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1 Introduction

Evolution equations and inclusions with time delays have often arisen in modeling in physical phys-
iology, biology, population dynamics, etc. Delay differential equations allow taking into account
past actions into mathematical models, thus making the model closer to the real-world phenomenon.
Delay terms can be of different types: constant, time dependent, state dependent etc.

In this paper we consider problem without initial conditions for evolution variational inequalities
(inclusions) with a time-depended delay. Let us introduce an example of the problem being studied
here.

Let Ω be a bounded domain in Rn (n ∈ N), ∂Ω be a piecewise boundary of Ω. We put Q :=
Ω × (−∞ , 0], Σ := ∂Ω × (−∞ , 0], Ωt := Ω × {t}, ∀ t ∈ R. For an arbitrary measurable
set F ⊂ Rk (k = n or k = n + 1), let L2(F ) be the standard Lebesgue space. Let L2

loc(Q)
be the space of functions defined on Q such that their restrictions on any bounded measurable set
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Q′ ⊂ Q belong to L2(Q′). Denote by H1(Ω) the standard Sobolev space, i.e., H1(Ω) = {v ∈
L2(Ω) | vxi ∈ L2(Ω) (i = 1, n)} with scalar product (v , w)H1(Ω) =

∫
Ω[∇v∇w + v w] dx, where

∇u := (ux1 , . . . , uxn).

Let K be a convex closed set in H1(Ω) which contains 0. Let us consider the problem of
finding a function u ∈ L2

loc(Q) such that uxi ∈ L2
loc(Q) (i = 1, n), ut ∈ L2

loc(Q), and, for a.e.
t ∈ (−∞ , 0], u(·, t) ∈ K and∫

Ωt

{ut(v − u) +∇u∇(v − u) + u(v − u) + (v − u)

∫ t

t−τ(t)
u(x , s) ds} dx

≥
∫

Ωt

f(v − u) dx , ∀ v ∈ K , (1.1)

lim
t→−∞

||u(·, t)||L2(Ω) = 0 , (1.2)

where f ∈ L2
loc(Q), τ ∈ C((−∞ , 0]), τ(t) ≥ 0, ∀t ∈ (−∞ , 0], sup

t∈(−∞ , 0]
τ(t) < 1.

As it will be shown in the sequel the solution of this problem, which we call problem (1.1)–(1.2),
is unique and it exists if f ∈ L2(Q).

We remark that problem (1.1)–(1.2) can be written in more abstract way. Indeed, after appro-
priate identification of functions and functionals, we have continuous and dense imbedding

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))′,

where (H1(Ω))′ is dual to space H1(Ω). Clearly, for any h ∈ L2(Ω) and v ∈ H1(Ω) we have
〈h , v〉 = (h , v), where 〈·, ·〉 is the notation for scalar product on dual pair (H1(Ω))′, H1(Ω), and
(·, ·) is the scalar product in L2(Ω). Thus, we can use the notation (·, ·) instead of 〈·, ·〉.

Now, we denote S := (−∞ , 0], V := H1(Ω),H := L2(Ω) and define an operatorA : V → V ′

as follows

(Av , w) =

∫
Ω

[
∇v∇w + v w

]
dx , v , w ∈ V .

Then problem (1.1)–(1.2) can be rewritten as following: find a function u ∈ L2
loc(S;V ) such

that u′ ∈ L2
loc(S;H) and for a.e. t ∈ S, u(t) ∈ K and

(u′(t) +Au(t) +

∫ t

t−τ(t)
u(s) ds , v − u(t)) ≥ (f(t) , v − u(t)) , ∀ v ∈ K . (1.3)

Here f ∈ L2
loc(S;H) is a given function, function τ is as above.

We remark that variational inequality (1.3) can be written as a subdifferential inclusion. For this
purpose we put IK(v) := 0 if v ∈ K, and IK(v) := +∞ if v ∈ V \K, and also

Φ(v) =
1

2

∫
Ω

(
|∇v|2 + |v|2

)
dx+ IK(v) , v ∈ V .

It is easy to verify that the functional Φ : V → R ∪ {+∞} is convex and semi-lower-continuous.
By the known results (see, e.g., [21, pp. 83]) it follows that the problem of finding a solution of
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variational inequality (1.3) can be written as such subdifferential inclusion: to find a function u ∈
L2

loc(S;V ) such that u′ ∈ L2
loc(S;H) and for a.e. t ∈ S

u′(t) + ∂Φ(u(t)) +

∫ t

t−τ(t)
u(s) ds 3 f(t) in H . (1.4)

The aim of this paper is to investigate problems for inclusions of type (1.4).

We have mentioned that initial-valued problems for evolution inclusions with constant delay
previously were studied in [19,25,26] and others. Many results on such problems were obtained by
using the semi-group theory. We refer the reader to [25] for more comments and citations. In [19,26]
fixed point theorems were used.

Problems without initial conditions for evolution equations and inclusions arise in modeling
different nonstationary processes in nature, that started a long time ago and initial conditions do
not affect on them in the actual time moment. Thus, we can assume that the initial time is −∞,
while 0 is the final time, and initial conditions can be replaced with the behaviour of the solution
as time variable tends to −∞. Such problems appear in modeling in many fields of science such
as ecology, economics, physics, cybernetics, etc. The research of the problem without initial condi-
tions for the evolution equations and variational inequalities (without delay) were conducted in the
monographs [15,17,21] and the papers [3,4,6,7,10,14,16,18,22–24] and others. In particular, R.E.
Showalter in the paper [22] proved the existence of a unique solution u ∈ e2ω·H1(S;H), where H
is a Hilbert space, of the problem without initial condition

u′(t) + µu(t) +A
(
u(t)

)
3 f(t) , t ∈ S ,

for every ω + µ > 0 and f ∈ e2ω·H1(S;H), in case when A : H → 2H is maximal monotone
operator such that 0 ∈ A(0). Moreover, if A = ∂ϕ, where ϕ : H → (−∞ , +∞] is proper, convex,
and lower-semi-continuous functional such that ϕ(0) = 0 = inf {ϕ(v) : v ∈ H}, then this problem
is uniquely solvable for each µ > 0, f ∈ L2(S;H) and ω = 0.

Note that the uniqueness of the solutions of problem without initial conditions for linear par-
abolic equations and variational inequalities is possible only under some restrictions on the be-
havior of solutions as time variable turns to −∞. For the first time it was strictly justified by
A. N. Tikhonov [24] in the case of heat equation. However, as it was shown by M. M. Bokalo [3],
problem without initial conditions for some nonlinear parabolic equations has a unique solution in
the class of functions without behavior restriction as time variable tends to −∞. Similar results
were also obtained for evolutionary variational inequalities in the paper [4].

Previously, problems without initial conditions of evolution equations with constant delay were
studied in [5, 11] (see also references therein), and with variable delay, as far as we know, only
in [13]. Let us note that problems without initial conditions for variational inequalities or inclusions
with delay have not been considered in the literature, which serves as one of the motivations for the
study of such problems.

The outline of this paper is as follows. In Section 2, we give notations, definitions of function
spaces and auxiliary results. In Section 3, we formulate the problem and main result. In Section 4,
we prove the main result.
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2 Preliminaries

Set S := (−∞ , 0]. Let V and H be separable Hilbert spaces with the scalar products (·, ·)V ,
(·, ·) and norms ‖ · ‖, | · |, respectively. Suppose that V ⊂ H with dense, continuous and compact
injection, i.e., the closure of V in H coincides with H , and there exists a constant λ > 0 such that

λ|v|2 ≤ ‖v‖2 ∀v ∈ V , (2.1)

and for every sequence {vk}∞k=1 bounded in V there exist an element v ∈ V and a subsequence
{vkj}∞j=1 such that vkj −→

j→∞
v strongly in H .

Let V ′ and H ′ be the dual spaces to V and H , respectively. We suppose (after appropriate iden-
tification of functionals), that the spaceH ′ is a subspace of V ′. By the Riesz–Fréchet representation
theorem, identifying the spaces H and H ′, we obtain dense and continuous embeddings

V ⊂ H ⊂ V ′ . (2.2)

Note that in this case 〈g , v〉V = (g , v) for every v ∈ V, g ∈ H, where 〈·, ·〉V is the scalar product
for the duality V ′, V . Therefore, further we can use the notation (·, ·) instead of 〈·, ·〉V .

We introduce some spaces of functions and distributions. Let X be an arbitrary Hilbert space
with the scalar product (·, ·)X and the norm ‖ · ‖X . By C(S;X) we mean the linear space of
continuous functions defined on S with values in X . We say that wm −→

m→∞
w in C(S;X) if for

each t1, t2 ∈ S (t1 < t2) we have ‖w − wm‖C([t1 , t2];X) −→
m→∞

0.

Denote by L2
loc(S;X) the linear space of measurable functions defined on S with values in

X , whose restrictions to any segment [t1 , t2] ⊂ S belong to the space L2(t1 , t2;X). We say
that a sequence {wm} is bounded (respectively, strongly, weakly or ∗-weakly convergent to w) in
L2

loc(S;X), if for each t1, t2 ∈ S (t1 < t2) the sequence of restrictions of {wm} to the segment
[t1, t2] is bounded (respectively, strongly, weakly or ∗-weakly convergent to the restrictions of w to
this segment) in L2(t1, t2;X).

Let ν ∈ R. Put by definition

L2
ν(S;X) :=

{
f ∈ L2

loc(S;X)
∣∣∣ ∫

S
e−2 ν t‖f(t)‖2X dt <∞

}
.

This space is a Hilbert space with the scalar product

(f , g)L2
ν(S;X) =

∫
S
e−2 ν t(f(t) , g(t))X dt

and the corresponding norm

‖f‖L2
ν(S;X) :=

(∫
S
e−2 ν t‖f(t)‖2X dt

)1/2
.

Also we introduce the space

L∞ν (S;X) := {f ∈ L∞(S;X) | ess sup
t∈S

[
e−ν t‖f(t)‖X

]
<∞} .
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By D′(−∞ , 0;V ′w) we mean the space of continuous linear functionals on D(−∞ , 0) with
values in V ′w (hereafter D(−∞ , 0) is space of test functions, that is, the space of infinitely dif-
ferentiable on (−∞ , 0) functions with compact support, equipped with the corresponding topol-
ogy, and V ′w is the linear space V ′ equipped with weak topology). It is easy to see (using (2.2)),
that spaces L2

loc(S;V ), L2
loc(S;H), L2

loc(S;V ′) can be identified with the corresponding subspaces
of D′(−∞ , 0;V ′w). In particular, this allows us to talk about derivatives w′ of functions w from
L2

loc(S;V ) orL2
loc(S;H) in the sense of distributionsD′(−∞ , 0;V ′w) and belonging of such deriva-

tives to L2
loc(S;H) or L2

loc(S;V ′).

Let us define the spaces

H1
loc(S;H) := {w ∈ L2

loc(S;H)
∣∣w′ ∈ L2

loc(S;H)} ,

W2 , loc(S;V ) := {w ∈ L2
loc(S;V )

∣∣w′ ∈ L2
loc(S;V ′)} .

From known results (see., for example, [12, pp. 177–179]) it follows that H1
loc(S;H) ⊂ C(S;H)

and W2 , loc(S;V ) ⊂ C(S;H). Moreover, for every w in H1
loc(S;H) or W2 , loc(S;V ) the function

t → |w(t)|2 is absolutely continuous on any segment of the interval S and the following equality
holds

d

dt
|w(t)|2 = 2(w′(t) , w(t)) for a.e. t ∈ S . (2.3)

Denote
H1
ν (S;H) := {w ∈ L2

ν(S;H)
∣∣w′ ∈ L2

ν(S;H)} , ν ∈ R . (2.4)

In this paper we use the following well-known facts.

Lemma 2.1 (Cauchy-Schwarz inequality [12, pp. 158]) Suppose that t1, t2 ∈ R (t1 < t2), and
X is a Hilbert space with the scalar product (·, ·)X . Then, if v , w ∈ L2(t1 , t2;X), we have
(w(·) , v(·))X ∈ L1

(
t1 , t2

)
and∫ t2

t1

(w(t) , v(t))X dt ≤ ‖w‖L2(t1 , t2;X)‖v‖L2(t1 , t2;X) .

Lemma 2.2 ( [27, pp. 173,179]) Let Y be a Banach space with the norm ‖ · ‖Y , and {vk}∞k=1 be a
sequence of elements of Y , which is weakly or ∗-weakly convergent to v in Y . Then lim

k→∞
‖vk‖Y ≥

‖v‖Y .

Lemma 2.3 ( [1, Aubin theorem], [2, pp. 393]) Let q > 1, r > 1, t1, t2 ∈ R (t1 < t2), and
W, L, B are Banach spaces such that W

c
⊂L 	 B (here

c
⊂ means compact embedding and 	

means continuous embedding). Then

{w ∈ Lq(t1 , t2;W) | w′ ∈ Lr(t1 , t2;B)}
c
⊂
(
Lq(t1 , t2;L) ∩ C([t1 , t2];B)

)
. (2.5)

Note that, we understand embedding (2.5) as follows: if a sequence {wm} is bounded in the
space Lq(t1 , t2;W) and the sequence {w′m}m∈N is bounded in the space Lr(t1 , t2;B), then there
exist a functionw ∈ C([t1 , t2];B)∩Lq(t1 , t2;L) and a subsequence {wmj} of the sequence {wm}
such that wmj −→

j→∞
w in C([t1 , t2];B) and strongly in Lq(t1 , t2;L).
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Lemma 2.4 If a sequence {wm} is bounded in the space L2
loc(S;V ) and the sequence {w′m} is

bounded in the space L2
loc(S;H), then there exist a function w ∈ L2

loc(S;V ), w′ ∈ L2
loc(S;H),

and a subsequence {wmj} of the sequence {wm} such that wmj −→
j→∞

w in C(S;H) and weakly in

L2
loc(S;V ), and, w′mj −→j→∞w

′ weakly in L2
loc(S;H).

Proof. Lemma 2.3 for q = 2, r = 2, W = V , L = B = H and reflexiveness of Hilbert spaces
yield, for every t1, t2 ∈ S (t1 < t2) from the sequence of restrictions of the elements {wm} to the
segment [t1 , t2] one can choose a subsequence which is convergent in C([t1 , t2];H) and weakly
in L2(t1 , t2;V ), and the sequence of derivatives of the elements of this subsequence is weakly
convergent in L2(t1 , t2;H). For each k ∈ N we choose a subsequence {wmk,j}∞j=1 of the given
sequence which is convergent in C([−k , 0];H) and weakly in L2(−k , 0;V ) to some function
ŵk ∈ C([−k , 0];H) ∩ L2(−k , 0;V ), and the sequence {w′mk,j}

∞
j=1 is weakly convergent to the

derivative ŵ′k in L2(−k , 0;H). Making this choice we ensure that the sequence {wmk+1,j
}∞j=1 was

a subsequence of the sequence {wmk,j}∞j=1. Now, according to the diagonal process we select the
desired subsequence as {wmj,j}∞j=1, and we define the function w as follows: for each k ∈ N we
take w(t) := ŵk(t) for t ∈ (−k , −k + 1]. 2

3 Statement of the problem and main result

Let Φ : V → R∞ := (−∞ , +∞] be a proper functional, i.e., dom(Φ) := {v ∈ V : Φ(v) <
+∞} 6= ∅, which satisfies the conditions:

(A1) Φ
(
α v + (1− α)w

)
≤ αΦ(v) + (1− α)Φ(w) ∀ v, w ∈ V, ∀α ∈ [0 , 1] ,

i.e., the functional Φ is convex,

(A2) vk −→
k→∞

v in V =⇒ lim
k→∞

Φ(vk) ≥ Φ(v) ,

i.e., the functional Φ is lower semicontinuous.

Recall that the subdifferential of functional Φ is a mapping ∂Φ : V → 2V
′
, defined as follows

∂Φ(v) := {v∗ ∈ V ′ | Φ(w) ≥ Φ(v) + (v∗, w − v) ∀ w ∈ V } , v ∈ V ,

and the domain of the subdifferential ∂Φ is the set D(∂Φ) := {v ∈ V | ∂Φ(v) 6= ∅}. We identify
the subdifferential ∂Φ with its graph, assuming that [v , v∗] ∈ ∂Φ if and only if v∗ ∈ ∂Φ(v), i.e.,
∂Φ = {[v , v∗] | v ∈ D(∂Φ), v∗ ∈ ∂Φ(v)}. R. Rockafellar in paper [20, Theorem A] proves that
the subdifferential ∂Φ is a maximal monotone operator, that is,

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v1 , v
∗
1], [v2 , v

∗
2] ∈ ∂Φ

and for every element [v1 , v
∗
1] ∈ V × V ′ we have the implication

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v2 , v
∗
2] ∈ ∂Φ =⇒ [v1 , v

∗
1] ∈ ∂Φ .

Let c : S × S ×H → H be a function which satisfies the condition:
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(C) for any v ∈ H the mapping c(·, ·, v) : S × S → H is measurable, and there exists a constant
L > 0 such that following inequality holds

|c(t , s , v1)− c(t , s , v2)| ≤ L|v1 − v2| (3.1)

for a.e. (t , s) ∈ S × S, and for all v1 , v2 ∈ H; in addition, c(t , s , 0) = 0 for a.e. (t , s) ∈
S × S.

Remark 3.1 From the condition (C) it follows that for a.e. (t , s) ∈ S × S, and for every v ∈ H
the following estimate is valid:

|c(t , s , v)| ≤ L|v| . (3.2)

Let us consider the evolutionary variational inequality

u′(t) + ∂Φ
(
u(t)

)
+

∫ t

t−τ(t)
c(t , s , u(s)) ds 3 f(t) , t ∈ S , (3.3)

where f : S → V ′ is a given measurable function, τ : S → R is a given bounded continuous
function such that τ(t) ≥ 0 for all t ∈ S, and u : S → V is an unknown function.

Definition 3.2 Let conditions (A1), (A2), (C) hold, and f ∈ L2
loc(S;V ′). The solution of varia-

tional inequality (3.3) is a function u : S → V that satisfies the following conditions:

1) u ∈W2 , loc(S;V );

2) u(t) ∈ D(∂Φ) for a.e. t ∈ S;

3) there exists a function g ∈ L2
loc(S;V ′) such that for a.e. t ∈ S we have g(t) ∈ ∂Φ

(
u(t)

)
and

u′(t) + g(t) +

∫ t

t−τ(t)
c(t , s , u(s)) ds = f(t) in V ′ .

For variational inequality (3.3) consider the problem: find its solution which satisfies the condition

lim
t→−∞

e−γ t|u(t)| = 0 , (3.4)

where γ ∈ R is given.

The problem of finding a solution of variational inequality (3.3) for given Φ, c, τ , f satisfying
the condition (3.4) for given γ, is called the problem without initial conditions for the evolution
variational inequality (3.3) or, in short, the problem P(Φ , c , τ , f , γ), and the function u is called
its solution.

Additionally, assume that the following conditions hold:

(A3) there exists a constant K1 > 0 such that

Φ(v) ≥ K1‖v‖2 ∀ v ∈ dom(Φ) ;

moreover, Φ(0) = 0;
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(A4) there exists a constant K2 > 0 such that

(v∗1 − v∗2 , v1 − v2) ≥ K2|v1 − v2|2 ∀ [v1 , v
∗
1], [v2 , v

∗
2] ∈ ∂Φ .

Remark 3.3 Condition (A3) implies that Φ(v) ≥ Φ(0) + (0 , v − 0), ∀v ∈ V , hence [0 , 0] ∈ ∂Φ.
From this and condition (A4) we have

(v∗ , v) ≥ K2|v|2 ∀ [v , v∗] ∈ ∂Φ . (3.5)

We denote

τ+ := sup
t∈S

τ(t) , χ(γ) :=

{
1

2 γ (1− e−2 γ τ+) , if γ 6= 0 ,

τ+ , if γ = 0 ,
(3.6)

and consider the following inequality

K2 + γ − L
√
τ+χ(γ) > 0 . (3.7)

It is obvious that L
√
τ+χ(γ)→ 0 as γ → +∞, because χ(γ)→ 0 as γ → +∞. Since K2 + γ →

+∞ as γ → +∞, inequality (3.7) has solutions.

Now we shall formulate the main result.

Theorem 3.4 Let conditions (A1) – (A4), (C) hold, and

(F) f ∈ L2
γ(S;H) ,

where γ is a solution of inequality (3.7). Then the problem P(Φ , c , τ , f , γ) has a unique solution,
it belongs to the space L∞γ (S;V ) ∩ L2

γ(S;V ) ∩H1
γ(S;H) and satisfies the estimate:

e−2 γ σ‖u(σ)‖2 +

∫ σ

−∞
e−2 γ t‖u(t)‖2 dt+

∫ σ

−∞
e−2 γ t|u′(t)|2 dt

+

∫ σ

−∞
e−2 γ tΦ(u(t)) dt ≤ C1

∫ σ

−∞
e−2 γ t|f(t)|2 dt , σ ∈ S , (3.8)

where C1 is a positive constant depending on K1, K2, L, τ+, λ and γ only.

Remark 3.5 The problem P(Φ , c , τ , f , γ) can be replaced by the following problem. Let K be
a convex and closed set in V , A : V → V ′ be a monotone, bounded and semi-continuous operator
such that (A(v) , v) ≥ K̃1‖v‖2 ∀v ∈ V , where K̃1 = const > 0. The problem is to find a function
u ∈W2 , loc(S;V ) satisfying the condition (3.4) and for a.e. t ∈ S, u(t) ∈ K and

(u′(t) +A(u(t)) +

∫ t

t−τ(t)
c(t , s , u(s)) ds , v − u(t)) ≥ (f(t) , v − u(t)) ∀ v ∈ K .
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4 Proof of the main result

First, we define the functional ΦH : H → R∞ by the rule: ΦH(v) := Φ(v), if v ∈ V , and
ΦH(v) := +∞ otherwise. Note that conditions (A1), (A2), Lemma IV.5.2 and Proposition IV.5.2
of the monograph [21] imply that ΦH is a proper, convex, and lower-semi-continuous functional
on H , dom(ΦH) = dom(Φ) ⊂ V and ∂ΦH = ∂Φ ∩ (V × H), where ∂ΦH : H → 2H is the
subdifferential of the functional ΦH . Moreover, condition (A3) yields 0 ∈ ∂ΦH(0).

The following statements will be used in the sequel.

Lemma 4.1 ( [21, Lemma IV.4.3]) Let w ∈ H1(a , b;H) (−∞ < a < b < +∞), and there exists
g ∈ L2(a , b;H) such that g(t) ∈ ∂ΦH

(
w(t)

)
for a.e. t ∈ (a , b). Then the function ΦH

(
w(·)

)
is absolutely continuous on the interval [a , b] and for any function h : [a , b] → H such that
h(t) ∈ ∂ΦH

(
w(t)

)
the following equality holds

d

dt
ΦH

(
w(t)

)
= (h(t) , w′(t)) for a.e. t ∈ (a , b).

Lemma 4.2 ( [9, Proposition 3.12], [21, Proposition IV.5.2]) Let T > 0, f̃ ∈ L2(0 , T ;H) and
w0 ∈ dom(Φ). Then there exists a unique function w ∈ H1(0 , T ;H) such that w(0) = w0 and for
a.e. t ∈ (0 , T ], w(t) ∈ D(∂ΦH) and

w′(t) + ∂ΦH

(
w(t)

)
3 f̃(t) in H . (4.1)

Lemma 4.3 Let t0 < 0, f̃ ∈ L2(t0 , 0;H), and w0 ∈ C([τ0 , t0];H), w0(t) ∈ dom(Φ) for every
t ∈ [τ0 , t0], where τ0 := min

t∈[t0 , 0]
(t − τ(t)) (we assume that [τ0 , t0] = {t0} if τ0 = t0). Then

there exists a unique function w ∈ C([τ0 , 0];H) ∩H1(t0 , 0;H) such that w(t) = w0(t) for every
t ∈ [τ0 , t0], and for a.e. t ∈ (t0 , 0], w(t) ∈ D(∂ΦH) and

w′(t) + ∂ΦH

(
w(t)

)
+

∫ t

t−τ(t)
c(t , s , w(s)) ds 3 f̃(t) in H , (4.2)

that is, there exists g̃ ∈ L2(t0 , 0;H) such that for a.e. t ∈ (t0 , 0] we have g̃(t) ∈ ∂ΦH(w(t)) and

w′(t) + g̃(t) +

∫ t

t−τ(t)
c(t , s , w(s)) ds = f̃(t) in H . (4.3)

Proof. Let α > 0 be an arbitrary fixed number and set

M := {w ∈ C([τ0 , 0];H) | w(t) = w0(t) ∀t ∈ [τ0 , t0]} .

Consider M with the metric

ρ(w1 , w2) = max
t∈[t0 , 0]

[
e−α(t−t0)|w1(t)− w2(t)|

]
, w1, w2 ∈M .

It is obvious that the metric space (M , ρ) is complete. Now let us consider an operatorA : M →M
defined as follows: for any given function w̃ ∈ M , it defines a function ŵ ∈ M ∩ H1(t0 , 0;H)
such that for a.e. t ∈ (t0 , 0], ŵ(t) ∈ D(∂ΦH) and

ŵ′(t) + ∂ΦH(ŵ(t)) 3 f̃(t)−
∫ t

t−τ(t)
c(t , s , w̃(s)) ds in H . (4.4)
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Clearly, variational inequality (4.4) coincides with variational inequality (4.1) after replacing [0 , T ]
by [t0 , 0], f̃ by f̃ −

∫ t
t−τ(t) c(t , s , w̃(s)) ds, the condition w(0) = w0 by the condition ŵ(t0) =

w0(t0). Thus, using Lemma 4.2 we get that operator A is well-defined. Let us show that the
operator A is a contraction for some α > 0. Indeed, let w̃1, w̃2 be arbitrary functions from M and
ŵ1 := Aw̃1, ŵ2 = Aw̃2. According to (4.4) there exist functions ĝ1 and ĝ2 from L2(t0 , 0;H) such
that for every k ∈ {1 , 2} and for a.e. t ∈ (t0 , 0] we have ĝk(t) ∈ ∂ΦH(ŵk(t)) and

ŵ′k(t) + ĝk(t) = f̃(t)−
∫ t

t−τ(t)
c(t , s , w̃k(s)) ds , (4.5)

while ŵk(t) = w0(t) for a.e. t ∈ [τ0 , t0].

Subtracting identity (4.5) for k = 2 from identity (4.5) for k = 1, and, for a.e. t ∈ (t0 , 0],
multiplying the obtained identity by ŵ1(t)− ŵ2(t), we get(

(ŵ1(t)− ŵ2(t))′ , ŵ1(t)− ŵ2(t)
)

+ (ĝ1(t)− ĝ2(t) , ŵ1(t)− ŵ2(t))

= −
(∫ t

t−τ(t)

(
c(t , s , w̃1(s))− c(t , s , w̃2(s))

)
ds , ŵ1(t)− ŵ2(t)

)
for a.e. t ∈ (t0 , 0] , (4.6)

ŵ1(t)− ŵ2(t) = 0 for a.e. t ∈ [τ0 , t0] . (4.7)

We integrate equality (4.6) by t from t0 to σ ∈ (t0 , 0], taking into account that for a.e. t ∈ (t0 , 0]
we have (

(ŵ1(t)− ŵ2(t))′ , ŵ1(t)− ŵ2(t)
)

=
1

2

d

dt
|ŵ1(t)− ŵ2(t)|2 .

As a result we get the equality

1

2
|ŵ1(σ)− ŵ2(σ)|2 +

∫ σ

t0

(ĝ1(t)− ĝ2(t) , ŵ1(t)− ŵ2(t)) dt

= −
∫ σ

t0

(∫ t

t−τ(t)
(c(t , s , w̃1(s))− c(t , s , w̃2(s))) ds , ŵ1(t)− ŵ2(t)

)
dt. (4.8)

By condition (A4), for a.e. t ∈ (t0 , 0] we have the inequality

(ĝ1(t)− ĝ2(t) , ŵ1(t)− ŵ2(t)) ≥ K2|ŵ1(t)− ŵ2(t))|2 . (4.9)

From this, taking into account condition (C), the Cauchy inequality, for a.e. t ∈ (t0 , 0] we obtain∣∣∣( ∫ t

t−τ(t)

(
c(t , s , w̃1(s))− c(t , s , w̃2(s))

)
ds , ŵ1(t)− ŵ2(t)

)∣∣∣
≤
∣∣∣ ∫ t

t−τ(t)
(c(t , s , w̃1(s))− c(t , s , w̃2(s))) ds

∣∣∣ ∣∣ŵ1(t)− ŵ2(t)
∣∣

≤ L
(∫ t

t−τ+
|w̃1(s)− w̃2(s)| ds

)
· |ŵ1(t)− ŵ2(t)| ≤ ε|ŵ1(t)− ŵ2(t)|2

+
L2

4 ε

(∫ t

t−τ+
|w̃1(s)− w̃2(s)| ds

)2
≤ ε|ŵ1(t)− ŵ2(t)|2 +

L2τ+

4 ε

∫ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds ,

(4.10)

where τ+ := sup
t∈S

τ(t), w̃1(s)− w̃2(s) := 0, ∀s ≤ τ0, ε > 0 is arbitrary.
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From (4.8), according to (4.9) and (4.10), we have

|ŵ1(σ)− ŵ2(σ)|2 + 2(K2 − ε)
∫ σ

t0

|ŵ1(t)− ŵ2(t)|2 dt

≤ (2 ε)−1L2τ+

∫ σ

t0

(∫ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds

)
dt . (4.11)

Let us consider the last term from the right-hand side of the inequality above. Taking into account
equality w̃1(s)− w̃2(s) = 0 for s ≤ t0 we obtain∫ σ

t0

(∫ t

t−τ+
|w̃1(s)− w̃2(s)|2 ds

)
dt ≤ t0

∫ σ

t0

|w̃1(t)− w̃2(t)|2 dt . (4.12)

From (4.11) and (4.12) we get

|ŵ1(σ)− ŵ2(σ)|2 + 2(K2− ε)
∫ σ

t0

|ŵ1(t)− ŵ2(t)|2 dt ≤ (2 ε)−1L2τ+t0

∫ σ

t0

|w̃1(t)− w̃2(t)|2 dt .

(4.13)
Choosing ε = 2−1K2, from (4.13) we obtain

|ŵ1(σ)− ŵ2(σ)|2 ≤ C2

∫ σ

t0

|w̃1(t)− w̃2(t)|2 dt , σ ∈ (t0 , 0] , (4.14)

where C2 > 0 is a constant.

After multiplying inequality (4.14) by e−2α(σ−t0) we obtain

e−2α(σ−t0)|ŵ1(σ)− ŵ2(σ)|2 ≤ C2 e
−2α(σ−t0)

∫ σ

t0

e2α(t−t0)e−2α(t−t0)|w̃1(t)− w̃2(t)|2 dt

≤ C2 e
−2α(σ−t0) max

t∈[t0 , 0]

[
e−α(t−t0)|w̃1(t)− w̃2(t)|

]2 ∫ σ

t0

e2α(t−t0) dt

=
C2

2α
(1− e−2α(σ−t0))

[
ρ(w̃1 , w̃2)

]2 ≤ C2

2α

[
ρ(w̃1 , w̃2)

]2
, σ ∈ (t0 , 0] . (4.15)

From (4.15) it easily follows that

ρ(ŵ1 , ŵ2) ≤
√
C2/(2α)ρ(w̃1 , w̃2) .

From this, choosing α > 0 such that inequality C2/(2α) < 1 holds, we obtain that operator
A is a contraction. Hence, we may apply the Banach fixed-point theorem, the contraction mapping
principle [8, Theorem 5.7] and deduce that there exists a unique functionw ∈M such thatAw = w,
i.e., we have proved Lemma 4.3. 2

Now let us prove Theorem 3.4. We will prove it in 2 steps. First, we will prove the unique-
ness of the solution, and then we will prove the existence of the solution and the correctness of
estimate (3.8).

The uniqueness of the solution. Assume the contrary. Let u1 , u2 be two solutions of the
problem P(Φ , c , τ , f , γ). Then for every i ∈ {1 , 2} there exists function gi ∈ L2

loc(S;V ′) such
that for a.e. t ∈ S, gi(t) ∈ ∂Φ

(
ui(t)

)
and

u′i(t) + gi(t) +

∫ t

t−τ(t)
c(t , s , ui(s)) ds = f(t) in V ′ . (4.16)
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We put w(t) := u1(t)− u2(t), t ∈ S. From equalities (4.16) for a.e. t ∈ S we obtain

w′(t) + g1(t)− g2(t) +

∫ t

t−τ(t)

(
c(t , s , u1(s))− c(t , s , u2(s))

)
ds = 0 in V ′ . (4.17)

From (3.4) it follows that the following condition holds

e−2 γ t|w(t)|2 → 0 as t→ −∞ . (4.18)

Let σ1 , σ2 ∈ S be arbitrary numbers such that σ1 < σ2. Multiplying equality (4.17) by
w(t)e−2 γ t, integrating from σ1 to σ2 we obtain∫ σ2

σ1

e−2 γ t(w′(t) , w(t)) dt+

∫ σ2

σ1

e−2 γ t(g1(t)− g2(t) , u1(t)− u2(t)) dt

+

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)

(
c(t , s , u1(s))− c(t , s , u2(s))

)
ds , w(t)

)
dt = 0 . (4.19)

Consider the last term from left-hand side of equality (4.19). Using (3.1), the Fubini Theorem and
the Cauchy–Schwarz inequality, we have∣∣∣ ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)

(
c(t , s , u1(s))− c(t , s , u2(s))

)
ds , w(t)

)
dt
∣∣∣

≤
∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+

∣∣c(t , s , u1(s))− c(t , s , u2(s))
∣∣ ds

)
|w(t)|dt

≤ L
∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|w(s)| ds

)
|w(t)|dt

≤ L
√
τ+

(∫ σ2

σ1

e−2 γ t|w(t)|2 dt

)1/2
(∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|w(s)|2 ds

)
dt

)1/2

. (4.20)

Assuming w(t) = 0 for t > 0, and changing the order of integration, we have∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|w(s)|2 ds

)
dt ≤

∫ σ2

σ1−τ+
|w(s)|2 ds

∫ s+τ+

s
e−2 γ t dt

= χ(γ)
(∫ σ2

σ1

e−2 γ s|w(s)|2 ds+

∫ σ1

σ1−τ+
e−2 γ s|w(s)|2 ds

)
, (4.21)

where χ(γ) is defined in (3.6).

Substituting in (4.20) the last term from relations chain (4.21) instead of the first one, and using
inequalities:

√
a b ≤ ε a+ (4 ε)−1b ,

√
a+ b ≤

√
a+
√
b (a ≥ 0, b ≥ 0, ε > 0), we obtain∣∣∣ ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)

(
c(t , s , u1(s))− c(t , s , u2(s))

)
ds , w(t)

)
dt
∣∣∣

≤ L
√
τ+χ(γ)

(
(1 + ε)

∫ σ2

σ1

e−2 γ t|w(x , t)|2 dt+ (4 ε)−1

∫ σ1

σ1−τ+
e−2 γ t|w(x , t)|2 dt

)
, (4.22)

where ε > 0 is arbitrary.
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By (2.3), (4.22), (A4) and the fact that gi(t) ∈ ∂Φ(ui(t)) (i = 1, 2) for a.e. t ∈ S, from (4.19)
we obtain the following inequality

1

2

∫ σ2

σ1

e−2 γ td|w(t)|2

dt
dt+

(
K2 − (1 + ε)L

√
τ+χ(γ)

) ∫ σ2

σ1

e−2 γ t|w(x , t)|2 dt

− (4 ε)−1L
√
τ+χ(γ)

∫ σ1

σ1−τ+
e−2 γ t|w(t)|2 dt ≤ 0 . (4.23)

Using the integration-by-parts formula we have

e−2 γ t|w(t)|2
∣∣∣σ2
σ1

+ 2
(
K2 + γ − (1 + ε)L

√
τ+χ(γ)

) ∫ σ2

σ1

e−2 γ t|w(t)|2 dt

− (2 ε)−1L
√
τ+χ(γ)

∫ σ1

σ1−τ+
e−2 γ t|w(t)|2 dt ≤ 0 . (4.24)

Since condition (3.7) holds, taking ε > 0 such that K2 + γ − (1 + ε)Lτ+ > 0, from (4.24) we
obtain

e−2 γ σ2 |w(σ2)|2 ≤ e−2 γ σ1 |w(σ1)|2 + C0

∫ σ1

σ1−τ+
e−2 γ t|w(t)|2 dt , (4.25)

where C0 > 0 is a constant independent of σ1 , σ2.

Let us fix an arbitrary σ2 in (4.25), and pass to the limit as σ1 → −∞. According to condi-
tion (4.18), the first term from the right side of inequality (4.25) turns to 0. Obviously, the second
term from the right side of inequality (4.25) also turns to 0. Indeed, using (4.18) we obtain

0 ≤
∫ σ1

σ1−τ+
e−2 γ t|w(t)|2 dt ≤ τ+ max

t∈[σ1−τ+ , σ1]
e−2 γ t|w(t)|2 −→

σ1→−∞
0 .

Thus, we get the equality e−2 γ σ2 |w(σ2)|2 = 0. Since σ2 ∈ S is an arbitrary number, we have
w(t) = 0 for a.e. t ∈ S, this contradicts our assumption. Therefore, a solution of the problem
P(Φ , c , τ , f , γ) is unique.

The existence of the solution. We divide the proof into three steps.

Step 1 (solution approximations). We construct a sequence of functions which, in some sense,
approximate the solution of the problem P(Φ , c , τ , f , γ).

Let f̂k(t) := f(t) for t ∈ Sk := [−k , 0], τk := min
t∈Sk

(t − τ(t)) ≤ −k, where k ∈ N. For

each k ∈ N let us consider the problem of finding a function ûk ∈ C([τk , 0];H) ∩ H1(Sk;H),
where H1(Sk;H) :=

{
w ∈ L2(Sk;H)

∣∣ w′ ∈ L2(Sk;H)
}

, such that for a.e. t ∈ Sk we have
ûk(t) ∈ D(∂ΦH) and

û ′k(t) + ∂ΦH

(
ûk(t)

)
+

∫ t

t−τ(t)
c(t , s , ûk(s)) ds 3 f̂k(t) in H , (4.26a)

ûk(t) = 0 , t ∈ [τk , −k] . (4.26b)

Inclusion (4.26a) means that there exists a function ĝk ∈ L2(Sk;H) such that for a.e. t ∈ Sk we
have ĝk(t) ∈ ∂ΦH(ûk(t)) and

û ′k(t) + ĝk(t) +

∫ t

t−τ(t)
c(t , s , ûk(s)) ds = f̂k(t) in H . (4.27)
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Since D(∂ΦH) ⊂ dom(ΦH) ⊂ V , thus ûk(t) ∈ V for a.e. t ∈ Sk. According to the definition
of the subdifferential of a functional and the fact that ĝk(t) ∈ ∂Φ(ûk(t)) for a.e. t ∈ Sk, we have

Φ(0) ≥ Φ(ûk(t)) + (ĝk(t) , 0− ûk(t)) for a.e. t ∈ Sk .

Using this and condition (A3) we obtain

(ĝk(t) , ûk(t)) ≥ Φ(ûk(t)) ≥ K1‖ûk(t)‖2 for a.e. t ∈ Sk . (4.28)

Since the left side of this chain of inequalities belongs to L1(Sk), ûk belongs to L2(Sk;V ).

For each k ∈ N we extend functions f̂k, ûk and ĝk by zero for the entire interval S, and denote
these extensions by fk, uk and gk respectively. From the above it follows that for each k ∈ N the
function uk belongs to L2(S;V ), its derivative u′k belongs to L2(S;H) and for a.e. t ∈ S the
inclusion gk(t) ∈ ∂ΦH

(
uk(t)

)
and the following equality (see (4.27)) hold

u′k(t) + gk(t) +

∫ t

t−τ(t)
c(t , s , uk(s)) ds = fk(t) in H . (4.29)

In order to show the convergence {uk}+∞k=1 to the solution of the problem P(Φ , c , τ , f , γ) we
need some estimates of the functions uk (k ∈ N).

Step 2 (estimates of approximating solutions). Let σ1 , σ2 ∈ S be arbitrary numbers such that
σ1 < σ2. Multiplying identity (4.29), for a.e. t ∈ S, by e−2 γ tuk(t) and integrating from σ1 to σ2,
we obtain∫ σ2

σ1

e−2 γ t(u′k(t) , uk(t)) dt+

∫ σ2

σ1

e−2 γ t(gk(t) , uk(t)) dt

+

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , uk(t)

)
dt =

∫ σ2

σ1

e−2 γ t(fk(t) , uk(t)) dt .

From this taking into account (2.3) and using the integration-by-parts formula, we obtain

e−2 γ t|uk(t)|2
∣∣∣σ2
σ1

+ 2 γ

∫ σ2

σ1

e−2 γ t|uk(t)|2 dt+ 2

∫ σ2

σ1

e−2 γ t(gk(t) , uk(t)) dt

+ 2

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , uk(t)

)
dt = 2

∫ σ2

σ1

e−2 γ t(fk(t) , uk(t)) dt . (4.30)

According to the definition of uk and (4.28), we obtain

(gk(t) , uk(t)) ≥ Φ
(
uk(t)

)
≥ K1‖uk(t)‖2 for a.e. t ∈ S . (4.31)

Let us estimate the third term on the left-hand side of inequality (4.30). From (3.5) and (4.31) for
arbitrary δ ∈ (0 , 1) we obtain∫ σ2

σ1

e−2 γ t(gk(t) , uk(t)) dt = (δ + (1− δ))
∫ σ2

σ1

e−2 γ t(gk(t) , uk(t)) dt

≥ δ K2

∫ σ2

σ1

e−2 γ t|uk(t)|2 dt+ 2−1(1− δ)K1

∫ σ2

σ1

e−2 γ t‖uk(t)‖2 dt

+ 2−1(1− δ)
∫ σ2

σ1

e−2 γ tΦ
(
uk(t)

)
dt . (4.32)
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Now, let us estimate the last item on the left-hand side of inequality (4.30). Using the Cauchy-
Schwarz inequality, (3.2) we have∣∣∣ ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , uk(t)

)
dt
∣∣∣ ≤ ∫ σ2

σ1

e−2 γ t
∣∣∣ ∫ t

t−τ(t)
c(t , s , uk(s)) ds

∣∣∣|uk(t)|dt
≤ L

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|uk(s)| ds

)
|uk(t)|dt

≤ L
√
τ+

(∫ σ2

σ1

e−2 γ t|uk(t)|2 dt

)1/2(∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|uk(s)|2 ds

)
dt

)1/2

. (4.33)

Consider the last term from the chain of inequalities above. Changing the order of integration we
have ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|uk(s)|2 ds

)
dt

≤
∫ σ2

σ1−τ+
|uk(s)|2 ds

∫ s+τ+

s
e−2 γ tdt = χ(γ)

∫ σ2

σ1−τ+
e−2 γ t|uk(t)|2 dt . (4.34)

From (4.33), (4.34) with σ1 < −k, and definition of uk it follows∣∣∣ ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , uk(t)

)
dt
∣∣∣ ≤ L√τ+χ(γ)

∫ σ2

σ1

e−2 γ t|uk|2 dt . (4.35)

Using the Cauchy inequality we estimate the right-hand side of (4.30) as follows∫ σ2

σ1

e−2 γ t(fk(t) , uk(t)) dt ≤ ε
∫ σ2

σ1

e−2 γ t|uk(t)|2 dt+ (4 ε)−1

∫ σ2

σ1

e−2 γ t|fk(t)|2 dt , (4.36)

where ε > 0 is arbitrary.

From (4.30), taking into account (4.32), (4.35) and (4.36), we obtain

e−2 γ t|uk(t)|2
∣∣∣σ2
σ1

+ 2[δ K2 + γ − L
√
τ+χ(γ)− ε]

∫ σ2

σ1

e−2 γ t|uk(t)|2 dt

+ (1− δ)K1

∫ σ2

σ1

e−2 γ t‖uk(t)‖2 dt+ (1− δ)
∫ σ2

σ1

e−2 γ tΦ
(
uk(t)

)
dt

≤ (2 ε)−1

∫ σ2

σ1

e−2 γ t|fk(t)|2 dt , δ ∈ (0 , 1) , ε > 0 . (4.37)

Since K1 > 0, γ is a solution of (3.7), we first choose δ from (0 , 1) such that δ K2 + γ −
L
√
τ+χ(γ) > 0, and then we choose ε = 2−1[δ K2 + γ − L

√
τ+χ(γ)] > 0. As a result, from

(4.37) we obtain the estimate

e−2 γ t|uk(t)|2
∣∣∣σ2
σ1

+

∫ σ2

σ1

e−2 γ t‖uk(t)‖2 dt+

∫ σ2

σ1

e−2 γ tΦ
(
uk(t)

)
dt

≤ C3

∫ σ2

σ1

e−2 γ t|fk(t)|2 dt , (4.38)

where C3 is a positive constant depending on K1 , K2 , L , τ
+ and γ only.
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We take σ2 = σ, σ ∈ S is arbitrary, and pass to the limit in (4.38) as σ1 → −∞. Taking into
account (F) and the definition of uk and fk, we obtain

e−2 γ σ|uk(σ)|2 +

∫ σ

−∞
e−2 γ t‖uk(t)‖2 dt

+

∫ σ

−∞
e−2 γ tΦ

(
uk(t)

)
dt ≤ C3

∫ σ

−∞
e−2 γ t|fk(t)|2 dt , σ ∈ S . (4.39)

Since σ ∈ S is arbitrary, from (4.39) it follows that

the sequence {uk(·)}+∞k=1 is bounded in L∞γ (S;H) and in L2
γ(S;V ) , (4.40)

the sequence
{
e−2 γ·Φ

(
uk(·)

)}+∞
k=1

is bounded in L1(S) . (4.41)

Now let us find estimates of u′k (k ∈ N). For almost every t ∈ S we multiply equality (4.29)
by e−2 γ tu′k(t) and integrate the resulting equality from σ1 to σ2, where σ1 , σ2 ∈ S are arbitrary
numbers, σ1 < σ2. From this we obtain∫ σ2

σ1

e−2 γ t|u′k(t)|2 dt+

∫ σ2

σ1

e−2 γ t(gk(t) , u
′
k(t)) dt

=

∫ σ2

σ1

e−2 γ t(fk(t) , u
′
k(t)) dt−

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , u′k(t)

)
dt . (4.42)

Since gk ∈ L2(σ1 , σ2;H), Lemma 4.1 implies that the function ΦH

(
uk(·)

)
is absolutely con-

tinuous on [σ1 , σ2] and

d

dt
ΦH

(
uk(t)

)
= (gk(t) , u

′
k(t)) for a.e. t ∈ (σ1 , σ2) . (4.43)

Taking into account (4.43), we can rewrite the second term on the left side of (4.42) as follows∫ σ2

σ1

e−2 γ t(gk(t) , u
′
k(t)) dt =

∫ σ2

σ1

e−2 γ t d

dt
ΦH

(
uk(t)

)
dt

= e−2 γ tΦH

(
uk(t)

)∣∣∣σ2
σ1

+ 2 γ

∫ σ2

σ1

e−2 γ tΦH

(
uk(t)

)
dt . (4.44)

By the Cauchy inequality and (3.2) and changing the order of integration (see (4.34)) we have∣∣∣ ∫ σ2

σ1

e−2 γ t
(
fk(t) , u

′
k(t)

)
dt
∣∣∣ ≤ ∫ σ2

σ1

e−2 γ t|fk(t)||u′k(t)| dt

≤ 1

4

∫ σ2

σ1

e−2 γ t|u′k(t)|2 dt+

∫ σ2

σ1

e−2 γ t|fk(t)|2 dt , (4.45)

∣∣∣ ∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
c(t , s , uk(s)) ds , u′k(t)

)
dt
∣∣∣

≤
∫ σ2

σ1

e−2 γ t
∣∣∣ ∫ t

t−τ(t)
c(t , s , uk(s)) ds

∣∣∣|u′k(t)|dt
≤ L

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
|uk(s)| ds

)
|u′k(t)|dt ≤ L2τ+

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ+
|uk(s)|2 ds

)
dt

+
1

4

∫ σ2

σ1

e−2 γ t|u′k(t)|2 dt ≤ L2τ+χ(γ)

∫ σ2

σ1−τ+
e−2 γ t|uk(t)|2 dt+

1

4

∫ σ2

σ1

e−2 γ t|u′k(t)|2 dt .

(4.46)
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From (4.42), taking into account (4.44), (4.45), (4.46), we obtain

1

2

∫ σ2

σ1

e−2 γ t|u′k(t)|2 dt+ e−2 γ tΦH

(
uk(t)

)∣∣∣σ2
σ1
≤ L2τ+χ(γ)

∫ σ2

σ1−τ+
e−2 γ t|uk(t)|2 dt

+ 2|γ|
∫ σ2

σ1

e−2 γ tΦH

(
uk(t)

)
dt+

∫ σ2

σ1

e−2 γ t|fk(t)|2 dt . (4.47)

By the definitions of uk and fk we pass to the limit in (4.47) when σ1 → −∞. From obtained
inequality, taking into account condition (A3), (2.1) and (4.39), setting σ2 = σ ∈ S, we have

e−2 γ σΦH

(
uk(σ)

)
+

∫ σ

−∞
e−2 γ t|u′k(t)|2 dt ≤ C4

∫ σ

−∞
e−2 γ t|fk(t)|2 dt , (4.48)

where C4 is a positive constant depending on K1 , K2 , γ , λ and L , τ+ only.

According to the definitions of the functional ΦH and the function fk, and condition (A3) (recall
that uk(t) ∈ V for a.e. t ∈ S), from (4.48) we obtain

e−2 γ σ‖uk(σ)‖2 +

∫ σ

−∞
e−2 γ t|u′k(t)|2 dt ≤ C5

∫ σ

−∞
e−2 γ t|f(t)|2 dt , (4.49)

where C5 > 0 is a constant depending on K1 , K2 , γ , λ and L , τ+ only.

Estimates (4.39), (4.49) imply that

the sequence
{
uk
}+∞
k=1

is bounded in L∞γ (S;V ) , (4.50)

the sequence
{
u′k
}+∞
k=1

is bounded in L2
γ(S;H) . (4.51)

Let us show that
the sequence {gk}+∞k=1 is bounded in L2

γ(S;H) . (4.52)

Indeed, using (2.1), (3.2) and (4.34) we have∫ σ2

σ1

e−2 γ t
∣∣∣ ∫ t

t−τ(t)
c(t , s , uk(s)) ds

∣∣∣2dt ≤ L2

∫ σ2

σ1

e−2 γ t
∣∣∣ ∫ t

t−τ(t)
|uk(s)| ds

∣∣∣2dt

≤ L2 τ+

∫ σ2

σ1

e−2 γ t
(∫ t

t−τ(t)
|uk(s)|2 ds

)
dt ≤ L2 τ+χ(γ)

∫ σ2

σ1

e−2 γ t |uk(t)|2 dt

≤ L2 τ+χ(γ)λ−1

∫ σ2

σ1

e−2 γ t ‖uk(t)‖2 dt . (4.53)

Therefore, from (4.29), (4.39), (4.51), (F) and the definition of fk we obtain (4.52).

Step 3 (passing to the limit). Since V andH are Hilbert spaces, and V embeds inH by compact
injection, from (4.40), (4.50), (4.51), (4.52) and Lemma 2.4 we have that there exist functions u ∈
L∞γ (S;V )∩L2

γ(S;V )∩H1
γ(S;H), g ∈ L2

γ(S;H) and a subsequence of the sequence {uk , gk}+∞k=1

(still denoted by {uk , gk}+∞k=1) such that

e−γ·uk(·) −→
k→∞

e−γ·u(·) ∗-weakly in L∞(S;V ) , (4.54)

uk −→
k→∞

u weakly in L2
γ(S;V ) and weakly in H1

γ(S;H) , (4.55)

uk −→
k→∞

u in C(S;H) , (4.56)

gk −→
k→∞

g weakly in L2
γ(S;H) . (4.57)
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Note that (4.55) and (4.57) imply

uk −→
k→∞

u , u′k −→
k→∞

u′ , gk −→
k→∞

g weakly in L2
loc(S;H) . (4.58)

Using (3.1), the Cauchy-Schwarz inequality, changing the order of integration and (4.56), for each
σ ∈ S we obtain∫ 0

σ

∣∣∣ ∫ t

t−τ(t)
c(t , s , uk(s)) ds−

∫ t

t−τ(t)
c(t , s , u(s)) ds

∣∣∣2dt

≤ L2τ+

∫ 0

σ

(∫ t

t−τ+
|uk(s)− u(s)|2 ds

)
dt ≤ (Lτ+)2

∫ 0

σ−τ+
|uk(t)− u(t)|2 dt −→

k→∞
0 . (4.59)

Thus, we obtain∫ t

t−τ(t)
c(t , s , uk(s)) ds −→

m→∞

∫ t

t−τ(t)
c(t , s , u(s)) ds strongly in L2

loc(S;H) . (4.60)

Let v ∈ H, ϕ ∈ D(−∞ , 0) be arbitrary. For a.e. t ∈ S we multiply equality (4.29) by v,
and then we multiply the obtained equality by ϕ and integrate in t on S. As a result, we obtain the
equality∫

S
(u′k(t) , v ϕ(t)) dt+

∫
S

(gk(t) , v ϕ(t)) dt+

∫
S

(∫ t

t−τ(t)
c(t , s , uk(s)) ds , v ϕ(t)

)
dt

=

∫
S

(fk(t) , v ϕ(t)) dt , k ∈ N . (4.61)

We pass to the limit in (4.61) as k →∞, taking into account (4.58), (4.60) and convergence of
{fk} to f in L2

loc(S;H). As a result, since v ∈ H, ϕ ∈ D(−∞ , 0) are arbitrary, for a.e. t ∈ S we
obtain the equality

u′(t) + g(t) +

∫ t

t−σ(t)
c(t , s , u(s)) ds = f(t) in H .

In order to complete the proof of the theorem it remains only to show that u(t) ∈ D(∂Φ) and
g(t) ∈ ∂Φ

(
u(t)

)
for a.e. t ∈ S.

Let k ∈ N be an arbitrary number. Since gk(t) ∈ ∂ΦH

(
uk(t)

)
for every t ∈ S \ S̃k, where

S̃k ⊂ S is a set of measure zero, applying the monotonicity of the subdifferential ∂ΦH , we obtain
that for every t ∈ S \ S̃k the following equality holds

(gk(t)− v∗ , uk(t)− v) ≥ 0 ∀ [v , v∗] ∈ ∂ΦH . (4.62)

Let σ ∈ S, h > 0 be arbitrary numbers. We integrate (4.62) on (σ − h , σ):∫ σ

σ−h
(gk(t)− v∗ , uk(t)− v) dt ≥ 0 ∀ [v , v∗] ∈ ∂ΦH . (4.63)

Now according to (4.56) and (4.57) we pass to the limit in (4.63) as k →∞. As a result we obtain∫ σ

σ−h
(g(t)− v∗ , u(t)− v) dt ≥ 0 ∀ [v , v∗] ∈ ∂ΦH . (4.64)
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The monograph [27, Theorem 2, pp. 192] and (4.64) imply that for every [v , v∗] ∈ ∂ΦH there
exists a set R[v , v∗] ⊂ S of measure zero such that for all σ ∈ S \R[v , v∗] we have

0 ≤ lim
h→+0

1

h

∫ σ

σ−h

(
g(t)− v∗ , u(t)− v

)
dt =

(
g(σ)− v∗ , u(σ)− v

)
. (4.65)

Let us show that there exists a set of measure zero R ⊂ S such that

∀σ ∈ S \R :
(
g(σ)− v∗ , u(σ)− v

)
≥ 0 ∀[v , v∗] ∈ ∂ΦH . (4.66)

Since V and H are separable spaces, there exists a countable set F ⊂ ∂ΦH ⊂ V × H which is
dense in ∂ΦH . Let us denote R := ∪

[v , v∗]∈F
R[v , v∗]. Since the set F is countable, and any countable

union of sets of measure zero is a set of measure zero, R is a set of measure zero. Therefore, for any
σ ∈ S \ R inequality

(
g(σ) − v∗ , u(σ) − v

)
≥ 0 holds for every [v , v∗] ∈ F . Let [v̂ , v̂∗] be an

arbitrary element from ∂ΦH . Then from the density F in ∂ΦH we have the existence of a sequence
{[vl , v∗l ]}∞l=1 such that vl → v̂ in V , v∗l → v̂∗ in H and

∀σ ∈ S \R : (g(σ)− v∗l , u(σ)− vl) ≥ 0 ∀ l ∈ N . (4.67)

Thus, passing to the limit in this equality as l→∞, we get (g(σ)− v̂∗ , u(σ)− v̂) ≥ 0, ∀σ ∈ S \R.
Therefore, inequality (4.66) holds. From this, according to maximal monotonicity of ∂ΦH , we
obtain that [u(t) , g(t)] ∈ ∂ΦH for a.e. t ∈ S.

Estimate (3.8) of the solution of the problem P(Φ , c , τ , f , γ) follows directly from (4.39),
(4.49), (4.54), (4.55) and (4.56), Lemma 2.2, Fatou’s Lemma and the fact that ΦH is lower semi-
continuous in H .

From (3.8) according to (2.1) we have

e−2 γ σ|u(σ)|2 ≤ C1λ
−1

∫ σ

−∞
e−2 γ t|f(t)|2 dt .

This inequality and condition (F) imply that u satisfies condition (3.4). Thus theorem is proved. �
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