ 0 , (4.4)

gε ∈ C∞c (Q) : gε → g in Lp
−

(0 , T ;W
1 , p(·)
0 (Ω) ∩ L2(Ω)) as ε→ 0 . (4.5)

Let us now consider the following regularized problem:

∂b(x , uε)

∂t
− div(a(x , t , ∇uε)) = f ε − div(Gε) +

∂gε

∂t
≡ µε in Q , (4.6)

uε = 0 in (0 , T )× ∂Ω , (4.7)

b(x , uε)(t = 0) = b(x , uε0) in Ω , (4.8)

where vε := b(x , uε) − gε. As a consequence, proving existence of a weak solution uε ∈ V of
(4.6)–(4.8) is an easy task (see e.g. [20]).

Using Tk(vε) ∈ V ∩ L∞(Q) as a test function in (4.6). Employing the integration by parts
formula for the evolution term, leads to∫

Ω
Tk(v

ε) dx+

∫ t

0

∫
Ω
a(x , s , ∇uε) · ∇Tk(vε) dxds (4.9)

=

∫ t

0

∫
Ω
f εTk(v

ε) dxds+

∫ t

0

∫
Ω
Gε · ∇Tk(vε) dxds+

∫
Ω
Tk(b(x , u

ε
0)) dx

for almost every t ∈ (0 , T ) and where Tk(r) =

∫ r

0
Tk(s) ds.
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Using assumptions (2.4)–(2.5), the definition of Tk and by means of Young’s inequality in (4.9),
we obtain ∫

Ω
Tk(b(x , u

ε)− gε) dx+ α

∫
Ek

bs(x , u
ε)|∇uε|p(x) dxds

≤ k‖f ε‖L1(Q) + max
((2α

λ

)(p−)′−1
,
(2α

λ

)(p+)′−1)∫
Q
|Gε|p′(x) dxdt

+
α

2 p−

∫
Ek

bs(x , u
ε)|∇uε|p(x) dxds (4.10)

+ β
( 1

p−
+

1

(p+)′

)(
‖B(x)‖Lp(·)(Q) + ‖∇gε‖Lp(·)(Q)

)
‖L‖Lp′(·)(Q)

+
α

2
max

((2β

α

)p−
,
(2β

α

)p+)∫
Q

(
|B(x)|+ |∇gε|

)p(x)
dxdt

+
α

2 p−

∫
Ek

bs(x , u
ε)|∇uε|p(x) dxds+ k‖bε(x , uε0)‖L1(Ω) ,

where Ek = {(x , s) : |vε| ≤ k}. As a consequence, we find∫
Ω
Tk(b(x , u

ε)− gε2) dx+ α
(p− − 1

p−

)∫
Ek

bs(x , u
ε)|∇uε|p(x) dxds

≤ k‖f ε‖L1(Q) + max
((2α

λ

)(p−)′−1
,
(2α

λ

)(p+)′−1)∫
Q
|Gε|p′(x) dxdt

+ β
( 1

p−
+

1

(p+)′

)(
‖B(x)‖Lp(·)(Q) + ‖∇gε‖Lp(·)(Q)

)
‖L‖Lp′(·)(Q) (4.11)

+
α

2
max

((2β

α

)p−
,
(2β

α

)p+)∫
Q

(
|B(x)|+ |∇gε|

)p(x)
dxdt+ k‖b(x , uε0)‖L1(Ω) .

Moreover, by definition of vε = b(x , uε)− g and by the Young’s inequality, we deduce∫
Q
|∇Tk(vε)|p(x) dxdt =

∫
Ek

|∇vε|p(x) dxdt

≤ 2p
+−1 max

(
Λp
−−1 , Λp

+−1
)∫

Ek

bs(x , u
ε)|∇uε|p(x) dxds (4.12)

+ 2p
+−1

∫
Ω

(
|B(x)|+ |∇gε|

)p(x)
dxdt .

The properties of Gε, gε, fε and ‖b(x , uε0)‖L1(Ω), we deduce from (4.11) and (4.12) that

|∇Tk(vε)| is bounded in (Lp(·)(Q))N , (4.13)

and
Tk(v

ε) is bounded in Lp
−

(0 , T ;W
1 , p(·)
0 (Ω)) , (4.14)

independently of ε and for any k ≥ 0.

For any S ∈ W 1 ,∞(R) such that S′ has a compact support (supp(S′) ⊂ [−k , k]), we have
from (4.13), (4.14) and by Stampacchia’s Theorem that

S(vε) is bounded in V independently of ε . (4.15)
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We multiply the equation (4.6) by S′(vε) then we deduce

∂S(vε)

∂t
= div

(
S′(vε)a(x , t , ∇uε)

)
− S′′(vε)a(x , t , ∇uε) · ∇vε (4.16)

+ f εS′(vε)− div
(
GεS′(vε)

)
+ S′′(vε)Gε · ∇vε in D′(Q) .

Remark that∣∣∣S′(vε)a(x , t , ∇uε)
∣∣∣ ≤ β‖S′‖L∞(R)

(
L(x , t) + c

∣∣∣∇Tk(vε) +∇gε −∇xbε(x , uε)
∣∣∣p(x)−1)

,

(4.17)

where c = max
((

1
λ

)p+−1
,
(

1
λ

)p−−1)
. As a consequence each terms in the right hand side of

(4.16) is bounded either in V ∗ or in L1(Q), and we then deduce that

∂S(vε)

∂t
is bounded in V ∗ + L1(Q) , (4.18)

independently of ε. Estimates (4.15) and (4.18) imply that, for a subsequence still indexed by ε,

vε → v := b(x , u)− g a.e. in Q , (4.19)

uε → u a.e. in Q , (4.20)

Tk(v
ε) ⇀ Tk(v) weakly in Lp

−
(0 , T ;W

1 , p(·)
0 (Ω)) , (4.21)

a(x , t , ∇uε)χ{|vε|≤k} ⇀ σk weakly in (Lp(·)
′
(Q))N . (4.22)

By using (4.1), (4.3), (4.20) and by Lebesgue’s convergence theorem we obtain

∇xb(x , uε)→ ∇xb(x , u) strongly in (Lp(Q))N , (4.23)

as ε tends to zero for any k > 0 and where for any k > 0 , σk belongs to (Lp
′(·)(Q))N .

Now we establish that b(x , u) − g belongs to L∞(0 , T ;L1(Ω)). Indeed using (4.11) and
Tk(s) ≥ |s| − 1 leads to∫

Ω
|vε(t)|dx ≤ k‖f ε‖L1(Q) + max

((2α

λ

)(p−)′−1
,
(2α

λ

)(p+)′−1)∫
Q
|Gε|p′(x) dxdt

+ β
( 1

p−
+

1

(p′)−

)(
‖B(x)‖Lp(·)(Q) + ‖∇gε‖Lp(·)(Q)

)
‖L‖Lp′(·)(Q) (4.24)

+
α

2
max

((2β

α

)p−
,
(2β

α

)p+)∫
Q

(
|B(x)|+ |∇gε|

)p(x)
dxdt+ k‖b(x , uε0)‖L1(Ω) + meas(Ω) ,

a.e. t in (0 , T ). Using (4.1)–(4.5) and (4.20), we deduce that v := b(x , u) − g belongs to
L∞(0 , T ;L1(Ω)).

Now we look of an energy estimate of the approximating solutions. For any integer n ≥ 1,
consider the Lipschitz continuous function θn defined through: θn(r) = Tn+1(r)− Tn(r). Remark
that ‖θn‖L∞(R) ≤ 1 for any n ≥ 1 and that θn(r)→ 0 as n→∞, ∀r ∈ R. Using θn(vε) as a test
function in (4.6) leads to∫

Ω
θn(vε) dx+

∫
Q
a(x , t , ∇uε) · ∇θn(vε) dxdt (4.25)

=

∫
Q
f εθn(vε) dxdt+

∫
Q
Gε · ∇θn(vε) dxdt+

∫
Ω
θn(b(x , uε0)) dx ,
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where θn(r) =

∫ r

0
θn(s) ds ≥ 0 for all r ∈ R. Hence

∫
{n≤|vε|≤n+1}

bs(x , u
ε)a(x , t , ∇uε) · ∇uε dxdt

≤
∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) ·
(
∇gε −∇xb(x , uε)

)
dxdt+

∫
Q
f εθn(vε) dxdt (4.26)

+

∫
{n≤|vε|≤n+1}

Gε ·
(
bs(x , u

ε)∇uε +∇xb(x , uε)−∇gε
)

dxdt+

∫
Ω
θn(b(x , uε0)) dx .

By using (4.1)-(4.5) and Young’s inequality we obtain

λ

∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) · ∇uε dxdt ≤ β

(p+)′

∫
{|vε|≥n}

|L(x , t)|p′(x) dxdt

+
β

p−

∫
{|vε|≥n}

(
|B(x)|+ |∇gε|

)p(x)
dxdt+

αλ

2(p+)′

∫
{n≤|vε|≤n+1}

|∇uε|p(x) dxdt

+
1

p−
max

(( 2

αλ

)p−−1
,
( 2

αλ

)p+−1)∫
{|vε|≥n}

|∇gε|p(x) dxdt (4.27)

+

∫
{|vε|≥n}

|f ε|dxdt+
αλ

2 (p+)′

∫
{n≤|vε|≤n+1}

|∇uε|p(x) dxdt

+
λ

(p+)′
max

((2 (p+)′

αp−

)(p−)′−1
,
(2 (p+)′

αp−

)(p+)′−1)∫
{|vε|≥n}

|Gε|p(x) dxdt

+

∫
{|b(x , uε0)|≥n}

|b(x , uε0)|dx .

Hence

λ
((p+)′ − 1

(p+)′

)∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) · ∇uε dxdt

≤ β

(p+)′

∫
{|vε|≥n}

|L(x , t)|p′(x) dxdt+
β

p−

∫
{|vε|≥n}

(
|B(x)|+ |∇gε|

)p(x)
dxdt

+
1

p−
max

(( 2

αλ

)p−−1
,
( 2

αλ

)p+−1)∫
{|vε|≥n}

|∇gε|p(x) dxdt (4.28)

+

∫
{|vε|≥n}

|f ε| dxdt+
λ

(p+)′
max

((2(p+)′

αp−

)(p−)′−1
,
(2(p+)′

αp−

)(p+)′−1)∫
{|vε|≥n}

|Gε|p(x) dxdt

+

∫
{|b(x , uε0)|≥n}

|b(x , uε0)|dx .

To pass to the limit-sup as ε tends to 0 in (4.28), let us remark that (4.24) imply that vε is bounded
in L∞(0 , T ;L1(Ω)), and we deduce

lim
n→∞

(
sup
ε

meas{|vε| ≥ n}
)

= 0 . (4.29)

Using the equi-integrability of the sequences |f ε|, |b(x , uε0)|, |∇gε|p(x) and |Gε|p′(x) in L1(Q) we
deduce

lim
n→∞

(
sup
ε

∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) · ∇uε dxdt
)

= 0 . (4.30)
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? Step 2. This step is devoted to introduce for k ≥ 0 fixed, a time regularization of the function
Tk(v). This kind of regularization has been first introduced by Landes [19], and employed by several
authors to solve nonlinear time dependent problems with L1 or measure data (see e.g. [4, 22]).

This specific time regularization of Tk(v) (for fixed k ≥ 0) is defined as follows. Let (vζ0)µ in
W

1 , p(·)
0 (Ω) ∩ L∞(Ω) such that ‖vζ0‖L∞(Ω) ≤ k, for all ζ > 0, and vζ0 → Tk(v0) a.e. in Ω with

1
ζ ‖v

ζ
0‖Lp(Ω) → 0 as ζ → +∞. Let us consider the unique solution Tk(v)ζ ∈ V ∩ L∞(Q) of the

monotone problem:
∂Tk(v)ζ
∂t

+ ζ(Tk(v)ζ − Tk(v)) = 0 in D′(Q) , (4.31)

Tk(v)ζ(t = 0) = vζ0 in Ω . (4.32)

Following [19] (see also [18]) we can easily prove

Tk(v)ζ → Tk(v) strongly in V a.e. in Q as ζ → +∞ (4.33)

with ‖Tk(v)ζ‖L∞(Ω) ≤ k for any ζ, and
∂Tk(v)ζ
∂t

∈ V ∩ L∞(Q).

The main estimate is the following:

Lemma 4.2 Fix k ≥ 0. Let S ∈W 1,∞(R) be an increasing function such that S(r) = r for |r| ≤ k
and suppS′ is compact. Then vε = bε(x , u

ε)− gε, we have

lim
ζ→∞

lim
ε→0

∫ T

0

〈∂S(vε)

∂t
,
(
Tk(v

ε)− Tk(v)ζ

)〉
dt ≥ 0 .

Proof. The proof is very similar to that in [4, 12, 30] with constant exponents. �

In the following lemma we identify the weak limit σk and we prove the weak L1 convergence of the
truncated energy a(x , t , ∇uε) · ∇Tk(vε) as ε tends to zero.

Lemma 4.3 The subsequence of uε in Step 1 satisfies for any k ≥ 0.

lim
ε→0

∫
Q
a(x , t , ∇uε) · ∇Tk(vε) dxdt ≤

∫
Q
σk · ∇Tk(v) dxdt , (4.34)

lim
ε→0

∫
Q
bs(x, u

ε)
[
a(x, t,∇uεχ{|vε|≤k})−a(x, t,∇uχ{|v|≤k})

]
·
[
∇uεχ{|vε|≤k}−∇uχ{|v|≤k}

]
dxdt = 0.

(4.35)
Moreover, for fixed k ≥ 0, we have

σk = a(x , t , ∇u)χ{|v|≤k} a.e. in Q , (4.36)

and
a(x , t , ∇uε) · ∇Tk(vε) ⇀ a(x , t , ∇u) · ∇Tk(v) weakly in L1(Q) (4.37)

as ε tends to 0.
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Proof. We first prove that (4.34) holds true. For fixed k ≥ 0 let W ε
ζ = (Tk(v

ε) − Tk(v)ζ). Let us
introduce a sequence of increasing C∞(R)-functions Sn such that

Sn(r) = r for |r| ≤ n , supp(S′n) ⊂ [−(n+ 1) , n+ 1] , ‖S′′n‖L∞(R) ≤ 1 , for any n ≥ 1 .

We choose S′n(vε)W ε
ζ as test function in (4.6), we obtain∫ T

0
〈∂Sn(vε)

∂t
, W ε

ζ 〉 dt+

∫
Q
S′n(vε)a(x , t , ∇uε) · ∇W ε

ζ dxdt

+

∫
Q
S′′n(vε)W ε

ζ a(x , t , ∇uε) · ∇vε dxdt (4.38)

=

∫
Q
f εS′n(vε)W ε

ζ dxdt+

∫
Q
GεS′n(vε) · ∇W ε

ζ dxdt+

∫
Q
S′′n(vε)W ε

ζG
ε · ∇vε dxdt .

In the following we pass to the limit in (4.38) as ε tends to 0, then µ tends to∞ then n tends to∞,
the real number k ≥ 0 being kept fixed. In order to perform this task we prove bellow the following
results for fixed k ≥ 0:

lim
ζ→∞

lim
ε→0

∫ T

0

〈∂Sn(vε)

∂t
, W ε

ζ

〉
dt ≥ 0 , (4.39)

for any n ≥ k

lim
n→∞

lim
ζ→∞

lim
ε→0

∫
Q
S′′n(vε)a(x , t , ∇uε)W ε

ζ · ∇vε dxdt = 0 , (4.40)

lim
ζ→∞

lim
ε→0

∫
Q
f εS′n(vε)W ε

ζ dxdt = 0 , (4.41)

lim
ζ→∞

lim
ε→0

∫
Q
GεS′n(vε) · ∇W ε

ζ dxdt = 0 , (4.42)

lim
ζ→∞

lim
ε→0

∫
Q
S′′n(vε)W ε

ζG
ε · ∇vε dxdt = 0 . (4.43)

Proof of (4.39). In view of the definition of W ε
ζ and using Lemma 4.2 for fixed n ≥ k, then

(4.39) holds true.

Proof of (4.40). For any n ≥ 1, and any ζ > 0, we have supp(S′′n) ⊂ [−(n+1) , −n]∪[n , n+1],
‖W ε

ζ ‖L∞(Q) ≤ 2 k and ‖S′′n‖L∞(R) ≤ 1. As a consequence∣∣∣ ∫
Q
S′′n(vε)a(x , t , ∇uε)W ε

ζ · ∇vε dxdt
∣∣∣

≤ 2 k

∫
{n≤|vε|≤n+1}

|a(x , t , ∇uε)|
(
|∇xb(x , uε)|+ |∇gε|

)
dxdt (4.44)

+ 2 k λ

∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) · ∇uε dxdt .

By using (4.26), (4.27) and Young’s inequality, it is easy to see that∣∣∣ ∫
Q
S′′n(vε)a(x , t , ∇uε)W ε

ζ · ∇vε dxdt
∣∣∣ (4.45)

≤ c1

∫
{n≤|vε|≤n+1}

a(x , t , ∇uε) · ∇uε dxdt+ c2

∫
{|vε|≥n}

(
|B|p(x) + |L|p′(x) + |∇gε|p(x)

)
dxdt ,
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for any n ≥ 1, where c1 and c2 are constants independent of n. Using assumptions (4.29)–(4.30)
and the equi-integrability of the sequences |∇gε|p(x) in L1(Q), permits to pass to the limit in (4.45)
as n tends to∞ and to establish (4.40).

Proof of (4.41). For fixed n ≥ 1, and in view (4.3) and (4.19), Lebesgue’s convergence theorem
implies that for any ζ > 0 :

lim
ε→0

∫
Q
f εS′n(vε)W ε

ζ dxdt =

∫
Q
fS′n(v)Wζ dxdt .

Using (4.33) permits to pass to the limit as ζ tends to∞ in the above equality to obtain (4.41).

Proof of (4.42). Using (4.4) and (4.21) leads to S′n(vε)Gε tends to S′n(v)G strongly in
(Lp

′(x)(Q))N as ε tends to 0. For fixed ζ > 0, we have W ε
ζ tends to Tk(v) − Tk(v)ζ weakly

in Lp
−

(0 , T ;W
1 , p(·)
0 (Ω)), and a.e. in Q as ε tends to 0, we deduce that

lim
ε→0

∫
Q
GεS′n(vε) · ∇W ε

ζ dxdt =

∫
Q
GS′n(v) · ∇(Tk(v)− Tk(v)ζ) dxdt (4.46)

for any ζ > 0. Appealing now to (4.33) and passing to the limit as ζ → ∞ in (4.45) allows to
conclude that (4.42) holds true.

Proof of (4.43). From (4.5) and (4.21), it follows that

lim
ζ→∞

lim
ε→0

∫
Q
∇S′n(vε)W ε

ζ ·Gε dxdt = lim
ζ→∞

∫
Q
∇S′n(v)Wζ ·G dxdt = 0

for any n ≥ 1.

Now we are in a position to pass to the limit-sup when ε tends to zero, then to the limit-sup
when ζ tends to∞ and then to the limit as n tends to∞ in (4.38) we obtain for any k ≥ 0 :

lim
n→∞

lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x , t , ∇uε) · ∇(Tk(v

ε)− Tk(v)ζ) dxdt ≤ 0 .

Since S′n(vε)a(x , t , ∇uε) · ∇Tk(vε) = a(x , t , ∇uε) · ∇Tk(vε) for k ≤ n, the above inequality
implies for k ≤ n

lim
ε→0

∫
Q
a(x , t , ∇uε) · ∇Tk(vε) dxdt ≤ lim

n→∞
lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x , t , ∇uε) · ∇Tk(v)ζ dxdt .

(4.47)
Due to (4.19) and (4.22), we have S′n(vε)a(x , t , ∇uε) converges to S′n(v)σn+1 weakly in
(Lp

′(·)(Q))N as ε tends to zero. The strong convergence of Tk(v)ζ to Tk(v) in V as ζ tends to
∞, then allows to conclude that

lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x , t , ∇uε) · ∇Tk(v)ζ dxdt (4.48)

=

∫
Q
S′n(v)σn+1 · ∇Tk(v) dxdt =

∫
Q
σn+1 · ∇Tk(v) dxdt .

Now for k ≤ n, we have S′n(vε)a(x , t , ∇uε)χ{|vε|≤k} = a(x , t , ∇uε)χ{|vε|≤k} a.e. inQ. Letting
ε tend to 0, we obtain σn+1χ{|v|≤k} = σkχ{|v|≤k} a.e. in Q\{|v| = k} for k ≤ n, then we have for
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all k ≤ n, σn+1 · ∇Tk(v) = σk · ∇Tk(v) a.e. in Q. Recalling (4.47) and (4.48) allows to conclude
that (4.34) holds true.

Proof of (4.35). Let k ≥ 0 be fixed, we use (3.2) and the monotone character (3.7) of a(x , t , ξ)
with respect to ξ, we obtain

0 ≤
∫
Q
bs(x, u

ε)
(
a(x, t,∇uεχ{|vε|≤k})− a(x, t,∇uχ{|v|≤k})

)
·
(
∇uεχ{|vε|≤k} −∇uχ{|v|≤k}

)
dxdt

=

∫
Q
bs(x, u

ε)a(x, t,∇uε) · ∇uεχ{|vε|≤k} dxdt−
∫
Q
bs(x, u

ε)a(x, t,∇uε) · ∇uχ{|vε|≤k}χ{|v|≤k} dxdt

−
∫
Q
bs(x , u

ε)a(x , t , ∇u)χ{|v|≤k} ·
(
∇uεχ{|vε|≤k} −∇uχ{|v|≤k}

)
dxdt . (4.49)

We pass to the limit-sup as ε tends to 0 in (4.49). Let us remark that we have vε = b(x , uε) − gε
and bs(x , uε)∇uεχ{|vε|≤k} = ∇Tk(vε) − (∇xb(x , uε) − ∇gε)χ{|vε|≤k} a.e. in Q, and we have
also χ{|vε|≤k} almost everywhere converges to χ{|v|≤k} for almost every k (see [8]), using (4.34),
we obtain

lim
ε→0

∫
Q
bs(x , u

ε)a(x , t , ∇uε) · ∇uεχ{|vε|≤k} dxdt

= lim
ε→0

∫
Q
a(x , t , ∇uε) · ∇Tk(vε) dxdt− lim

ε→0

∫
Q
a(x , t , ∇uε)χ{|vε|≤k} ·

(
∇xb(x , uε)−∇gε

)
dxdt

≤
∫
Q
σk · ∇Tk(v) dxdt−

∫
Q
σk ·

(
∇xb(x , u)−∇g

)
dxdt . (4.50)

Since ∇uχ{|v|≤k} = (bs(x , u))−1
(
∇Tk(v)− (∇xb(x , u)−∇g)χ{|v|≤k}

)
∈ (Lp(·)(Q))N , using

(3.2), (4.20) and (4.22) it follows that

lim
ε→0

∫
Q
bs(x , u

ε)a(x , t , ∇uε)χ{|vε|≤k} · ∇uχ{|v|≤k} dxdt

=

∫
Q
bs(x , u)σk · ∇uχ{|v|≤k} dxdt =

∫
Q
σk ·

(
∇Tk(v)−∇xb(x , u) +∇g

)
dxdt . (4.51)

In view of (3.6), we have∫
Q

∣∣∣a(x , t , ∇u)χ{|v|≤k}

∣∣∣p′(x)
dxdt ≤ 2(p−)′−1 max

(
β(p+)′ , β(p−)′

)∫
Q
|L(x , t)|p′(x) dxdt

(4.52)

+2(p−)′−1 max
(
β(p+)′ , β(p−)′

)
max

(( 1

λ

)p+
,
( 1

λ

)p−)∫
Q

(|∇Tk(v)|+ |B|+ |∇g)|)p(x) dxdt .

Using (4.25) and (4.27) we have

lim
ε→0

∫
Q
a(x , t , ∇u)χ{|v|≤k} ·

[
∇Tk(vε)− (∇xb(x , uε)−∇gε)χ{|vε|≤k} (4.53)

−bs(x , uε)
(
bs(x , u)

)−1(
∇Tk(v)− (∇xb(x , u)−∇g)χ{|v|≤k}

)]
dxdt = 0 .

Taking the limit-sup as ε tends to 0 in (4.49) and using (4.50), (4.51) and (4.53) shows that (4.35)
holds true.

Proof of (4.36)–(4.37). (4.35) and the usual Minty argument imply (4.36)–(4.37). �
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? Step 3. In this step we prove that u satisfies (3.11), (3.12) and (3.13), to this end, we have for
any fixed n ≥ 1:∫

{n≤|vε|≤n+1}
bs(x , u

ε)a(x , t , ∇uε) · ∇uε dxdt

=

∫
Q
a(x , t , ∇uε) · ∇Tn+1(vε) dxdt−

∫
Q
a(x , t , ∇uε) · ∇Tn(vε) dxdt

+

∫
Q
a(x , t , ∇uε)χ{|vε|≤n+1} ·

(
∇gε −∇xb(x , uε)

)
dxdt (4.54)

−
∫
Q
a(x , t , ∇uε)χ{|vε|≤n} ·

(
∇gε −∇xb(x , uε)

)
dxdt .

According to (4.5), (4.22), (4.23), (4.36), and (4.37) we can pass to the limit as ε tends to 0 in (4.54)
for fixed n ≥ 0 and obtain

lim
ε→0

∫
{n≤|vε|≤n+1}

bs(x , u
ε)a(x , t , ∇uε) · ∇uε dxdt

=

∫
Q
a(x , t , ∇u) · ∇Tn+1(v) dxdt−

∫
Q
a(x , t , ∇u) · ∇Tn(v) dxdt

+

∫
Q
a(x , t , ∇u)χ{|v|≤n+1} ·

(
∇g −∇xb(x , u)

)
dxdt (4.55)

−
∫
Q
a(x , t , ∇u)χ{|v|≤n} ·

(
∇g −∇xb(x , u)

)
dxdt

=

∫
{n≤|v|≤n+1}

bs(x , u)a(x , t , ∇u) · ∇udxdt .

Taking the limit as n tends to∞ in (4.55) and using the estimate (4.30) and in view of (3.2), imply
that u satisfies (3.11).

Let S be W 2 ,∞(R) such that S′ has a compact support, let k be a positive real number such
that supp(S′) ⊂ [−k , k]. It is easy to obtain by multiplication of the approximate equation (4.6) by
S′(vε) that

∂S(vε)

∂t
− div

(
S′(vε)a(x , t , ∇uε)

)
+ S′′(vε)a(x , t , ∇u) · ∇vε

= f εS′(vε)− div
(
GεS′(vε)

)
+GεS′′(vε) · ∇vε in D′(Q) . (4.56)

In what follows we pass as ε tends to 0 in each terms of (4.56). Since S is bounded, and S(vε)

converges to S(v) a.e. inQ and in L∞(Q) *-weak, ∂S(vε)
∂t converges to ∂S(v)

∂t inD′(Q) as ε tends to
0. Since supp(S′) ⊂ [−k , k], we have S′(vε)a(x , t , ∇uε) = S′(vε)a(x , t , ∇uε)χ{|vε|≤k} a.e.
in Q, the pointwise convergence of uε to u as ε tends to 0, the bounded character of S and (4.37) of
Lemma 4.3 imply that S′(vε)a(x , t , ∇uε) converges to S′(v)a(x , t , ∇u) weakly in (Lp

′(·)(Q))N

as ε tends to 0. The pointwise convergence of vε to v, the bounded character of S′′ and (4.37) of
Lemma 4.3 allow to conclude that S′′(vε)a(x , t , ∇uε) ·∇Tk(vε) converges to S′′(v)a(x , t , ∇u) ·
∇Tk(v) weakly in L1(Q) as ε tends to 0. It is easy to see that f εS′(vε) converges to fS′(v) strongly
in L1(Q), the term GεS′(vε) converges to GS′(v) strongly in (Lp

′(·)(Q))N and GεS′′(vε) · ∇vε
converges to GS′′(v) · ∇v weakly in L1(Q). As consequence of the above convergence result, we
are in a position to pass to the limit as ε tends to 0 in equation (4.56) and to conclude that u satisfies
(3.12).
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It remains to show that S(v) satisfies the initial condition (3.13). To this end, firstly remark that
S(vε) is bounded in V ∩ L∞(Q), secondly, (4.56) and the above considerations on the behavior
of the terms of this equation show that ∂S(vε)

∂t is bounded in V ∗ + L1(Q). As a consequence,
an Aubin’s type lemma (see e.g. [22, 34], the proof of this Corollary follows the same lines as
the corresponding result in the case of a constant exponent p) implies that S(vε) lies in a compact
set of C([0 , T ];L1(Ω)). It follows that, on one hand, S(vε)(t = 0) converges to S(v)(t = 0)
strongly in L1(Ω), on the other hand, the smoothness of S implies that S(vε)(t = 0) converges
to S(b(x , u))(t = 0) strongly in Lq(Ω) for all q < ∞. Due to (4.1) and (4.5), we conclude
that S(vε)(t = 0) = S(bε(x , u

ε
0)) converges to S(b(x , u))(t = 0) strongly in Lq(Ω). Then we

conclude that S(v)(t = 0) = S(b(x , u0)) in Ω. As a conclusion of Step 1, Step 2 and Step 3, the
proof of Theorem 4.1 is complete. �
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sure data, Comptes Rendus Mathématique. Académie des Sciences. Paris 344, no. 9 (2007),
pp. 571–576.

[24] F. Petitta, Renormalized solutions for nonlinear parabolic equations with general measure
data, Annali di Matematica Pura ed Applicata. Series IV 187, no. 4 (2008), pp. 563–604.



114 Hicham Redwane, J. Nonl. Evol. Equ. Appl. 2019 (2020) 95–114

[25] M. Pierre, Parabolic capacity and Sobolev spaces, SIAM Journal on Mathematical Analy-
sis 14, no. 3 (1983), pp. 522–533.

[26] F. Petitta, A.-C. Ponce, A. Porretta, Approximation of diffuse measures for parabolic capac-
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