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1 Introduction

Stability and robustness of infinite-dimensional dynamical systems play the important roles
in applications. The input-to-state stability (ISS) framework, originally introduced for finite-
dimensional systems in [28] describes global stability properties of an equilibrium in case of per-
turbations and seems to be promising for infinite-dimensional systems as well. This property is
invariant under nonlinear coordinate transformations and extends the classical global asymptotic
stability of an equilibrium to the case of systems that have external perturbing signals. If an un-
perturbed system possesses a global asymptotically stable equilibrium point (which is by definition
the invariant and attracting set), then in case of perturbation entering the ISS property of the system
means that instead of the equilibrium point there is an invariant and globally attracting domain. The
size of this domain is a nonlinear function of the perturbation norm. This framework was very suc-
cessful in studying nonlinear interconnected systems and construction of Lyapunov functions for
them [11].

During the last five years the ISS framework was actively developed for infinite dimensional
systems [23, 10, 25, 24, 18, 27]. The reason of these activities is the success of this framework
in many applications in finite-dimensional case. In this paper we are going to consider stability
and robustness properties of a special class of functional differential equations, where the dynamics
depends on the maximum of the solution taken over a past time interval. This class of systems
belongs to nonlinear infinite-dimensional delayed systems with time varying state dependent delay.
We are interested in stability properties of such systems and, in particular, in robustness with respect
to external perturbations.

Systems of this type appear in modeling of various practical processes, e.g.such a model of fi-
nancial market was discussed in [4], see also [31] for discrete market model including maximization
operator; a model of optimal motion for solar panels with a maximization was used in [5, 6]. In [1,
pp.166], a model of a hydroelectric power dam which involves a supremum operator was discussed.
Other applications can be found in [12] and [17, Example 1.2.2, pp. 7–8].

Systems with maximum without external inputs were extensively studied in [7]. However there
is only a few works ([1, 2, 5, 9, 33, 6]) studying such systems perturbed by an external input func-
tion. Recall that there are some works devoted to input-to-state-stability property of systems with
delays, where the Lyapunov-Krasovskiy functional [26] or the Razumikhin function [32] is applied.
However, none of them provides explicit expressions for the ISS gain functions.

In this paper we investigate the behavior of solutions to systems of differential equations with
maximum and external perturbing signal. We will derive an explicit expression for the ISS gain of
a certain class of systems without usage of any Lyapunov techniques but on the base of trajectory
estimations. Due to the max-operator in the systems equations, we will see that such systems are
nonlinear, that the state-dependent delay is discontinuous in time and that the backward uniqueness
property of solutions is not satisfied. In spite of this rather complex dynamics, we will see that
the stability properties are in some sense better than for systems with constant time delay. We will
observe that dimension of such system may change from infinity to one along its solution i.e., we
deal with Multi-Mode Multi Dimensional systems (see [16]) in this paper. We will compare stability
properties of one-dimensional differential equations with constant delay and with maximum, and we
will see that in many cases for equation with maximum the stability does not depend on the length
h of the past time interval which is not true for the delay equations. This work is an essentially
extended version of the conference paper [9].
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The manuscript is organized as follows. In the next section we introduce all necessary basic no-
tions and notation, study some properties of the max-operator and properties of equations with this
operator. Comparison principle for equations with maximum is provided in Section 3. Some further
properties of solutions are discussed in Section 4. Stability and input-to-state stability properties are
studied in Sections 5 and 6 respectively including several examples. Section 7 concludes the paper.

Nomenclature
N,R,R+ the set of natural, real, nonnegative real numbers resp.
Rn the set of n-dimensional vectors
xT transposition of a vector x ∈ Rn

|x| :=
√

xT x, the Euclidean norm of x ∈ Rn

for an open set J ⊆ R we define
C(J;Rn) the set of continuous functions f : J→ Rn

|| f ||J := sup
t∈J
| f (t)|, norm of f : J→ R (sometimes, we write || f || if the set J

is clear from the context)
PC(J;Rn) the set of piecewise continuous functions f : J→ Rn i.e. f is right continuous

and has only finitely many discontinuities
on any compact subset of J ⊆ R

AC(J;Rn) the set of absolutely continuous functions f : J→ Rn

L∞(J;Rn) the set of measurable essentially bounded functions f : J→ Rn

||A(t)|| := max
i=1,··· ,n

n
∑
j=1
|ai, j(t)|, matrix norm of A ∈C(J;Rn×n)

P := {γ : R+→ R+ | γ is continuous, γ(0) = 0, and γ(s)> 0 for s > 0}
K := {γ ∈P | γ is strictly increasing}
K∞ := {γ ∈K | γ is unbounded}
L :=

{
γ : R+→ R+ | γ is continuous, strictly decreasing and lim

t→∞
γ(t) = 0

}
K L := {β : R+×R+→ R+ | β (· , t) ∈K ∀t ≥ 0, β (s , ·) ∈L ∀s > 0}

For any x , y ∈ Rn we define x≥ y :⇔ xi ≥ yi, for all i = 1, · · · ,n.

2 Preliminaries

Let h > 0, t0 ∈ R be given and [t0− h , T ) ⊂ R, T ≤ ∞ be a time interval. For a scalar valued
function g ∈C([t0−h , T );R), we introduce the map

max : C([t0−h , T );R)→C([t0 , T );R) , g max7−→ g∨h , (2.1)

where
∀t ∈ [t0 , T ) : g∨h (t) := max

s∈[t−h , t]
g(s) ∈ R . (2.2)

Similarly for a vector valued function g ∈C([t0−h , T );Rn), n ∈ N, we define component-wise

∀t ∈ [t0 , T ) : g∨h (t) :=
(
g∨1 ,h(t) , g∨2 ,h(t) , . . . , g∨n ,h(t)

)T ∈ Rn . (2.3)

Sometimes, we write g∨ instead of g∨h to simplify notation, if the value h is clear from the context.
For α ∈C([t0−h , T );R), we introduce the map

argmax : C([t0−h , T );R)→ PC([t0 , T );R) , α
argmax7−→ argmaxα ,
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∀t ∈ [t0 , T ) : (argmax α)(t) := sup
{

τ ∈ [t0 , T ) : max
s∈[t−h , t]

α(s) = α(τ)

}
∈ R , (2.4)

similarly, for a vector valued function α ∈C([t0−h , T );Rn), we define

∀t ∈ [t0 , T ) : (argmaxα)(t) := ((argmaxα1)(t) , · · · , (argmaxαn)(t))
T ∈ Rn . (2.5)

Using the definition (2.5), we can rewrite the definition (2.3) as follows

g∨h (t) =
(

g1

(
(argmax g1)(t)

)
, · · · , gn

(
(argmax gn)(t)

))T
. (2.6)

From (2.4) it follows that argmaxα is piecewise continuous function satisfying

∀t ∈ [t0 , ∞) : (argmaxα)(t)≤ t .

To illustrate the above definitions, consider the following example.

Example 2.1 Let g(t) = sin t on [−1 , 6] and h = 1. Then we have

g∨h (t) =


sin t , t ∈ [0 , π

2 ] ,

1 , t ∈ [π

2 ,
π

2 +1] ,
sin(t−1) , t ∈ [π

2 +1 , t∗) ,
sin t , t ∈ [t∗ , 6] ,

(argmax sin)(t)=


t , t ∈ [0 , π

2 ] ,
π

2 , t ∈ [π

2 ,
π

2 +1] ,
t−1 , t ∈ [π

2 +1 , t∗) ,
t , t ∈ [t∗ , 6] ,

where t∗ := 1
2(3π +1) is the unique solution of sin t∗ = sin(t∗−1) on [π

2 +1 , 6](Figures 1 , 2) .

The max-operator has the following properties:

1. Sublinearity.
For continuous functions g , η : [t0−h , T )→ Rn, T ≤ ∞, the following holds

∀t ∈ [t0 , T ) : (g+η)∨(t)≤ g∨(t)+η
∨(t) . (2.7)

Indeed, fix any t ∈ [t0 , T ). Fix any i ∈ {1, · · · ,n}. Let t1 , t2 , t3 ∈ [t0 , T ) be such that

gi(t1)+ηi(t1) = (gi +ηi)
∨(t) , gi(t2) = gi

∨(t) , ηi(t3) = ηi
∨(t) .

Then we have

(gi +ηi)
∨(t) = gi(t1)+ηi(t1)≤ gi

∨(t)+ηi
∨(t) = gi(t2)+ηi(t3) . (2.8)

Inequality (2.8) holds for any i ∈ {1, · · · ,n}, hence (2.7) is proved.
Moreover, for any number α ≥ 0, the map defined by (2.1) satisfies

(α +g)∨h = α +g∨h , (αg)∨h = αg∨h .

2. Monotonicity.
Let ξ , g ∈ C([t0− h , T );Rn), T ≤ ∞. If ξ (t) ≥ g(t) for all t ∈ [t0− h , T ), then ξ∨h (t) ≥
g∨h (t) for all t ∈ [t0 , T ). Moreover, if for any i = 1 , 2 , · · · , n, function gi is nondecreasing
(nonincreasing) for all [t0− h , T ), then function g∨i is nondecreasing (nonincreasing) for all
t ∈ [t0 , T ). In this case for any t1 ≥ t2, it follows that g∨(t1)≥ g∨(t2) (resp. g∨(t1)≤ g∨(t2)).
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Figure 1: The graphs of g(t) = sin t , g∨1 (t) = max
s∈[t−1 , t]

g(s) .

Figure 2: The graph of (argmax sin)(t) .

3. Periodicity
Let g ∈C([t0−h , ∞);R) be periodic with period T ′ > 0. Then for any h > 0, the function g∨h
is periodic on [t0 , ∞) with the same period T ′. Indeed, for all t ∈ [t0 , ∞), we obtain

g∨h (t) := max
s∈[t−h , t]

g(s) = max
s∈[t−h , t]

g(s+T ′) = max
s∈[t−h+T ′ , t+T ′]

g(s) =: g∨h (t +T ) .

4. Useful inequality.
The next Lemma provides useful estimation for the work with max-operator.

Lemma 2.2 Let h > 0 , t0 ∈ R, T ≤+∞, and g ∈C([t0−h , T );Rn). Then for all t ∈ [t0 , T )

n max
s∈[t−h , t]

|g(s)|=: n|g∨|(t)≥ |g∨(t)| ≥ |g∨|(t) . (2.9)

Proof. For any fixed t ∈ [t0 , T ), we have

|g∨(t)|= |(g1(arg max
s∈[t−h , t]

g1(s)) , . . . , gn(arg max
s∈[t−h , t]

gn(s)))T |

=

√
n

∑
i=1

g2
i (arg max

s∈[t−h , t]
gi(s))≥

√
n

∑
i=1

g2
i (arg max

s∈[t−h , t]
|g(s)|)

= |g(arg max
s∈[t−h , t]

|g(s)|)|= |g∨|(t) .
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This implies the second inequality in (2.9). To prove the first one observe that for any i =
1, . . . ,n, the following holds

max
s∈[t−h , t]

|g(s)|= max
s∈[t−h , t]

√
n

∑
k=1

g2
k(s)≥ max

s∈[t−h , t]
|gi(s)| .

Taking the sum left and right for all i = 1, . . . ,n, and using that ∑
n
i=1 ci ≥

√
∑

n
i=1 c2

i holds for
any ci ≥ 0, i = 1, . . . ,n, and |gi(s)| ≥ gi(s) for any s, we obtain

n max
s∈[t−h , t]

|g(s)| ≥
n

∑
i=1

max
s∈[t−h , t]

|gi(s)| ≥

√
n

∑
i=1

( max
s∈[t−h , t]

|gi(s)|)2

≥

√
n

∑
i=1

( max
s∈[t−h , t]

gi(s))2 =

∣∣∣∣ max
s∈[t−h , t]

g(s)
∣∣∣∣= ∣∣g∨(t)∣∣ .

(2.10)

�

5. Lipschitz continuity.

Definition 2.3 Let (X , || · ||X) and (Y , || · ||Y ) be two normed spaces. A map χ : X 7→ Y
is called Lipschitz continuous if there exists a Lipschitz constant L > 0 such that for all
x1 , x2 ∈ X the following holds

||χ(x1)−χ(x2)||Y ≤ L||x1− x2||X .

Lemma 2.4 Let h > 0, t0 ∈ R, T ≤ ∞, n ∈ N. Max-operator is Lipschitz continuous with
Lipschitz constant L = n i.e.

∀v , w ∈C([t0−h , T );Rn) : ||v∨h −w∨h ||[t0 ,T ) ≤ n||v−w||[t0−h ,T ) . (2.11)

Proof. For short we denote v∨h =: v∨. We obtain

||v∨−w∨||[t0 ,T ) := sup
t∈[t0 ,T )

|v∨(t)−w∨(t)|= sup
t∈[t0 ,T )

|(v−w+w)∨(t)−w∨(t)|

(2.7)
≤ sup

t∈[t0 ,T )

∣∣∣∣ max
s∈[t−h , t]

(v(s)−w(s))
∣∣∣∣ (2.10)
≤ n sup

t∈[t0−h ,T )
max

s∈[t−h , t]
|v(s)−w(s)|

= n sup
t∈[t0−h ,T )

|v(t)−w(t)|=: n||v−w||[t0−h ,T ) .

�

Note that max-operator does not preserve smoothness as already seen from the Example 2.1, where
g∨h is not differentiable at t∗.

Let t0 = 0, h > 0 and consider the system of differential equations with max-operator and input
signal u ∈ L∞([0 , ∞);Rm) of the form

ẋ(t) = f (t , x(t) , x∨h (t) , u(t)) , t ≥ 0 , (2.12)
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where f ∈C([0 , ∞)×Rn×Rn×Rm;Rn) with initial condition

x(t) = ϕ(t) , t ∈ [−h , 0] , (2.13)

where ϕ ∈C([−h , 0];Rn). By ẋ(t) we mean the right-hand side derivative of x at t. Note that (2.12)
is a system of functional differential equations with state-dependent piecewise continuous delay.
The state space of this system is C([−h , 0];Rn), therefore we deal with an infinite-dimensional
dynamical system.

Remark 2.5 Since max is sublinear operator, system (2.12) is, in general, nonlinear i.e., it can
happen that the sum of two solutions of the problem (2.12) , (2.13) is not a solution to (2.12) , (2.13).

Definition 2.6 For an input u ∈ L∞([0 , ∞);Rm) and an initial function ϕ ∈C([−h , 0];Rn), a func-
tion x(·) = x(·;ϕ , h , u) is called a solution to the problem (2.12) , (2.13), if there is a Tf ∈ (0 , ∞]
such that x ∈C([−h , Tf );Rn), x(t) = ϕ(t) for all t ∈ [−h , 0], x is absolutely continuous on [0 , Tf )
and satisfies differential equation (2.12) almost everywhere on [0 , Tf ); x is a maximal solution if it
has no right extension that is also a solution.

For each input u ∈ L∞([0 , ∞);Rm), the function F : [0 , ∞)×Rn ×Rn → Rn is defined by
F(t , ξ1 , ξ2) := f (t , ξ1 , ξ2 , u(t)).

Suppose that Ω is an open subset of [0 , ∞)×Rn×Rn. The function F : Ω→Rn is said to satisfy
the Carathéodory conditions on Ω if

(i) for each fixed t ∈ R+, function F(t , ·, ·) is continuous;

(ii) for each fixed ξ1 , ξ2 ∈ Rn, function F(·, ξ1 , ξ2) is measurable;

(iii) for any fixed (t , ξ1 , ξ2) ∈Ω, there is a neighborhood W (t , ξ1 , ξ2) and a Lebesgue integrable
function m : [0 , ∞)→ R+ such that

|F(t , ξ
′
1 , ξ

′
2)| ≤ m(t) for all (t , ξ

′
1 , ξ

′
2) ∈W (t , ξ1 , ξ2) ;

(iv) for each compact subset Ω ⊆ Ω, there is a locally integrable function l : [0 , ∞)→ R+ such
that

|F(t , ξ1 , ξ2)−F(t , ξ1 , ξ2)| ≤ l(t)
(
||ξ1−ξ2||+ ||ξ1−ξ2||

)
for all ξ1 , ξ2 , ξ1 , ξ2 ∈Ω , and for almost all t ∈ [0,∞) .

By Lemma 2.4, max-operator is Lipschitz continuous, hence under Carathéodory conditions
imposed on F : [0 , ∞)×Rn×Rn→ Rn, existence of unique maximal solution x(·) = x(·;ϕ , h) of
the problem

ẋ(t) = F(t , x(t) , x∨h (t)) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(2.14)

where x(t) ∈ Rn , h > 0, ϕ ∈ C([−h , 0];Rn), follows from Theorems 2.1, 2.3, 3.1, 3.2 in [14].
Therefore we can formulate the following theorem.
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−h 0

ϕ(t) ψ(t)

Figure 3: Graph of functions ψ and ϕ .

Theorem 2.7 Let h > 0, ϕ ∈ C([−h , 0];Rn). Assume F : [0 , ∞)×Rn ×Rn → Rn satisfies the
Carathéodory conditions. Then there exists a unique solution x : [−h , Tf )→ Rn, Tf ∈ (0 , ∞] of
the problem (2.14), and every solution can be extended to a maximal solution; moreover, if x is
bounded for all t ∈ [0 , Tf ), then Tf = ∞.

For any function ϕ ∈C([−h , 0];Rn), we define the function ψ ∈C([−h , 0];Rn) by

ψ(t) := max
s∈[t ,0]

ϕ(s) , t ∈ [−h , 0] . (2.15)

Here max is taken component-wise as in (2.3). Note that each component of the function ψ( ·)
defined by (2.15) is a nonincreasing function (see Figure 3). Indeed, let t1 , t2 ∈ [−h , 0] such that
t1 < t2. Then we have

ψ(t1) = max
s∈[t1 ,0]

ϕ(s)≥ max
s∈[t2 ,0]

ϕ(s) = ψ(t2) ,

and
∀t ∈ [−h , 0] : max

s∈[t ,0]
ϕ(s) = ψ(t) = max

s∈[t ,0]
ψ(s) , (2.16)

holds. Also,
∀t ∈ [−h , 0] : ψ(t)≥ ϕ(t) ,

and
ψ(0) = ϕ(0) .

Consider the equation with maximum (2.12) with the initial condition

x(t) = ψ(t) , t ∈ [−h , 0] , (2.17)

where the function ψ is defined by (2.16).

Assumption 2.8 For any initial function ϕ ∈ C([−h , 0];Rn), h > 0 and any input u ∈
L∞([0 , ∞);Rm), there exists a unique solution x(·) = x(·;ϕ , h , u) of the problem (2.12) , (2.13)
defined on [0 , ∞).

Lemma 2.9 Let Assumption 2.8 be satisfied. Then for any ϕ ∈ C([−h , 0];Rn) and any input
u ∈ L∞([0 , ∞);Rm), the solution of the problem (2.12) , (2.13) coincides with the solution of the
problem (2.12) , (2.17) on [0 , ∞).
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Proof. Let h > 0, ϕ ∈ C([−h , 0];Rn) and u ∈ L∞([0 , ∞);Rm). By the Assumption 2.8, for any
initial function solution to the problem (2.12) , (2.13) exists on [0 , ∞), therefore denote by x1(·) =
x(·;ϕ , h , u) and x2(·) = x(·;ψ , h , u) the solution to the Cauchy problem (2.12) , (2.13) and the
solution to the Cauchy problem (2.12) , (2.17) on [0 , ∞), respectively. Let t ∈ [0 , h]. Then we have

ẋ1(t) = f (t , x1(t) , x∨1 ,h(t) , u) = f (t , x1(t) , max{ max
s∈[t−h ,0]

ϕ(s) , max
s∈[0 , t]

x1(s)} , u)

(2.16)
= f (t , x1(t) , max{ max

s∈[t−h ,0]
ψ(s) , max

s∈[0 , t]
x1(s)} , u) .

Therefore, x1(·) = x(·;ϕ , h , u) is a solution to the Cauchy problem (2.12) , (2.17) on [0 , h]. By the
Assumption 2.8, there exists a unique solution of (2.12) with initial condition (2.17), hence

∀t ∈ [0 , h] : x1(t) = x2(t) . (2.18)

Let t ≥ h. Consider (2.12) for t ≥ h with the initial condition

∀t ∈ [0 , h] : x(t) = x1(t) . (2.19)

By the Assumption 2.8, there exists a unique solution x1(·) to the problem (2.12) , (2.19), and
in conjunction with (2.18), we conclude that x1(·) = x2(·) on [h , ∞), where x2(·) is the solution
to (2.12) with initial condition x(t) = x2(t) for all t ∈ [0 , h]. Therefore, x1(t) = x2(t) on [0 , ∞). This
proves the lemma. �

Remark 2.10 Lemma 2.9 shows that without loss of generality we can restrict our consideration
to the case of the nonincreasing initial functions. Also from Lemma 2.9 it follows that prob-
lem (2.12) , (2.13) has no backward uniqueness property.

The following notion of stability, originally introduced for ordinary differential equations (ODEs)
in [28], is used in this paper.

Definition 2.11 System (2.12) is called input-to-state stable from u to x if there exist a function γ

of class K and a function β of class K L such that for each input u ∈ L∞([0 , ∞);Rm) and each
initial function ϕ ∈ C([−h , 0];Rn), the unique solution x(·) = x(·;ϕ , h , u) to (2.12) , (2.13) exists
for all t ∈ [0 , ∞) and furthermore it satisfies

|x(t)| ≤ β (||ϕ|| , t)+ γ(||u||) , t ≥ 0 . (2.20)

The function γ is called ISS-gain.

Definition 2.12 If in Definition 2.11 function β (s , t) = M e−λ ts for any s , t ∈ R+ and some M >
0 , λ > 0, then system (2.12) is called exponentially ISS (eISS).

Assume that f (t , 0 , 0 , 0) = 0 for all t ≥ 0, so that x≡ 0 is an equilibrium of (2.12).

Definition 2.13 The solution x ≡ 0 of system (2.12) with u ≡ 0 is said to be zero stable if for any
ε > 0, there exists a δ = δ (ε) > 0 such that ||ϕ|| < δ implies |x(t)| < ε for all t ∈ [0 , ∞). It is
said to be zero asymptotically stable if it is zero stable, and for some δ > 0, ||ϕ|| < δ implies
lim
t→∞

x(t) = 0. It is zero globally asymptotically stable (0-GAS) if it is zero asymptotically stable with

δ = ∞. It is zero globally exponentially stable (0-GES) if there exist c > 0, k > 0 such that for any
ϕ ∈C([−h , 0];Rn) the solution satisfies |x(t)| ≤ ce−kt ||ϕ|| for all t ∈ [0 , ∞).
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In the special case when f has no input signal

ẋ(t) = f (t , x(t) , x∨h (t)) , t ≥ 0 , (2.21)

instead of 0-GAS (0-GES) of x ≡ 0 we say that x ≡ 0 is globally asymptotically stable (GAS)
(globally exponentially stable (GES)).

3 Comparison lemmas

In many problems of mathematical control theory one needs to compute bounds of a solution
x(·;u) to equation ẋ = f (t , x , u) without knowing the solution itself. One of the powerful tools
which is widely used for this purpose is the comparison principle (see [19, Lemma 3.4, pp.102] and
e.g.[29, 30] for its applications).

In the literature there are some comparison results for delay equation in the form

ẋ(t) =−
n
∑

i=1
qi(t)x(t− τi(t)) , t ≥ 0 , (3.1)

with initial condition
x(t) = ϕ(t) , t ∈ [ min

i=1,··· ,n
inf
s≥0

(s− τi(s)) , 0] , (3.2)

where τi ∈C([0 , ∞);R+), i = 1, · · · ,n, ϕ ∈C([ min
i=1,··· ,n

inf
s≥0

(s− τi(s)) , 0];R+). For example, in [22]

the equation (3.1) in case τi(t) = τ is studied. The authors consider two different initial conditions
and compare corresponding solutions. In [21] the case of continuous variable delays is considered
and the following comparison result is obtained:

Theorem 3.1 Let τi ∈C([0 , ∞);R+), i = 1, · · · ,n, ϕ ∈C([ min
i=1,··· ,n

inf
s≥0

(s−τi(s)) , 0];R+), L∈ (0 , ∞].

Assume x satisfies (3.1) and (3.2) for all t ∈ [0 , L). Suppose y ∈C([ min
i=1,··· ,n

inf
s≥0

(s−τi(s)) , ∞);R) and

y ∈C1([0 , ∞);R) satisfies

ẏ(t)≥−
n
∑

i=1
qi(t)y(t− τi(t)) , t ≥ 0 ,

y(t)≤ ϕ(t) , t ∈ [ min
i=1,··· ,n

inf
s≥0

(s− τi(s)) , 0] ,

with y(0) = ϕ(0) > 0. Then y(t) ≥ x(t) for all t ∈ [0 , L), where the interval can be closed if L is
finite.

To the best of our knowledge, comparison results for general state-dependent delay differential
equation are not available in the literature.

Consider the differential equation with maximum in the form

ẋ(t) = f (t , x(t) , x∨h (t)) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(3.3)

where x(t) ∈ R, h > 0, ϕ ∈C([−h , 0];R).
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Assumption 3.2 f ∈C([0 , ∞)×R×R;R) satisfies the implication

y1 ≤ y2 ⇒ f (t , x , y1)≤ f (t , x , y2) for all t ≥ 0 , x ∈ R .

Lemma 3.3 Let h > 0, ϕ ∈C([−h , 0];R). Assume

• the Assumption 3.2 holds;

• there exists x(·) = x(·;ϕ , h) solution to (3.3) on [−h , T ), 0 < T ≤ ∞;

• there is y ∈C([−h , ∞);R) such that y is differentiable almost everywhere on [0 , ∞), satisfies

ẏ(t)< f (t , y(t) , y∨h (t)) , t ∈ [0 , T ) , (3.4)

and y(t)< ϕ(t) for all t ∈ [−h , 0]. Then y(t)< x(t) for all [0 , T ).

Proof. For t = 0 we have y(0)< x(0) and y∨h (0)< x∨h (0). Consider the function r(t) := x(t)− y(t)
on [0 , T ). Note that r(0)> 0. Assume there exists t∗ ∈ (0 , T ) such that r(t∗) = 0 and r(·)> 0 for all
t ∈ [0 , t∗). Since x(·) is right hand side differentiable on [0 , T ) as a solution to the problem (3.3),
and by the assertion of the lemma y is differentiable almost everywhere on [0 , T ), then function
r(·) is right hand side differentiable on [0 , T ). This in particular means that ṙ(t∗)≤ 0. On the other
hand, by Assumption 3.2

ẏ(t∗)< f (t∗ , y(t∗) , y∨h (t
∗))≤ f (t∗ , x(t∗) , x∨h (t

∗)) = ẋ(t∗) . (3.5)

It follows from (3.5) that ṙ(t∗) > 0 which contradicts ṙ(t∗) ≤ 0. Thus, such t∗ does not exist. This
proves the lemma. �

4 Scalar differential equations with maximum and input

Consider the scalar problem with max-operator and input in the linear form

ẋ(t) = ax(t)+bx∨h (t)+u(t) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(4.1)

where x(t) ∈ R, h > 0, a , b ∈ R, u ∈ L∞([0 , ∞);R), ϕ ∈ C([−h , 0];R). Recall that (4.1) defined
an infinite-dimensional dynamical system. Since the right-hand side of (4.1) satisfies Carathéodory
conditions, Theorem 2.7 insures that for every input u∈ L∞([0 , ∞);R) and every initial function ϕ ∈
C([−h , 0];R), there exists a unique maximal solution x(·) := x(·;ϕ , h , u) on [0 , Tf ), Tf ∈ (0 , ∞].
Recall that inputs are essentially bounded, then solution x(·) is bounded on [0 , Tf ), and therefore
Tf =+∞. We define, for this x(·)

Dx(·) =
{

t ∈ [0 , ∞) | x(t)< x∨h (t)
}
,

Gx(·) =
{

t ∈ [0 , ∞) | x(t) = x∨h (t)≤ 0
}
.

Note that by this definition for any solution x(·) to (4.1), it holds Dx(·)∩Gx(·) =∅.
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Theorem 4.1 Let h > 0, u∈ L∞([0 , ∞);R) with u(t)≤ 0 for all t ∈ [0 , ∞) and a , b∈R be such that

a+b < 0. (4.2)

Let x(·) be the unique solution of the problem (4.1) on [0 , ∞). Then

[0 , ∞) = Dx(·)∪Gx(·) . (4.3)

Proof. By the definition of sets Dx(·) and Gx(·), the following holds

[0 , ∞)⊃ Dx(·)∪Gx(·) .

We will prove that
[0 , ∞)⊂ Dx(·)∪Gx(·) . (4.4)

Assume there exists t1 ∈ [0 , ∞) such that t1 /∈ Dx(·)∪Gx(·) which indicates that

x(t1) = x∨h (t1)> 0 . (4.5)

Then
ẋ(t1) = ax(t1)+bx∨h (t1)+u(t1) = x(t1)(a+b)+u(t1) .

Since u(t)≤ 0 for any t ≥ 0 and taking into account (4.2), it follows that there exists ε > 0 such
that ẋ(t)< 0 almost everywhere on (t1− ε , t1 + ε). Therefore, x is decreasing on (t1− ε , t1 + ε)⇒
x(t1)< x∨h (t1). This contradicts (4.5). Hence inclusion (4.4) is obtained. �

Remark 4.2 From the proof of Theorem 4.1 it follows that if Dx(·) is bounded then there exists
t∗ ∈ [0 , ∞) such that the solution x(·) satisfies the ODE ẋ(t) = (a+ b)x(t)+ u(t) for all t ≤ t∗. In
this sense the infinite-dimensional system (4.1) reduces to a one-dimensional after t∗.

Example 4.3 Consider the following problem

ẋ(t) = 1
2 x(t)−2x∨h (t)+u(t) , t ≥ 0 ,

x(t) = 0 , t ∈ [−h , 0] ,
(4.6)

with h = 2, u ∈ L∞([0 , ∞);R). The condition (4.2) holds and let u(t) := −e−t − 1 < 0 for all
t ∈ [0 , ∞). The solution to (4.6) is

x(t) =


−8

3 e
1
2 t + 2

3 e−t +2 , t ∈ [0 , 2] ,
(−e2−2 59

125)e
1
2 t +5 1

3 e
1
2 t−1 +7 23

98 e−t +10 , t ∈ [2 , 3 97
100 ] ,

−1727 1
10 e−

3 t
2 −2e−t − 2

3 , t ∈ [3 97
100 , ∞) .

The point t∗ = 3 97
100 satisfies x(t∗) = x(t∗−h) and x(t∗) = x∨h (t

∗) i.e., x(t)< x∨h (t) for all t < t∗

which indicates that the equation (4.6) becomes an ODE for all t∗ ≥ 3 97
100 i.e., we have Dx(·) =

[0 , 3 97
100) and Gx(·) = [3 97

100 , ∞) (see Figure 4).
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Figure 4: Sets Dx(·) and Gx(·) for the solution to the problem (4.6).

In the considered example differential equation reduces an ODE at t∗ and remains ODE for all t ≥ t∗.
However, in general, dynamic of system with maximum and input may change back from one to
infinite. For example, let us consider the following Cauchy problem

ẋ(t) =−x∨2 (t)−u(t) , t ∈ [0 , ∞) ,
x(t) = 0 , t ∈ [−2 , 0] .

(4.7)

Choose u(t) =−|sin t|< 0 for all t ≥ 0. By Theorem 2.7, there exists a unique solution x(·) for (4.7)
for which, by Theorem 4.1, we have

[0 , ∞) = Dx(·)∪Gx(·) .

The sets Dx(·) and Gx(·) are shown in the Figure 5.

Figure 5: Sets Dx(·) and Gx(·) for the solution to (4.7).

Lemma 4.4 Let a , b∈R, t∗ ≥ 0, h > 0, ϕ ∈C([−h , 0];R) be given and function x∈C([−h , ∞);R)
be such that

ẋ(t) = ax(t)+bx∨h (t) , t ≥ t∗ ,
x(t) = ϕ(t) , t ∈ [t∗−h , t∗] .

(4.8)

Assume (4.2) holds and
ϕ
∨
h (t
∗) = ϕ(t∗)≤ 0 . (4.9)
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Then for all t ∈ [t∗ , ∞) the solution to the problem (4.8) coincides with the solution of

ẋ(t) = (a+b)x(t) , t ≥ t∗ ,
x(t∗) = ϕ(t∗)≤ 0 .

(4.10)

Proof. It follows from (4.9) that there exists ε > 0 such that the solution to the problem (4.8)
coincides with the solution to the problem (4.10) for all t ∈ [t∗ , t∗+ ε]. By (4.2) and continuity of
ẋ, we obtain ẋ(t) ≥ 0 for all t ∈ [t∗ , t∗+ ε], then x is nondecreasing on [t∗ , t∗+ ε] and, therefore,
maximum is attained at the right end of [t− h , t] for t ∈ [t∗ , t∗+ ε]. Since the solution to (4.10),
x(t) = ϕ(t∗)e(a+b)(t−t∗) is a nondecreasing function for all t ≥ t∗, maximum is taken at the right end
of [t−h , t] for all t ≥ t∗, thus (4.8) is equivalent to (4.10) for all t ≥ t∗. �

Remark 4.5 By definition of Gx(·), it follows that t∗ = inf
t≥0

Gx(·). Hence (4.8) reduces to an ODE for

all t ≥ t∗.

5 Stability of scalar equations with max-operator

Here we consider scalar equations without input. In [35], it was proved that the trivial solution
to the delay equation

ẋ(t) =−x(t−h) , t ∈ [0 , ∞) ,

is GES if and only if h ∈ [0 , π

2 ). The following theorem shows that GES of the trivial solution to the
corresponding equation with maximum does not depend on the value of h.

Proposition 5.1 Let h , b ≥ 0, ϕ ∈ C([−h , 0];R). Suppose x(·) = x(·;ϕ , h) is the solution to the
Cauchy problem

ẋ(t) =−bx∨h (t) , t ≥ 0 ,
x(t) = ϕ(t) , [−h , 0] .

(5.1)

Then the trivial solution to (5.1) is GES.

Proof. By [34, Theorem 3.1], it follows that (5.1) is asymptotically stable. Notice that (5.1) is a
particular case of (4.1) for which Theorem 4.1 holds. Assume that Dx(·) is bounded, then for some
t∗ ≥ 0 by Remark 4.2 and Lemma 4.4, it follows that the solution to problem 5.1 coincides with the
solution to

ẋ(t) =−bx(t) , t ≥ t∗ ,
x(t∗) = x∨h (t

∗) .

Then |x(t)| ≤ |x(t∗)|e−b(t−t∗) for all t ≥ t∗ and therefore, there exists c = c(ϕ , h , t∗) > 0 such that
|x(t)| ≤ ce−bt ||ϕ|| for all t ≥ 0. Next, assume Dx(·) is unbounded, then by definition of Dx(·) for all
t ≥ 0, the solution to problem (5.1) coincides with the solution to the delay differential equation

ẋ(t) =−bx(t−h) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] .

(5.2)

By [20, Remark 2.2], asymptotic stability of (5.2) is equivalent to GES. Thus theorem is proved. �



STABILITY PROPERTIES OF SYSTEMS 49

Proposition 5.2 Let h , b ≥ 0, ϕ ∈C([−h , 0];R), c ∈ R. Suppose x(·) = x(·;ϕ , h) is the solution
to

ẋ(t) =−bx∨h (t)+ c , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] .

(5.3)

Then the trivial solution to (5.3) is GES.

Proof. Denote z(t) := x(t)− c
b for all t ∈ [0 , ∞). Then

ż(t) =−bz∨h (t) , t ≥ 0 ,
z(t) = ϕ(t)− c

b , t ∈ [−h , 0] .
(5.4)

Applying Proposition 5.1 to the problem (5.4), we obtain the GES of (5.4) and, therefore, of (5.3).
�

Stability of the problem

ẋ(t) =−ax(t)−bx∨h (t) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(5.5)

where a , b ∈ R, h > 0, ϕ ∈ C([−h , 0];Rn), is studied in [34]. There it is shown that the trivial
solution of the problem (5.5) is GAS if and only if a , b satisfy

b >−a , for a≥−1/h ,

b > 1
h e−ah−1 , for a≤−1/h ,

(5.6)

see Figure 6.

Figure 6: Shaded region stands for the set of parameters for which the trivial solution to the prob-
lem (5.5) is GAS.

Recall that the trivial solution to the delay differential equation in the form

ẋ(t) =−ax(t)−bx(t−h) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(5.7)

where a , b ∈ R, h > 0, ϕ ∈C([−h , 0];Rn), is GAS if and only if a , b satisfy

a >−1
h
, −a < b < r(a) ,

where r(a) = λ (hsinλ )−1, λ is the unique root of a =−λ h−1 cotλ in the interval (0 , π) [3] , [13,
pp.108–109], see Figure 7.
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Figure 7: Shaded region stands for the set of parameters for which the trivial solution to the prob-
lem (5.7) is GAS.

6 Input-to-state stability of systems with maximum

Consider the following system of differential equations with maximum in the linear form

ẋ(t) = A(t)x(t)+B(t)x∨h (t)+u(t) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(6.1)

where x(t) ∈ Rn, A , B ∈ C([0 , ∞);Rn×n), initial function ϕ ∈ C([−h , 0];Rn), input u ∈
L∞([0 , ∞);Rn). The right-hand side of (6.1) satisfies Carathéodory conditions, thus by Theorem 2.7,
for every input u ∈ L∞([0 , ∞);Rn) and every initial function ϕ ∈ C([−h , 0];Rn), there exists a
unique maximal solution x(·) := x(·;ϕ , h , u) to problem (6.1) on [0 , Tf ), Tf ∈ (0 , ∞]. Since inputs
are essentially bounded, solution x(·) is bounded on [0 , Tf ), and therefore Tf = +∞. The scalar
case of (6.1) with a periodic input u(·) is studied in [15, 8], where several stability properties are
obtained.

Now we investigate whether the system (6.1) is ISS and what is the corresponding gain function.

First, derive the following auxiliary result for the scalar case. Consider the differential inequality

ẋ(t)≤−a(t)x(t)+b(t)x∨h (t)+w(t) , t ≥ 0 , (6.2)

with a non-negative initial function

x(t) = ϕ(t) , t ∈ [−h , 0] , (6.3)

where x(t) ∈ R, ϕ ∈C([−h , 0];R+), h > 0, a , b ∈C([0 , ∞);(0 , ∞)), input w ∈ L∞([0 , ∞);R).

Lemma 6.1 Let x ∈ AC([0 , ∞);R+) be a solution to (6.2) , (6.3). Assume a , b ∈C([0 , ∞);(0 , ∞))
such that

∀t ∈ [0 , ∞) : a(t)−b(t)≥ δ > 0 ,

where δ := inf
t∈[0 ,∞)

(a(t)−b(t)). Then there exists λ > 0 such that

x(t)≤max{1 , h}‖ϕ‖e−λ t +
‖w‖

δ
, t ≥ 0 . (6.4)
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Proof. Define the function H as follows:

H(t , λ ∗) := λ ∗−a(t)+b(t)eλ ∗ h , λ ∗ ∈ R+ , t ∈ [0 , ∞) . (6.5)

Consider
F(λ ∗) := sup

t∈[0 ,∞)

H(t , λ ∗) , λ ∗ ∈ R+ . (6.6)

Observe that function F is continuous for all λ ∗ ∈ R+, then

F(0) = sup
t∈[0 ,∞)

H(t , 0) = sup
t∈[0 ,∞)

(−a(t)+b(t))

=−(− sup
t∈[0 ,∞)

(−[a(t)−b(t)])) =− inf
t∈[0 ,∞)

(a(t)−b(t)) =−δ < 0 .
(6.7)

Write
a := inf

t∈[0 ,∞)
a(t) , b := inf

t∈[0 ,∞)
b(t) ,

a := sup
t∈[0 ,∞)

a(t) , b := sup
t∈[0 ,∞)

b(t) ,

since functions a , b are bounded on [0 , ∞) by assumption a , a , b , b ∈ R+ are finite numbers. Set
F(λ ∗) := λ ∗−a+beλ ∗ h, F(λ ∗) := λ ∗−a+beλ ∗ h then

F(λ ∗)≤ F(λ ∗)≤ F(λ ∗) , λ
∗ ∈ R+ .

Since F(λ ∗)→ ∞, F(λ ∗)→ ∞, when λ ∗→ ∞, one obtains

F(λ ∗)→ ∞ , as λ
∗→ ∞ . (6.8)

Let δ ∗ be such that 0 < δ ∗ < δ . Then from (6.7) , (6.8) and by the continuity of F it follows that
there exists λ > 0 such that,

F(λ ) = sup
t∈[0 ,∞)

H(t , λ ) = sup
t∈[0 ,∞)

(λ −a(t)+b(t)eλ h) =−δ
∗ < 0 .

Hence
∀t ∈ [0 , ∞) : λ −a(t)+b(t)eλ h ≤−δ

∗ < 0 . (6.9)

For any ε > 0, define the function q ∈C([−h , ∞);R+) by

q(t) := [max{1 , h}‖ϕ‖+ ε]e−λ t +
‖w‖

δ
.

Observe that q(t) > x(t) for all t ∈ [−h , 0] by this definition. We prove that q(t) > x(t) for all
t ∈ (0 , ∞). Suppose this is not true, i.e., there exists t1 > 0 such that q(t1) = x(t1) and q(t) > x(t)
for t ∈ (0 , t1). Therefore, for the left side derivative the following holds

q̇(t1−)≤ ẋ(t1−) .

At the same time

q̇(t1−) =−λ e−λ t1 [max{1 , h}‖ϕ‖+ ε]> (−a(t1)+b(t1)eλ h)e−λ t1 [max{1 , h}‖ϕ‖+ ε]

=−a(t1)e−λ t1 [max{1 , h}‖ϕ‖+ ε]+b(t1)eλ he−λ t1 [max{1 , h}‖ϕ‖+ ε]

=−a(t1)
[

q(t1)−
‖w‖

δ

]
b(t1)

[
q(t1−h)− ‖w‖

δ

]
=−a(t1)x(t1)+b(t1)q(t1−h)− (−a(t1)+b(t1))

‖w‖
δ

.
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Let t ′ ∈ [t1−h , t1] be such that x∨h (t1) = x(t ′).

In case t1 ≥ h we have t ′ > 0 and from the choice of the point t1 and monotonicity (decreasing)
of the function q on [0 , ∞) we obtain x(t ′)≤ q(t ′)< q(t1−h).

In case t1 < h if t ′ < 0 then x(t ′)≤ ‖ϕ‖< q(t1−h). Therefore,

q̇(t1−)>−a(t1)x(t1)+b(t1)x∨h (t1)+‖w‖> ẋ(t1−) .

The obtained contradiction proves the inequality q(t) > x(t) for all t ∈ (0 , ∞) and the claim of
lemma. �

Coming back to the system (6.1) we assume that the following assumptions hold for (6.1):

Assumption 6.2

(i) Let b̃ ∈ R+, B ∈C([0 , ∞);Rn×n) in (6.1) be such that ‖B(t)‖ ≤ b̃ for all t ∈ [0 , ∞).

(ii) Let there exist a function

V : Rm→ R , y 7→V (y) = yT Py ,

where P ∈ Rn×n is a positive definite, symmetric matrix P ∈ Rn×n, i.e. for some constants
α2 ≥ α1 > 0

α1|y|2 ≤V (y)≤ α2|y|2 for all y ∈ Rn . (6.10)

(iii) the inequality

yT (PA(t)+AT (t)P)y≤−α3|y|2 for all t ≥ 0 , y ∈ Rn ,

holds with
α3 > 2nb̃m

α2

α
, (6.11)

where α = min{1 , α1}, m = ||P||, ||B(t)|| ≤ b̃ ∈ R+ for all t ∈ [0 , ∞).

Theorem 6.3 Let b̃ ∈ R+, n ∈ N, h, λ , α, m, α2, α3 > 0, Assumption 6.2 hold, u ∈ L∞([0 , ∞);Rn)
and ϕ ∈C([−h , 0];Rn). Then the following estimate for the solution to the problem (6.1) holds

|x(t)| ≤ 1
√

α1
max{1 , h}‖ϕ‖e−λ t +

2α2 m
α α3−2α2 nb̃m

‖u‖ , t ≥ 0 .

Proof. Compute the derivative V̇ (x(t)) of the Lyapunov function along the solution x

V̇ (x(t)) = xT (t)
(
PA(t)+AT (t)P

)
x(t)

+
(
BT (t)x∨T

h (t)+uT (t)
)

Px(t)+ xT (t)P
(
B(t)x∨h (t)+u(t)

)
≤−α3 |x(t)|2 +2 |x(t)|‖B(t)P‖|x∨h (t)|+2 |x(t)|‖P‖‖u‖ .

(6.12)

Let ε > 0 be an arbitrary small number and define the function R : [−h , ∞)→ (0 , ∞) s.t.

R2(t) :=

{
V (x(t))+ ε , t ≥ 0 ,

|ϕ(t)|2 + ε , t ∈ [−h , 0) .
(6.13)
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From (6.10) it follows that for all t ∈ [0 , ∞)

|x(t)| ≤

√
V (x(t))

α1
<

√
V (x(t))+ ε

α1
=

√
R2(t)

α1
=

R(t)
√

α1
≤ R(t)√

α
.

Let ξ ∈ [−h , ∞) be such that max
s∈[t−h , t]

|x(s)|= |x(ξ )|. Assume t ∈ (h , ∞). Then ξ > 0 and by (2.9),

we obtain

|x∨h (t)| ≤ n max
s∈[t−h , t]

|x(s)|= n|x(ξ )| ≤ n

√
V (x(ξ ))
√

α1

< n

√
V (x(ξ ))+ ε
√

α1
= n

R(ξ )
√

α1
≤ n

R∨h (t)√
α1
≤ n

R∨h (t)√
α

.

(6.14)

Now, let t ∈ [0 , h]. If ξ ∈ (0 , ∞) then inequality (6.14) holds. If ξ ∈ [−h , 0] then

|x∨h (t)| ≤ n max
s∈[t−h , t]

|x(s)|= n|x(ξ )|= n|ϕ(ξ )|< nR(ξ )≤ n
R(ξ )√

α
≤ n

R∨h (t)√
α

.

Then for t ≥ 0 we obtain

2R(t)Ṙ(t) = V̇ (x(t))≤−α3
R2(t)

α2
+2R(t)

nb̃m
α

R∨h (t)+
2R(t)√

α
m‖u‖ ,

or

Ṙ(t)≤−α3
R(t)
2α2

+
nb̃m

α
R∨h (t)+

m‖u‖
√

α1
.

By Lemma 6.1 with

a(t) =
α3

2α2
, b(t) =

nb̃m
α

, w(t) =
m‖u‖
√

α1
, (6.15)

∃λ > 0 : R(t)≤max{1 , h}‖ϕ‖e−λ t +
2α2
√

α1 m
α α3−2α2 nb̃m

‖u‖ .

Since ε > 0 is an arbitrary number, we can take the limit for ε → 0 and obtain√
V (x(t))≤max{1 , h}‖ϕ‖e−λ t +

2α2
√

α1 m
α α3−2α2 nb̃m

‖u‖ .

Therefore from |x(t)| ≤
√

V (x(t))√
α1

for any t ≥ 0, we get

|x(t)| ≤ 1
√

α1
max{1 , h}‖ϕ‖h e−λ t +

2α2 m
α α3−2α2 nb̃m

‖u‖ .

�

Remark 6.4 Note that from the proof of the Theorem 6.3 it follows that (6.1) is not only ISS but
even eISS.

The next statement follows immediately from the Theorem 6.3.

Corollary 6.5 Let system (6.1) be eISS. Then system (6.1) is 0-GES.
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6.1 Examples

Example 6.6 Let h > 0, a > b > 0, u∈ L∞([0 , ∞);R), ϕ ∈C([−h , 0];R). Consider a scalar system
with input

ẋ(t) =−ax(t)+bx∨h (t)+u , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] .

Applying Theorem 6.3 with A(t) = −a, B(t) = b, P = m = 1, α1 = α2 = 1, α3 = 2a > 2b, we get
γ = 1

a−b and

|x(t)| ≤max{1 , h}‖ϕ‖e−λ t +
1

a−b
‖u‖ , t ≥ 0 ,

for some λ > 0 i.e., the considered problem is eISS.

Example 6.7 Consider

ẋ(t) =−2x(t)+ sin t x∨h (t)+u , t ≥ 0 ,
x(t) = 1 , t ∈ [−h , 0] .

(6.16)

for fixed h = 2. Check the eISS property. Apply Theorem 6.3 in case A(t) = −2, B(t) = sin t,
|sin t| ≤ 1 =: b̃, for all t ∈ [0 , ∞), and check the conditions of the Theorem 6.3:

(i) choose V (x) = x2 then P = 1 = m and α1 = α2 = α = 1;

(ii) A(t) =−2 then 2x(−2x) =−4x2 and the inequality α3 = 4 > 2 holds.

Since the conditions of Theorem 6.3 hold, one can calculate

γ(‖u‖) = 2α2 m
α α3−2α2 nb̃m

‖u‖= ‖u‖ ,

β (‖ϕ‖ , t) =
1
√

α1
max{1 , h}‖ϕ‖e−λ t = 2e−λ t , t ≥ 0 .

From Lemma 6.1 it follows that there exists λ > 0 such that

|x(t)| ≤ 2e−λ t + ||u|| , t ≥ 0 .

One can check that λ = 0.27 satisfies λ − 2+ e2λ < 0. The Figure 8 illustrates the behavior of
solution to the problem (6.16) and its input-to-state estimate in case u(t) = cos t for all t ∈ [0 , ∞).

Example 6.8 Consider the following system

ẋ(t) = Ax(t)+B(t)x∨h (t)+u(t) , t ≥ 0 ,
x(t) = ϕ(t) , t ∈ [−h , 0] ,

(6.17)

where

A =

(
−3 1
−1

4 −2

)
, B(t) =

(
0 −1

4
−1

3 cos t 0

)
, u(t) =

(
u1(t)
u2(t)

)
,
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Figure 8: Graph of the solution to (6.16) and its boundedness.

h = 1, ϕ ∈C([−1 , 0];R2), u ∈ L∞([0 , ∞);R2). Find the ISS estimate for the solution of the prob-
lem (6.17) using Theorem 6.3. Let b̃ := 1

3 = ||B(t)||, t ∈ [0 , ∞). Check Assumption 6.2 (ii) , (iii).
Define

P =

(
2 0
0 2

)
,

then ||P||= m = 2 and Lyapunov function

V (x) = xT
(

2 0
0 2

)
x = 2x2

1 +2x2
2 for all x ∈ R2 .

Then the estimate (6.10) holds for α1 = α2 = 2. Find α3 such that the following inequality holds

xT (PA+AT P)x = xT
[(

2 0
0 2

)(
−3 1
−1

4 −2

)
+

(
−3 −1

4
1 −2

)(
2 0
0 2

)]
x

= xT
(
−12 3

2
3
2 −8

)
x =−xT Qx≤−λ̃min(Q)|x|2 =−α3 |x|2 ,

(6.18)

where

Q =

(
12 −3

2
−3

2 8

)
,

and α3 = λ̃min(Q) = min{λ̃1 , λ̃2}. Here λ̃1 =
25
2 , λ̃2 =

15
2 are eigenvalues of Q.

Notice that Assumption 6.2 (ii) , (iii) hold with α3 = 15
2 > 16

3 . Hence, the conditions of the
Theorem 6.3 hold and one obtains the following estimate for the solution of the problem (6.17)

|x(t)| ≤ 1√
2
||ϕ||e−λ t +

48
13
||u|| , t ≥ 0 ,

where λ > 0 satisfies λ − 15
8 + 4

3 eλ < 0.

7 Conclusions

This work presents several interesting properties of solutions to differential equations with max-
operator subjected to external perturbations. In particular the ISS property including explicit expres-
sion for the ISS gain function is derived. In our future work, characterizations of ISS by means of
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superpositions of other stability properties like asymptotic gain, global stability and 0-GAS property
will be investigated for systems of more general type, then it is considered in Theorem 6.3.
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