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Abstract. In this paper, we consider the Neumann elliptic problems of the form
−

N∑
i=1

∂

∂xi

(
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi

)
+ w0(x)|u|p(x)−2u = f(x, u) + g(x, u) in Ω,

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi
γi = 0 on ∂Ω.

We prove the existence of infinitely many weak solutions in the weighted variable exponent Sobolev
space W 1,p(·)(Ω, w), which generalizes the corresponding result from [8].
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1 Introduction

Let Ω be a bounded open subset of RN with boundary of class C1, and let γi be the components of
the outer normal unit vector.

Ricceri [15], Anello and Cordaro [5] studied the existence of solutions for the following problem
−div

(
|∇u|p−2∇u

)
+ λ(x)|u|p−2u = α(x)f(u) + β(x)g(u) in Ω,

∂u

∂γ
= 0 on ∂Ω,

(1.1)

where λ(x) is a positive function such that λ(·) ∈ L∞(Ω) with λ− = ess infx∈Ω λ(x) > 0 and
p > N . The existence of solutions of problem (1.1) was proved by applying some critical point
theorem recently obtained by B. Ricceri as a consequence of a more general variational principle
(see [14]).

In [8], X. Fan, C. Ji treated the problem
−div

(
|∇u|p(x)−2∇u

)
+ λ(x)|u|p(x)−2u = f(x, u) + g(x, u) in Ω,

∂u

∂γ
= 0 on ∂Ω,

(1.2)

and they proved the existence of infinitely many solutions in the variable exponent Sobolev space
W 1,p(·)(Ω).

Even though the problem (1.2) has been studied by some other authors in anisotropic variable
exponent Sobolev spaces and weighted Sobolev space (see [1, 2, 3]), the hypotheses we use in this
paper are totally different from those ones and so are our results.

In this paper, we are interested in the following degenerate p(x)-Laplacian equation with Neu-
mann boundary value condition:
−

N∑
i=1

∂

∂xi

(
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi

)
+ w0(x)|u|p(x)−2u = f(x, u) + g(x, u) in Ω,

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi
γi = 0 on ∂Ω.

(1.3)

We are interested in the existence of infinitely many weak solutions to such a problem. Precisely, we
deal with the existence of weak solutions for the problem (1.3) in the Sobolev spaces W 1,p(·)(Ω, w),
where p ∈ L∞(Ω) satisfies the condition

1 < p− := ess inf
Ω

p(x) ≤ p+ := ess sup
Ω

p(x) <∞, (1.4)

and w = {wi(x), 0 ≤ i ≤ N} is a vector of weight functions on Ω, i.e., each wi(x) is measurable,
strictly positive a.e. on Ω and satisfies some integrability conditions (see Section 2). We refer the
reader to [9, 10, 11] where the authors were concerned with Dirichlet problems.

In this paper we introduce the following theorem, which will be essential to establish the existence
of weak solutions for our main problem.
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Theorem 1 (see [8, Theorem 2.2]) Let X be a reflexive real Banach space, and let Φ,Ψ: X −→ R
be two sequentially weakly lower semicontinuous and Gâteaux differentiable functionals. Assume
also that Ψ is (strongly) continuous and satisfies lim‖u‖→+∞Ψ(u) = +∞. For each ρ > infX Ψ,
put

ϕ(ρ) = inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(Ψ−1(]−∞,ρ[))

Φ(v)

ρ−Ψ(u)
, (1.5)

where (Ψ−1(]−∞, ρ[)) is the closure of Ψ−1(]−∞, ρ[) in the weak topology. Then, the following
conclusions hold.

(a) If there exist ρ0 > infX Ψ and u0 ∈ X such that

Ψ(u0) < ρ0 (1.6)

and

Φ(u0)− inf
v∈(Ψ−1(]−∞,ρ0[))

Φ(v) < ρ0 −Ψ(u0), (1.7)

then the restriction of Ψ + Φ to Ψ−1(]−∞, ρ0[) has a global minimum.

(b) If there exists a sequence {rn} ⊂ (infX Ψ,+∞) with rn → +∞ and a sequence {un} ⊂ X
such that for each n we have

Ψ(un) < rn (1.8)

and

Φ(un)− inf
v∈(Ψ−1(]−∞,rn[))

Φ(v) < rn −Ψ(un), (1.9)

and, in addition,

lim inf
‖u‖→+∞

(Ψ(u) + Φ(u)) = −∞, (1.10)

then there exists a sequence {vn} of local minima of Ψ + Φ such that Ψ(vn) → +∞ as
n→∞.

(c) If there exists a sequence {rn} ⊂ (infX Ψ,+∞) with rn → infX Ψ and a sequence {un} ⊂
X such that for each n the conditions (1.8) and (1.9) are satisfied, and, in addition,

every global minimizer of Ψ is not a local minimizer of Φ + Ψ, (1.11)

then there exists a sequence {vn} of pairwise distinct local minimizers of Φ + Ψ such that
limn→∞Ψ(vn) = infX Ψ, and {vn} weakly converges to a global minimizer of Ψ.

This paper is organized as follows. In Section 2, we present some necessary preliminary results
concerning weighted variable exponent Sobolev spaces. In particular, we prove a compact embedding
theorem of W 1,p(·)(Ω, w) into C0(Ω), which plays an important role in this paper. In Section 3, we
introduce some assumptions for which our problem has solutions and we present we present the main
results of the paper, Theorems 3 and 4). Finally, we give the proof of the main results in Section 4.
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2 Preliminary

In this section, we state some elementary properties of the (weighted) variable exponent Lebesgue–
Sobolev spaces which will be used in the next sections. The basic properties of the variable exponent
Lebesgue–Sobolev spaces, that is, when w(x) ≡ 1 can be found in [6].

Let γ be a weighted function in Ω and let w = {wi(x), 0 ≤ i ≤ N} be a vector of weight
functions, i.e., every component wi(x) is a measurable function which is strictly positive a.e. in Ω,
satisfying the following condition

(V1) wi ∈ L1
loc(Ω) and w

−1
p(x)−1

i ∈ L1
loc(Ω) for all i = 0, . . . , N .

We define the (weighted) variable exponent Lebesgue–Sobolev spaces as

Lp(·)(Ω, γ) =
{
u(x) : uγ

1
p(x) ∈ Lp(·)(Ω)

}
,

and endow them with the norm defined by

‖u‖Lp(·)(Ω,γ) = ‖u‖p(·),Ω,γ = inf

{
σ > 0 :

∫
Ω
γ(x)

∣∣∣∣u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
.

We denote by W 1,p(·)(Ω, w) the space of all real-valued functions u ∈ Lp(·)(Ω, w0) such that the
derivatives in the sense of distributions satisfy

∂u

∂xi
∈ Lp(·)(Ω, wi) for all i = 1, . . . , N ,

considered with the norm

‖u‖W 1,p(·)(Ω,w) = ‖u‖Lp(·)(Ω,w0) +
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(·)(Ω,wi)

.

It is easy to see that the norm

|||u|||1,p(·),Ω,w = inf

{
µ > 0 :

∫
Ω

(
w0(x)

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

+

N∑
i=1

wi(x)

∣∣∣∣ ∂u(x)
∂xi

µ

∣∣∣∣p(x))
dx ≤ 1

}
(2.1)

is a norm on W 1,p(·)(Ω, w) equivalent to ‖ · ‖W 1,p(·)(Ω,w). The theory of such spaces was developed
in [9, 10, 11, 12, 13]. When p(x) is a constant function, some results were proved in [4, 7].
If w0(x) = w1(x) = . . . = wN (x) = 1, we write W 1,p(·)(Ω) instead of W 1,p(·)(Ω, w) and
‖u‖W 1,p(·)(Ω) instead of ‖u‖W 1,p(·)(Ω,w).

Proposition 1 ([11]) Assume that (V1) holds. Then, W 1,p(·)(Ω, w) is a reflexive Banach space.
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Lemma 1 ([11]) Let ρ(u) =
∫

Ω γ(x)|u|p(x) dx for u ∈ Lp(·)(Ω, γ). We have

(i) ‖u‖Lp(·)(Ω,γ) < 1 (= 1, > 1) if and only if ρ(u) < 1 (= 1, > 1),

(ii) if ‖u‖Lp(·)(Ω,γ) ≤ 1, then ‖u‖p
+

Lp(·)(Ω,γ)
≤ ρ(u) ≤ ‖u‖p

−

Lp(·)(Ω,γ)
,

(iii) if ‖u‖Lp(·)(Ω,γ) ≥ 1, then ‖u‖p
−

Lp(·)(Ω,γ)
≤ ρ(u) ≤ ‖u‖p

+

Lp(·)(Ω,γ)
.

We suppose that the function weight w =
{
wi(x), 0 ≤ i ≤ N

}
satisfies

(V2) w−ν(x)
i ∈ L1(Ω) with ν(x) ∈

]
N

p(x)−N ,∞
[
∩
[

1
p(x)−1 ,∞

[
for all i = 0, . . . , N and ν− >

N
p−−N .

The following compact imbedding result is crucial.

Theorem 2 Let (V1) and (V2) be satisfied. Then, W 1,p(·)(Ω, w) ↪→↪→ C0(Ω).

Proof. Let u ∈ W 1,p(·)(Ω, w). We denote ∂u
∂x0

= u, p1(x) = ν(x)p(x)
ν(x)+1 < p(x). By the Hölder

inequality in [9, Proposition 2.1] with parameters q(x) = p(x)
p1(x) = ν(x)+1

ν(x) and its conjugate q′(x) =

ν(x) + 1 for all i = 0, . . . , N we have

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p1(x)

dx =

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣
ν(x)p(x)
ν(x)+1

dx

=

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣
p(x)ν(x)
ν(x)+1

w
ν(x)
ν(x)+1

i w
−ν(x)
ν(x)+1

i dx

≤ 2

∥∥∥∥w ν(x)
ν(x)+1

i

∣∣∣∣ ∂u∂xi
∣∣∣∣
p(x)ν(x)
ν(x)+1

∥∥∥∥
L
ν(x)+1
ν(x) (Ω)

∥∥∥∥w− ν(x)
ν(x)+1

i

∥∥∥∥
Lν(x)+1(Ω)

.

Assumption (V2) and Lemma 1 imply that

∥∥∥∥w− ν(x)
ν(x)+1

i

∥∥∥∥
Lν(x)+1(Ω)

≤
(∫

Ω
w
−ν(x)
i (x) dx+ 1

) 1
ν−+1

≤ C.

Thus, we get ∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p1(x)

dx ≤ C
∥∥∥∥w ν(x)

ν(x)+1

i

∣∣∣∣ ∂u∂xi
∣∣∣∣
p(x)ν(x)
ν(x)+1

∥∥∥∥
L
ν(x)+1
ν(x) (Ω)

. (2.2)

Without loss of generality, we may assume that
∫

Ω

∣∣ ∂u
∂xi

∣∣p1(x)
dx > 1. (If not, it is easy to see from

Lemma 1 that u ∈ W 1,p1(·)(Ω).) If
∫

Ωwi(x)
∣∣ ∂u
∂xi

∣∣p(x)
dx < 1, then from (2.2) and Lemma 1 we

have
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∥∥∥∥ p
−ν−

ν−+1

Lp1(·)(Ω)

≤
∫

Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p1(x)

dx

≤ C
(∫

Ω
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx

) ν−
ν−+1

≤ C
∥∥∥∥ ∂u∂xi

∥∥∥∥ p
−ν−

ν−+1

Lp(·)(Ω,wi)

,

i.e., ∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp1(·)(Ω)

≤ C
∥∥∥∥ ∂u∂xi

∥∥∥∥
Lp(·)(Ω,wi)

. (2.3)

On the other hand, if
∫

Ωwi(x)
∣∣ ∂u
∂xi

∣∣p(x)
dx > 1, then from (2.2) and Lemma 1 we obtain

∥∥∥∥ ∂u∂xi
∥∥∥∥ p
−ν−

ν−+1

Lp1(·)(Ω)

≤
∫

Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p1(x)

dx

≤ C
(∫

Ω
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx

) ν+

ν++1

≤ C
∥∥∥∥ ∂u∂xi

∥∥∥∥ p
+ν+

ν++1

Lp(·)(Ω,wi)

,

i.e., ∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp1(·)(Ω)

≤ C
∥∥∥∥ ∂u∂xi

∥∥∥∥β
Lp(·)(Ω,wi)

, (2.4)

where β = p+ν+

ν++1
· 1+ν−

p−ν− . From the inequalities (2.3) and (2.4), we obtain ∂u
∂xi
∈ Lp(·)(Ω, wi) for

all i = 0, . . . , N . Therefore, we conclude that W 1,p(·)(Ω, w) ↪→ W 1,p1(·)(Ω). By (V2) we have
ν− > N

p−−N . Then, p−1 > N . Since W 1,p1(·)(Ω) is continuously embedded in W 1,p−1 (Ω), and

W 1,p−1 (Ω) is compactly embedded in C0(Ω), we deduce the result using the classic injections. This
finishes the proof. �

Set

C0 = sup
u∈W 1,p(·)(Ω,w)\{0}

‖u‖L∞(Ω)

|||u|||1,p(·),Ω,w
; (2.5)

then, C0 is a positive constant.

3 Assumptions and statement of main results

Let Ω ⊂ RN be an open bounded set with the boundary ∂Ω of class C1, and let γ be the outward unit
normal to ∂Ω. Assume that f, g : Ω× R −→ R are Carathéodory functions satisfying the following
condition

sup
|t|≤r
|f(x, t)| ∈ L1(Ω) and sup

|t|≤r
|g(x, t)| ∈ L1(Ω) for each r > 0. (3.1)
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We set

F (x, t) =

∫ t

0
f(x, s) ds and G(x, t) =

∫ t

0
g(x, s) ds. (3.2)

We define, for any u ∈W 1,p(·)(Ω, w), the functionals

J(u) =

∫
Ω

1

p(x)

(
N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+ w0(x)|u|p(x)

)
dx, (3.3)

Ψ(u) = J(u)−
∫

Ω
G(x, u) dx and Φ(u) = −

∫
Ω
F (x, u) dx. (3.4)

Definition 1 A measurable function u ∈ W 1,p(·)(Ω, w) is called a weak solution of the Neumann
elliptic problem (1.3) if for every v ∈W 1,p(·)(Ω, w) we have∫

Ω

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi

∂v

∂xi
dx+

∫
Ω
w0(x)|u|p(x)−2uv dx

=

∫
Ω
f(x, u)v dx+

∫
Ω
g(x, u)v dx.

Definition 2 A function F (x, t) satisfies the condition (S) if for each compact subset E of R, there
exists ξ ∈ E such that

F (x, ξ) = sup
t∈E

F (x, t) for a.e. x ∈ Ω. (3.5)

We assume that G satisfies one of the following two conditions.

(G1) There exist M > 0, ε ∈ (0, 1) and β, θ ∈ L1(Ω) with ‖β‖L1(Ω) 6= 0 such that

for any |t| ≥M , G(x, t) ≤ (1− ε)β(x)

p+Cp
−

0 ‖β‖L1(Ω)

|t|p− + θ(x) a.e. in Ω,

(G2) There exist M > 0, ε ∈ (0, 1) and θ
′ ∈ L1(Ω) such that

for any |t| ≥M , G(x, t) ≤ (1− ε)w0(x)

p(x)
|t|p(x) + θ

′
(x) a.e. in Ω.

From now on, we always assume that

(V3) w0 ∈ L1(Ω).

We take u0 and un in Theorem 1 as the constant value functions ξ0 and ξn, and we assume that

lim inf
|ξ|→+∞

∫
Ω

(
w0(x)

p(x)
|ξ|p(x) −G(x, ξ)− F (x, ξ)

)
dx = −∞. (3.6)

Also, we will need the following condition∫
Ω

w0(x)

p(x)
|ξ|p(x) dx−

∫
Ω
G(x, ξ) dx ≤ d1|ξ|p

+
+ d2 for every ξ ∈ R, (3.7)
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where d1 and d2 are two positive constants. It is easy to see that (3.7) holds true under the condi-
tion (G1) or (G2).

Our main results are as follows.

Theorem 3 Let the conditions (V1)–(V3), (3.6)–(3.7) be satisfied, and let (G1) or (G2) hold. More-
over, let F satisfy the condition (S). Suppose that {an} and {bn} are two positive sequences such
that

lim
n→∞

bn = +∞ and lim
n→∞

ap
+

n

bp
−
n

= 0. (3.8)

If there exists a positive function h ∈ L1(Ω) with ‖h‖L1(Ω) 6= 0 such that for each n we have

F (x, an) +
h(x)

‖h‖L1(Ω)

(
d0

(
bn
C0

)p−
− d1a

p+

n − d2

)
≥ sup

t∈[an,bn]
F (x, t) a.e. in Ω, (3.9)

F (x,−an) +
h(x)

‖h‖L1(Ω)

(
d0

(
bn
C0

)p−
− d1a

p+

n − d2

)
≥ sup

t∈[−bn,−an]
F (x, t) a.e. in Ω, (3.10)

and the inequalities (3.9) and (3.10) are strict on a subset of Ω with positive measure, then there
exists a sequence {vn} of local minima of Ψ + Φ such that limn→∞Ψ(vn) = +∞. Consequently,
the problem (1.3) admits an unbounded sequence of weak solutions.

Theorem 4 Assume that (V1)–(V3) hold. Suppose that

G(x, t) ≤ 0 for t ∈ R and a.e. x ∈ Ω, (3.11)

and that there exist two positive constants M and ε such that

−G(x, t) ≤M |t|p− for t ≤ ε and a.e. x ∈ Ω. (3.12)

Moreover, let the functional F satisfy the condition (S) and

lim sup
|ξ|→0

∫
Ω F (x, ξ) dx+

∫
ΩG(x, ξ) dx

|ξ|p−
>

∫
Ω

w0(x)

p(x)
dx. (3.13)

Suppose that {an} and {bn} are two positive sequences such that

lim
n→∞

bn = 0 and lim
n→∞

ap
−
n

bp
+

n

= 0, (3.14)

and that there exists a positive function h ∈ L1(Ω) with ‖h‖L1(Ω) 6= 0 such that for each n we have

F (x, an) +
h(x)

‖h‖L1(Ω)

(
1

p+

(
bn
C0

)p+

− d3a
p−
n

)
≥ sup

t∈[an,bn]
F (x, t) a.e. in Ω, (3.15)

F (x,−an) +
h(x)

‖h‖L1(Ω)

(
1

p+

(
bn
C0

)p+

− d3a
p−
n

)
≥ sup

t∈[−bn,−an]
F (x, t) a.e. in Ω, (3.16)

and the inequalities (3.15) and (3.16) are strict on a subset of Ω with positive measure, where
d3 =

∫
Ω
w0(x)
p(x) dx+M |Ω|. Then, there exists a sequence {vn} of pairwise distinct local minima of

Ψ + Φ such that vn → 0 in W 1,p(·)(Ω, w). Consequently, the problem (1.3) admits a sequence of
non-zero weak solutions which strongly converges to 0 in W 1,p(·)(Ω, w).
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4 Proofs of the main results

In this section, we are ready to prove the main results. We will begin with the proof of Theorem 3.

Proof of Theorem 3. Since the proof is quite long and challenging, for simplicity’s sake, we will
divide it into several steps.

Step 1: We start with establishing some technical lemmas.

Lemma 2 Assume that (V1), (V2) and (3.1) are satisfied. Then, Ψ,Φ ∈ C1(W 1,p(·)(Ω, w),R) and
their Gâteaux derivatives are given by

〈Ψ′(u), v〉 =

∫
Ω

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2∣∣∣∣ ∂u∂xi

∣∣∣∣ ∂v∂xi dx

+

∫
Ω
w0(x)|u|p(x)−2uv dx−

∫
Ω
g(x, u)v dx

and

〈Φ′(u), v〉 = −
∫

Ω
f(x, u)v dx

for any u, v ∈W 1,p(·)(Ω, w).

Proof. For i = 0, . . . , N and any u ∈W 1,p(·)(Ω, w) define H,Ji : W 1,p(·)(Ω, w) −→ R by

Ji(u) =

∫
Ω

wi(x)

p(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx, where
∂u

∂x0
= u, (4.1)

H(u) =

∫
Ω
G(x, u) dx. (4.2)

Claim 1: Ji ∈ C1(W 1,p(·)(Ω, w),R) and for any u, v ∈W 1,p(·)(Ω, w),

〈J ′i(u), v〉 =

∫
Ω
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi

∂v

∂xi
dx for all i = 0, . . . , N.

For a fixed x ∈ Ω let us consider φ : R −→ R defined by φ(ζ) = wi(x)
p(x) |ζ|

p(x). Obviously,

φ ∈ C1(R,R) and ∂φ(ζ)
∂ζ = wi(x)|ζ|p(x)−2ζ. Thus, for all ζ, ϑ ∈ R, we have

lim
t→0

φ(ζ + tϑ)− φ(ϑ)

t
= wi(x)|ζ|p(x)−2ζ · ϑ.

As a consequence, for u, v ∈W 1,p(·)(Ω, w), we obtain

lim
t→0

wi(x)
p(x)

∣∣ ∂u
∂xi

+ t ∂v∂xi

∣∣p(x) − wi(x)
p(x)

∣∣ ∂u
∂xi

∣∣p(x)

t
= wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi
· ∂v
∂xi

. (4.3)
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By the mean value theorem, there exists θ ∈ R with 0 < |θ| < |t| such that for each t ∈ R with
0 < |t| < 1 we have ∣∣∣∣∣

wi(x)
p(x)

∣∣ ∂u
∂xi

+ t ∂v∂xi

∣∣p(x) − wi(x)
p(x)

∣∣∣ ∂u∂xi ∣∣∣p(x)

t

∣∣∣∣∣
=

∣∣∣∣wi(x)

∣∣∣∣ ∂u∂xi + θ
∂v

∂xi

∣∣∣∣p(x)−2( ∂u
∂xi

+ θ
∂v

∂xi

)
· ∂v
∂xi

∣∣∣∣
≤ wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣+∣∣∣∣ ∂v∂xi

∣∣∣∣)p(x)−1∣∣∣∣ ∂v∂xi
∣∣∣∣.

(4.4)

Noting that
∥∥wi(x)

1
p(x)
∣∣ ∂v
∂xi

∣∣∥∥
Lp(·)(Ω)

= ‖v‖p(·),Ω,wi , from the definition, Hölder’s inequality and
Lemma 1, we obtain∫

Ω
wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣+

∣∣∣∣ ∂v∂xi
∣∣∣∣)p(x)−1∣∣∣∣ ∂v∂xi

∣∣∣∣ dx
≤ 2

∥∥∥∥w 1
p′(x)

i

(∣∣∣∣ ∂u∂xi
∣∣∣∣+

∣∣∣∣ ∂v∂xi
∣∣∣∣)p(x)−1∥∥∥∥

Lp(·)′ (Ω)

∥∥∥∥wi(x)
1

p(x)

∣∣∣∣ ∂v∂xi
∣∣∣∣∥∥∥∥
Lp(·)(Ω)

≤ 2

[
1 +

(∫
Ω
wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣+

∣∣∣∣ ∂v∂xi
∣∣∣∣)p(x)

dx

) 1
(p′)−

]
‖v‖p(·),Ω,wi

≤ 2

[
1 + 2

p+−1

(p′)−

(∫
Ω
wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+

∣∣∣∣ ∂v∂xi
∣∣∣∣p(x))

dx

) 1
(p′)−

]
‖v‖p(·),(Ω),wi .

Hence, wi
(∣∣ ∂u
∂xi

∣∣ +
∣∣ ∂v
∂xi

∣∣)p(x)−1∣∣ ∂v
∂xi

∣∣ ∈ L1(Ω), because u, v ∈ W 1,p(·)(Ω, w). Combining this
with (4.3) and (4.4) and applying the dominated convergence theorem, we get

lim
t→0

∫
Ω

wi(x)
p(x)

∣∣ ∂u
∂xi

+ t ∂v∂xi

∣∣p(x) − wi(x)
p(x)

∣∣ ∂u
∂xi

∣∣p(x)

t
dx =

∫
Ω
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi
.
∂v

∂xi
dx.

It means that Ji is Gâteaux differentiable and for u, v ∈W 1,p(·)(Ω, w) we have

〈J ′i(u), v〉 =

∫
Ω
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2 ∂u

∂xi

∂v

∂xi
dx.

Next, we prove that J ′i : W
1,p(·)(Ω, w) −→ W 1,p(·)(Ω, w)∗ is continuous. To this aim we

take a sequence {un} in W 1,p(·)(Ω, w) such that un −→ u in W 1,p(·)(Ω, w) as n −→ ∞. By [9,
Proposition 2.3] we have limn−→∞

∫
Ωwi(x)

∣∣∂un
∂xi
− ∂u

∂xi

∣∣p(x)
dx = 0. Thus, up to a subsequence, we

deduce that

∂un
∂xi
−→ ∂u

∂xi
a.e. in Ω as n −→∞, (4.5)

wi(x)

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣p(x)

≤ h(x) for a.e. x ∈ Ω for some h ∈ L1(Ω). (4.6)

Since

wi(x)

∣∣∣∣∂un∂xi

∣∣∣∣p(x)

≤ wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣+

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣)p(x)
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≤ 2p(x)−1wi(x)

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣p(x))
,

it follows from (4.6) that

wi(x)

∣∣∣∣∂un∂xi

∣∣∣∣p(x)

≤ 2p
+−1

(
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+ h(x)

)
. (4.7)

Using Hölder’s inequality we have that for any v ∈W 1,p(·)(Ω, w) with |||v|||1,p(·),Ω,w ≤ 1,∣∣〈J ′i(un)− J ′i(u), v〉
∣∣

=

∣∣∣∣∫
Ω
wi(x)

(∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

)
· ∂v
∂xi

dx

∣∣∣∣
≤ 2

∥∥∥∥w 1
p′(x)

i

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣ ∥∥∥∥
Lp
′(·)(Ω)

∥∥∥∥w 1
p(x)

i

∣∣∣∣ ∂v∂xi
∣∣∣∣ ∥∥∥∥

Lp(·)(Ω)

≤ 2

∥∥∥∥w 1
p′(x)

i

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2

∇un −
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣ ∥∥∥∥
Lp
′(·)(Ω)

.

Hence, ∥∥J ′i(un)− J ′i(u)
∥∥
W 1,p(·)(Ω,w)∗

≤ 2

∥∥∥∥w 1
p′(x)

i

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣ ∥∥∥∥
Lp
′(·)(Ω)

.
(4.8)

First, observe that ∫
Ω

∣∣∣∣w 1
p′(x)

i

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣ ∣∣∣∣p′(x)

dx

=

∫
Ω
wi(x)

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣p′(x)

dx.

It follows from (4.5) that

wi(x)

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣p′(x)

−→ 0 for a.e. x ∈ Ω,

and from (4.7) that

wi(x)

∣∣∣∣ ∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

∣∣∣∣p′(x)

≤ 2p
′(x)−1wi(x)

(∣∣∣∣∂un∂xi

∣∣∣∣p(x)

+

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x))

≤ 2(p′)+−1wi(x)

(∣∣∣∣∂un∂xi

∣∣∣∣p(x)

+

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x))

≤ 2(p′)++p+−1

(
wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+ h(x)

)
.
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Noting that 2(p′)++p+−1
(
wi| ∂u∂xi |

p(x)+h
)
∈ L1(Ω) and applying the dominated convergence theorem,

we obtain ∫
Ω

∣∣∣∣w 1
p′(x)

i

(∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

)∣∣∣∣p′(x)

dx→ 0 as n→∞.

Therefore, [9, Proposition 2.3] implies that∥∥∥∥w 1
p′(x)

i

(∣∣∣∣∂un∂xi

∣∣∣∣p(x)−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣p(x)−2 ∂u

∂xi

)∥∥∥∥
Lp
′(x)(Ω)

→ 0 as n→∞.

Combining this with (4.8), gives

‖J ′i(un)− J ′i(u)‖W 1,p(x)(Ω,w)∗ −→ 0 as n −→∞.

This completes the proof that J ′i : W
1,p(·)(Ω, w) −→ W 1,p(·)(Ω, w)∗ is continuous, and therefore

Ji ∈ C1(W 1,p(·)(Ω, w),R). Since J(u) =
∑N

i=0 Ji(u), J ∈ C1(W 1,p(·)(Ω, w),R).

Claim 2: H ∈ C1(W 1,p(·)(Ω, w),R) and for any u, v ∈W 1,p(·)(Ω, w) we have

〈H ′(u), v〉 =

∫
Ω
g(x, u)v dx.

Once again, by the mean value theorem, for u, v ∈W 1,p(·)(Ω, w) and t ∈ R \ {0}, we have

G(x, u(x) + tv(x))−G(x, u(x))

t
= v(x)g(x, u(x) + θv(x))

for some θ ∈ R with 0 < |θ| < |t|. Hence,

G(x, u(x) + tv(x))−G(x, u(x))

t
−→ v(x)g(x, u(x)) as t −→ 0 for a.e. x ∈ Ω. (4.9)

It follows from Theorem 2 that for |t| < 1 there exists ` = ‖u‖L∞(Ω) + ‖v‖L∞(Ω) > 0 such that∣∣∣∣G(x, u(x) + tv(x))−G(x, u(x))

t

∣∣∣∣ = |v(x)||g(x, u(x) + θv(x))|

≤ |v(x)| sup
|s|≤`
|g(x, s)|.

(4.10)

From Hölder’s inequality and (3.1) we obtain∫
Ω
v(x) sup

|s|≤`
|g(x, s)| dx ≤ 2‖v‖L∞(Ω)

∥∥∥∥sup
|s|≤`
|g(x, s)|

∥∥∥∥
L1(Ω)

.

Therefore, the dominated convergence theorem together with (4.9) and (4.10) implies that

lim
t→0

∫
Ω

G(x, u(x) + tv(x))−G(x, u(x))

t
dx =

∫
Ω
g(x, u(x))v(x) dx,

i.e., H is Gâteaux differentiable and

〈H ′(u), v〉 =

∫
Ω
g(x, u(x))v(x) dx.
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We now show that H ′ is continuous on W 1,p(·)(Ω, w). Let {un} be a sequence in W 1,p(·)(Ω, w)
such that un −→ u in W 1,p(·)(Ω, w) as n −→∞. Then, Theorem 2 implies that un −→ u in C0(Ω)
as n −→∞. So, up to a subsequence, we deduce that

un −→ u a.e. in Ω as n −→∞, (4.11)

for every n ∈ N there exists k > 0 with ‖un‖L∞(Ω) ≤ k. (4.12)

We obtain that for any v ∈W 1,p(·)(Ω, w) with |||u|||1,p(·),Ω,w ≤ 1,

|〈H ′(un)−H ′(u), v〉| ≤
∫

Ω
|g(x, un(x))− g(x, u(x))||v(x)|dx (4.13)

Therefore,

|g(x, un(x))− g(x, u(x))| ≤ 2
[
|g(x, un)|+ |g(x, u)|

]
≤ 2

[
sup
|s|≤k
|g(x, s)|+ sup

|s|≤k
|g(x, s)|

]
≤ 4 sup

|s|≤k
|g(x, s)|.

By (4.13) we have

|〈H ′(un)−H ′(u), v〉| ≤ 4

∫
Ω

sup
|s|≤k
|g(x, s)||v(x)|dx.

Note that sup|s|≤k |g(x, s)| ∈ L1(Ω). Applying the dominated convergence theorem with (4.11), we
obtain

lim
n→∞

∫
Ω
|g(x, un(x))− g(x, u(x))||v(x)| dx = 0.

Hence, from (4.13) it follows that

lim
n→∞

‖H ′(un)−H ′(u)‖W 1,p(x)(Ω,w)∗ = 0.

This completes the proof that H ′ : W 1,p(·)(Ω, w) −→ W 1,p(·)(Ω, w)∗ is continuous, and therefore
H ∈ C1(W 1,p(·)(Ω, w),R).

In the same way (as in the case of the mapping H) we can show that Φ ∈ C1(W 1,p(·)(Ω, w),R),
and since Ψ = J −H , the proof is complete. �

Lemma 3 Assume that (V1), (V2) and (3.1) hold. Then, Ψ,Φ are sequentially weakly lower
semicontinuous.

Proof. Suppose that Ji, where i = 0, . . . , N , and H are as in (4.1)–(4.2).

Claim 1: Let {un} be a sequence weakly convergent to u in W 1,p(·)(Ω, w). Since Ji is convex, for
any n we have

Ji(u) ≤ Ji(un) + 〈J ′i(u), u− un〉.

Passing to the limit in the above inequality with n→∞, we see that Ji is sequentially weakly lower
semicontinuous.
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Claim 2: H is sequentially weakly continuous. Suppose thatG is as in (3.2). Let {un} be a sequence
in W 1,p(·)(Ω, w) such that un −→ u (weakly) in W 1,p(·)(Ω, w). By Theorem 2 we have un −→ u
in C0(Ω). Hence, up to a subsequence, we have

un(x) −→ u(x) a.e. in Ω,

for every n ∈ N there exists k > 0 with ‖un‖L∞(Ω) ≤ k.

Therefore, G(x, un(x)) −→ G(x, u(x)) a.e. in Ω and |G(x, un(x))| ≤ k sup|s|≤k |g(x, s)|. Note
that sup|s|≤k |g(x, s)| ∈ L1(Ω) by (3.1). Thus, the dominated convergence theorem implies that
limn→∞H(un) = H(u). So, the functional H is sequentially weakly continuous on W 1,p(·)(Ω, w),
and hence H is sequentially weakly lower semicontinuous. In the same way as for H , we prove that
Ψ = J −H is sequentially weakly lower semicontinuous, which completes the proof. �

Step 2: Now, we prove the coercivity of Ψ.

Proposition 2 Assume that G(x, t) satisfies (G1) or (G2). Then, the functional Ψ is coercive, i.e.,
Ψ(u) −→ +∞ as |||u|||1,p(·),Ω,w −→∞ for u ∈W 1,p(·)(Ω, w).

Proof. Let us assume that the condition (G1) is satisfied. Then,

G(x, t) ≤ (1− ε)β(x)

p+Cp
−

0 ‖β‖L1(Ω)

|t|p− + θ1(x) a.e. in Ω for any |t| ≥M.

When |||u|||1,p(·),Ω,w ≥ 1, using (2.5) and [13, Proposition 2.3], we obtain

Ψ(u) = J(u)−
∫

Ω
G(x, u) dx

=

∫
Ω

1

p(x)

(
N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+ w0(x)|u|p(x)

)
dx−

∫
Ω
G(x, u) dx

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w −
(1− ε)

p+Cp
−

0 ‖β‖L1(Ω)

∫
Ω
β|u|p− dx−

∫
Ω
θ1(x) dx

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w −
(1− ε)
p+Cp

−

0

‖u‖p
−

L∞(Ω) − c1

≥ 1

p+
|||u|||p

−

1,p(·),Ω,w −
(1− ε)
p+

|||u|||p
−

1,p(·),Ω,w − c1

≥ ε

p+
|||u|||p

−

1,p(·),Ω,w − c1.

(4.14)

Under the condition (G2) we have

G(x, t) ≤ (1− ε)w0(x)

p(x)
|t|p(x) + θ

′
1(x) a.e. in Ω for any |t| ≥M .
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When |||u|||1,p(·),Ω,w ≥ 1, we obtain

Ψ(u) = J(u)−
∫

Ω
G(x, u) dx

=

∫
Ω

1

p(x)

(
w0(x)|u|p(x) +

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

)
dx−

∫
Ω
G(x, u) dx

=

∫
Ω

1

p(x)

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx+

∫
Ω

1

p(x)
w0(x)|u|p(x) dx

−
∫

Ω

(
(1− ε)w0(x)

p(x)
|u|p(x) + θ

′
1(x)

)
dx

≥
∫

Ω

1

p(x)

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx+

∫
Ω

εw0(x)

p(x)
|u|p(x) dx− c2

≥ ε

p+

(∫
Ω

N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

dx+

∫
Ω
w0(x)|u|p(x) dx

)
− c2

≥ ε

p+
|||u|||p

−

1,p(·),Ω,w − c2.

(4.15)

Thanks to (4.14)–(4.15) we conclude that Ψ is coercive. Moreover, there exist two positive constants
d0 and σ0 such that

Ψ(u) ≥ d0|||u|||p
−

1,p(·),Ω,w for |||u|||1,p(·),Ω,w ≥ σ0. (4.16)

This ends the proof. �

Step 3: Now, let us move to proving some a priori estimates. For r > infW 1,p(·)(Ω,w) Ψ we define

K(r) = inf
{
σ > 0 : Ψ−1(]−∞, r[) ⊂ BW 1,p(·)(Ω,w)(0, σ)

}
, (4.17)

where
BW 1,p(·)(Ω,w)(0, σ) =

{
u ∈W 1,p(·)(Ω, w) : |||u|||1,p(·),Ω,w < σ

}
,

and BW 1,p(·)(Ω,w)(0, σ) denotes the closure of BW 1,p(·)(Ω,w)(0, σ) in W 1,p(·)(Ω, w) with respect to
the norm topology.

We know that Ψ is coercive. So, 0 < K(r) < +∞ for each r > infW 1,p(·)(Ω,w) Ψ. In view
of (4.16), we deduce that

if Ψ(u) < d0|||u|||p
−

1,p(·),Ω,w, then |||u|||1,p(·),Ω,w < σ0.

Thanks to (4.17) we have Ψ−1(] −∞, r[) ⊂ BW 1,p(·)(Ω,w)(0,K(r)), and so (Ψ−1(]−∞, r[)) ⊂
BW 1,p(·)(Ω,w)(0,K(r)). Using (2.5), we get ‖u‖L∞(Ω) ≤ C0|||u|||1,p(·),Ω,w. Then,

BW 1,p(·)(Ω,w)(0,K(r)) ⊂
{
u ∈ C(Ω) : ‖u‖L∞(Ω) ≤ C0K(r)

}
.

It follows that

inf
v∈(Ψ−1(]−∞,r[))

Φ(v) ≥ inf
|||v|||1,p(·),Ω,w≤K(r)

Φ(v) ≥ inf
‖v‖L∞(Ω)≤C0K(r)

Φ(v). (4.18)

By taking u0 and un as constant value functions ξ0 and ξn in Theorem 1 and using (4.18), we
conclude the following Theorem 5, which relies on Theorem 1.
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Theorem 5 Let the conditions (V1) and (V2) be satisfied. Suppose that Ψ and Φ are as in (3.4), Φ
is coercive, and K(r) is as in (4.17).

(a) If there exist ρ0 > infW 1,p(·)(Ω,w) Ψ and ξ0 ∈ R such that∫
Ω

w0(x)

p(x)
|ξ0|p(x) dx−

∫
Ω
G(x, ξ0) dx := e0 < ρ0 (4.19)

and ∫
Ω
F (x, ξ0) dx+ (ξ0 − e0) > sup

v∈C(Ω), ‖v‖L∞(Ω)≤C0K(ρ0)

∫
Ω
F (x, v(x)) dx, (4.20)

then the restriction of Ψ + Φ to Ψ−1(]−∞, ρ0[) has a global minimum.

(b) If there exist a sequence {rn} ⊂
(
infW 1,p(·)(Ω,w) Ψ,+∞

)
with limn→∞ rn → +∞ and a

sequence {ξn} ⊂ R such that for each n we have∫
Ω

w0(x)

p(x)
|ξn|p(x) dx−

∫
Ω
G(x, ξn) dx := en < rn (4.21)

and ∫
Ω
F (x, ξn) dx+ (rn − en) > sup

v∈C(Ω), ‖v‖L∞(Ω)≤C0K(rn)

∫
Ω
F (x, v(x)) dx, (4.22)

and, in addition, (3.6) holds, then there exists a sequence {vn} of local minima of Ψ + Φ such
that limn→∞Ψ(vn)→ +∞.

(c) If there exists a sequence {rn} ⊂
(
infW 1,p(·)(Ω,w) Ψ,+∞

)
with limn→∞ rn =

infu∈W 1,p(·)(Ω,w) Ψ(u) and a sequence {ξn} ⊂ R such that for each n the conditions (4.21)
and (4.22) are satisfied, and in addition, the condition (1.11) is satisfied, then there exists
a sequence {vn} of pairwise distinct local minima of Ψ + Φ such that limn→∞Ψ(vn) =
infu∈W 1,p(·)(Ω,w) Ψ(u) (i.e., the sequence {vn} converges weakly to the global minimizer of
Ψ).

Proof. Using (4.19), if there exist ρ0 > infu∈W 1,p(·)(Ω,w) Ψ(u) and ξ0 ∈ R such that∫
Ω

w0(x)

p(x)
|ξ0|p(x) dx−

∫
Ω
G(x, ξ0) dx := e0 < ρ0,

then Ψ(ξ0) < ρ0, and therefore (1.6) holds. Thanks to (4.20) we have∫
Ω
F (x, ξ0) dx+ (ρ0 − e0) > sup

v∈C(Ω), ‖v‖L∞(Ω)≤C0K(ρ0)

∫
Ω
F (x, v) dx.

Then,

ρ0 −Ψ(ξ0) > −
∫

Ω
F (x, ξ0) dx+ sup

v∈C(Ω), ‖v‖L∞(Ω)≤C0K(ρ0)

−Φ(v).

Thanks to (4.18) we get

ρ0 −Ψ(ξ0) > Φ(ξ0)− inf
v∈Ψ−1(]−∞,ρ0[)

Φ(v).
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Therefore, the hypotheses (1.6) and (1.7) of Theorem 1 (a) are satisfied. Then, the restriction of
Ψ + Φ to Ψ−1(]−∞, ρ0[) has a global minimum. Assuming that the hypotheses of Theorem 1 (b)
and Theorem 1 (c) are satisfied, using the same approach we can conclude the proof Theorem 5. �

For the condition (4.20) in Theorem 5 (a), we give the following proposition.

Proposition 3 Assume that ρ0 > infW 1,p(·)(Ω,w) Ψ, ξ0 ∈ R and (4.19) holds. If there exists a
positive function α ∈ L1(Ω) with ‖α‖L1(Ω) 6= 0 such that

F (x, ξ0) +
α(x)

‖α‖L1(Ω)
(ρ0 − e0) > sup

|t|≤C0K(ρ0)
F (x, t) for a.e. x ∈ Ω, (4.23)

and the inequality (4.23) is strict on a subset of Ω with positive measure, then (4.20) holds.

Proof. Integrating (4.23) over Ω and noting that∫
Ω

sup
|t|≤C0K(ρ0)

F (x, t) dx ≥ sup
v∈C(Ω),‖v‖L∞(Ω)≤C0K(ρ0)

∫
Ω
F (x, v(x)) dx,

we obtain (4.20). �

Proposition 4 Assume that Ψ is coercive and (4.16) holds. For r ≥ d0 σ
p−

0 we have

K(r) ≤
( r
d0

) 1
p− . (4.24)

Proof. Let r ≥ d0σ
p−

0 and u ∈ W 1,p(·)(Ω, w) be such that Ψ(u) < r. When |||u|||1,p(·),Ω,w ≥ σ0,
by (4.16), one has

r > Ψ(u) ≥ d0|||u|||p
−

1,p(·),Ω,w,

which implies that |||u|||1,p(·),Ω,w ≤
(
r
d0

) 1
p− . When |||u|||1,p(·),Ω,w < σ0, it is clear that

|||u|||1,p(·),Ω,w ≤
(
r
d0

) 1
p− . Using the definition of K(r), we conclude (4.24). �

Step 4: Finally, we provide a proof of the statements (4.21) and (4.22). We set rn = d0

(
bn
C0

)p− .
Then, limn→∞ rn → +∞, and thanks to (4.24) we obtain

K(rn) ≤ bn
C0

, whence C0K(rn) ≤ bn. (4.25)

Since F satisfies the condition (S), for each n there exists ξn ∈ [−an, an] such that

F (x, ξn) = sup
t∈[−an,an]

F (x, t) for a.e. x ∈ Ω. (4.26)

By (3.7), one has

en =

∫
Ω

w0(x)

p(x)
|ξn|p(x) dx−

∫
Ω
G(x, ξn) dx ≤ d1|ξn|p

+
+ d2 ≤ d1|an|p

+
+ d2.
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It follows from (3.8) that for n sufficiently large,

d1|an|p
+

+ d2 < d0

( bn
C0

)p−
= rn,

and consequently en < rn, that is, (4.21) holds. Without loss of generality, we may assume that for
all n (4.21) holds. By combining (3.9)–(3.10) and (4.26), we obtain

F (x, ξn) +
h(x)

‖h‖L1(Ω)
(rn − en) ≥ sup

|t|≤bn
F (x, t) for a.e. x ∈ Ω, (4.27)

and the inequality (4.27) is strict on a subset of Ω with positive measure. Using (4.25) and Proposi-
tion 3, we obtain (4.22).

Therefore, all hypotheses of Theorem 5 (b) are satisfied, and the proof of the Theorem 3 is
concluded. �

Now, let us move on to the proof of Theorem 4.

Proof of Theorem 4. Let us verify all the hypotheses of Theorem 5 (c). Using (3.11), for
|||u|||1,p(·),Ω,w ≤ 1 we have

Ψ(u) = J(u)−
∫

Ω
G(x, u) dx

=

∫
Ω

1

p(x)

(
N∑
i=1

wi(x)

∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)

+ w0(x)|u|p(x)

)
dx

≥ 1

p+
|||u|||p

+

1,p(·),Ω,w.

Then, Ψ is coercive, infW 1,p(·)(Ω,w) Ψ = Ψ(0) = 0 and 0 is the unique global minimizer of Ψ.
Thanks to (3.13) we have

lim sup
|ξ|→0

{
Ψ(ξ) + Φ(ξ)

}
= lim sup

|ξ|→0

{∫
Ω

w0(x)

p(x)
|ξ|p(x) dx−

∫
Ω
G(x, ξ) dx−

∫
Ω
F (x, ξ) dx

}

≤ lim sup
|ξ|→0

{∫
Ω

w0(x)

p(x)
|ξ|p− dx−

∫
Ω
G(x, ξ) dx−

∫
Ω
F (x, ξ) dx

}
< 0,

that is, 0 is not a local minimizer of Ψ + Φ; so (1.11) is satisfied.

For r > 0 sufficiently small, the condition Ψ(u) < r implies that |||u|||1,p(·),Ω,w < (p+r)
1
p+ ,

which shows that K(r) ≤ (p+r)
1
p+ . Now put rn = 1

p+

(
bn
C0

)p+ . Then, C0K(rn) ≤ bn. By (3.12),
there exists a sequence {ξn} ⊂ R with ξn ∈ [−an, an] such that for |ξn| sufficiently small,

en =

∫
Ω

w0(x)

p(x)
|ξn|p(x) dx−

∫
Ω
G(x, ξn) dx

≤
(∫

Ω

w0(x)

p(x)
dx+M |Ω|

)
|ξn|p

−

= d3|ξn|p
−

= d3|an|p
−
.

(4.28)
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It follows from (3.14) that for n large enough,

d3|an|p
−
<

1

p+

( bn
C0

)p+

= rn,

and consequently en < rn, that is, (4.21) holds. Noting that F satisfies the condition (S), thanks to
(3.15)–(3.16) and (4.26), we obtain

F (x, ξn) +
h(x)

‖h‖L1(Ω)
(rn − en) ≥ sup

|t|≤bn
F (x, t) a.e. in Ω, (4.29)

and the inequality (4.29) is strict on a subset of Ω with positive measure. By Proposition 3 and
(4.29), we get (4.22). Therefore, all hypotheses of Theorem 5(c) are satisfied. Consequently, there
exists a sequence {vn} of pairwise distinct local minima of Ψ + Φ such that Ψ(vn) → 0. Thus,
|||u|||1,p(·),Ω,w −→ 0, which completes our proof. �
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