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Abstract. This paper is devoted to studying the decay rates of solutions to the nonlinear parabolic
equations

ut + (−1)m
∑

|α|=|β|=m

aαβD
α+βu = ∇µ.

(
u
(
ϕ(∇νNt+1) ∗ u

))
, (0.1)

where u(0) = u0 ∈ L1(Rn), n > 2m, µ ∈ N∗ and ν ∈ N with max(µ, ν) ≤ m − 1. The symbol
∗ stands for the convolution operator in the space variable and the higher order nabla differential
operator ∇θ denotes the vector

(
Dγ
)
|γ|=θ with γ = (γ1, · · · , γn) ∈ Nn. The vectorial function ϕ

represents a nonlinearity term such that |ϕ(X)| ≤ C|X|M for some real M > (2m− µ)/(n+ ν)
and Nt : (x, t) 7−→ N (x, t) stands for the heat kernel related to the homogeneous operator with
positive constant coefficients aαβ .
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1 Preliminaries

The aim of this paper is to study the existence, the Lp-decay and the large time behaviour of solutions
to the problem (0.1), where the real function u : (x, t) 7−→ u(x, t) is defined on Rn × (0,∞). The
nonlinear function ϕ : Rτ −→ Rη, where τ =

(
ν+n−1

ν

)
= (ν+n−1)!

ν!(n−1)! , η =
(
µ+n−1

µ

)
= (µ+n−1)!

µ!(n−1)!
and max(µ, ν) ≤ m − 1, is such that |ϕ(X)| ≤ C|X|M for a non-negative real M satisfying
M > 2m−µ

n+ν . The function Nt : (x, t) 7−→ N (x, t) stands for the distributional kernel of the semi-
group e−tL0 associated with the homogeneous operator L0 = (−1)m

∑
|α|=|β|=m aαβD

α+β of order
2m (m ≥ 1), where the constant coefficients aαβ are assumed to be real.

We mention that the following notations will be used throughout this paper. All the computations
will be done on Rn × (0,∞) with n > 2m. The differential operator Dγ stands for Dγ

x =
∂γ1

∂x
γ1
1

∂γ2

∂x
γ2
2

· · · ∂γn
∂xγnn

with x = (x1, x2, · · · , xn) ∈ Rn and the inner product∇θ. ~F denotes the higher

divergence of the vectorial field ~F , where ∇θ = (Dγ)|γ|=θ stands for the higher nabla differential
operator.

We recall that in [2] we studied the class of elliptic operators L0, where the coefficients
aαβ were complex and satisfied the weak ellipticity condition: there exists δ > 0 such that
Re
∑
|α|=|β|=m aαβξ

βξα ≥ δ|ξ|2m for all ξ ∈ Rn, which is equivalent to Gårding’s inequality
(see [1, 11]). In particular, it was shown that there exists a constant C > 0 such that for all t > 0 the
heat kernel Nt satisfies the following Gaussian decay

|DγNt(x)| ≤ C t−(n+|γ|)/2m e−α
(
|x|2m
t

)1/(2m−1)

,

valid for some α > 0 and for all multi-indices γ = (γ1, γ2, · · · , γn) ∈ Nn such that |γ| =
γ1 + γ2 + · · · + γn ≤ m − 1. This corresponds to the following Lp-estimate for the higher order
derivatives

||DγNt||p ≤ C t−
n
2m

(1−1/p)−|γ|/2m (1.1)

for all p ∈ [1,∞] and all |γ| ≤ m − 1. Using the estimate (1.1), it was shown in [14] that the
fundamental solution of the heat equation satisfies∥∥∥∥(DγN (t) ∗ u0)−

(∫
Rn
u0 dx

)
DγN (t)

∥∥∥∥
p

≤ C t−
n
2m

(1− 1
p
)− |γ|+1

2m . (1.2)

Our work is motivated by the well-known second order diffusive aggregation equations of the
form ut = ∆u−∇.(u(∇W ∗ u)) modelling the Brownian diffusion of particles interacting with a
pairwise potential W (see for example [4, 5, 6, 7, 9, 13, 15] and the references therein). The class
of equations studied in this work could be considered, in some sense, as generalized aggregation
equations of higher order, where the interaction potential is replaced by a nonlinear term with suitable
power growth and depending on the heat kernel associated to the linear part.

Before stating our main results, let us dwell on some recent literature about this kind of equations.
In [13], Karch and Suzuki studied the impact of singularities of the term∇W on the solutions. They
also presented the conditions ensuring the local existence, the global existence, and the blow-up in
finite time of solutions to the problem. In [7], Cañizo, Carrillo and Schonbek established the local-
in-time existence of mild Lp-solutions. Precisely, assuming that 1 ≤ p, q ≤ ∞ (with p+ q = pq),
k ≥ 0, u0 in W k,p(Rn) and the interaction potential W is such that∇W ∈ (Lq)n, they proved the
existence of maximal time 0 < T ≤ ∞ and the blow-up at T (with T <∞) of the unique solution
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u ∈ C
(
[0, T ),W k,p(Rn)

)
to the equation. We recall that for 1 ≤ p ≤ ∞ and k ∈ N the Sobolev

space W k,p(Rn) = {u ∈ Lp(Rn) : Dγu ∈ Lp(Rn) for all γ ∈ Nn such that |γ| ≤ k} is a Banach
space equipped with the norm ||.||k,p =

(∑
|γ|≤k ||Dγ .||pp

)1/p.
We make use of the following fixed point theorem for bilinear forms (see [8]) to show the

existence and the uniqueness of solutions to the problem at hand.

Lemma 1 Let
(
E, ‖.‖E

)
be a Banach space and let F : E × E −→ E be a bilinear form such

that ‖F(u1, u2)‖E ≤ β‖u1‖E‖u2‖E for any (u1, u2) ∈ E × E. Then, for any v ∈ E such that
‖v‖E < 1

4β, the equation u = v+F(u, u) admits a unique solution u inE satisfying ‖u‖E < 2‖v‖E .

In the same paper [8], the author proved the existence of a unique global mild solution u in
C
(
[0,∞), Lp

)
(respectively, C

(
[0,∞),W k,2

)
) under the hypotheses u0 ≥ 0, u0 ∈ L1 ∩ Lp and

∇W ∈
(
Lq ∩L∞

)n (respectively, u0 ∈W k,2∩L1∩L∞ for some k ≥ 1, and∇W ∈
(
L1∩L∞

)n).
This global solution satisfies the following Lp-bounds:

||u(t)||p ≤ C(1 + t)−
n
2
(1−1/p),

when n < 2k, p ≥ 2, u0 ∈W k+1,2 ∩ L1 ∩ L∞, and the W k,2-decay

||Dγu(t)||2 ≤ C(1 + t)−(n+2m)/4,

when k ≥ 1, |γ| = k and u0 ∈W k,2 ∩L1 ∩L∞. The initial data u0 is considered to be non-negative
and the interaction potential W is such that ∇W ∈

(
L1 ∩ L∞

)n. Also, the following asymptotic
behaviour towards the heat kernel G,

∥∥u(t)− ||u0||1G(t)
∥∥
1
≤ C

{
log(t)/

√
t, if n = 1,

1/
√
t, if n ≥ 2,

for all t ≥ 1, was established for the global solution.

Now, let us turn to the goal of this paper. The first part of our work is concerned with the local-in-
time existence and uniqueness of the mild solution to the initial value problem (0.1). More precisely,
under the condition u0 ∈ Lp(Rn), we show that the unique solution is in C

(
(0,∞),W k,p(Rn)

)
for

all 0 ≤ k ≤ m− 1. The proof of this result is an adaptation of the argument used, for example, in
[7] or [13], which essentially relies on Lemma 1: consider the equation

u(t) = Nt ∗ u0 +

∫ t

0
e−(t−s)L0

(
∇µ.

(
u
(
ϕ(∇νNs+1) ∗ u

)))
(s) ds︸ ︷︷ ︸

F(u,u)

(1.3)

in the Banach space of bounded continuous functions BC
(
[0, T ), W k,p(Rn)

)
and prove that the

bilinear form F satisfies the assumptions of Lemma 1. To achieve this goal, we need the following
useful generalized Hölder’s inequality, whose proof relies on the Leibniz formula,

‖Dγ(fg)‖r ≤ Ck‖f‖k,p‖g‖k,q, (1.4)

valid for all |γ| ≤ k and all f ∈ W k,p(Rn), g ∈ W k,q(Rn) with 1/p + 1/q = 1/r, and the
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generalized Young’s inequality

||f ∗ g||k,r ≤ ||f ||q||g||k,p, (1.5)

valid for all f ∈ Lq(Rn), g ∈ W k,p(Rn) with 1 ≤ p, q, r ≤ ∞ and 1/p+ 1/q = 1 + 1/r. Also, a
classical argument based on integration with respect to x and the Fourier transform allows to show
that the unique solution to (0.1) satisfies for all t ≥ 0 the conservation of mass

∫
Rn u(x, t) dx =∫

Rn u0(x) dx and the contraction property

||u(t)||1 ≤ ||u0||1. (1.6)

The second part of our work is devoted to proving the Lp-decay of the solution to (0.1) and its
higher order space derivatives by using the Duhamel formula. In precise terms, by combining the
Gaussian upper bounds for the heat kernel with the growth condition of the nonlinear term, we prove
(for some range of p and under some conditions on the parameters µ, ν) that the following Lp-bounds
hold ‖u(t)‖p ≤ C‖u0‖1 t−

n
2m

(1− 1
p
)

‖Dγu(t)‖p ≤ C t−
n
2m

(1− 1
p
)− |γ|

2m

for all γ ∈ Nn such that µ+ |γ| ≤ m− 1. The approach used to show these results relies on some
technical tools, including a classical Gronwall’s lemma stated as follows.

Lemma 2 (Gronwall) Let A > 0 and let f and g be two positive continuous functions on [0, T ]
such that f(t) ≤ A +

∫ t
0 g(s)f(s) ds for all t ∈ [0, T ]. Then, f(t) ≤ A exp

(∫ t
0 g(s) ds

)
for all

t ∈ [0, T ].

Lastly, we investigate the large time behaviour of the solution to the problem (0.1). We prove
that the asymptotic behaviour is dictated by the heat kernel as follows

‖Dγu(t)−M0D
γN (t)‖p ≤ C t−

n
2m

(1− 1
p
)− |γ|+1

2m .

This result is proved for u0 in the weighted space L1
(
Rn, 1 + |x|

)
= {f ∈ L1(Rn) :

∫
Rn(1 +

|x|)|f(x)|dx < ∞} which is dense in L1(Rn). It is worth mentioning that the following well-
known technical lemma (see for example [3]) is needed to handle the second term on the right-hand
side of (1.3).

Lemma 3 Let a, b and c be real numbers such that a < 1, b > 0, c < 1. Then, there exists a
constant C > 0 such that

∫ t

0
(t− s)−a (1 + s)−b s−c ds ≤ C


t−a, if b+ c > 1, (i)
t−a ln(1 + t), if b+ c = 1, (ii)
t1−a−c (1 + t)−b, if b+ c < 1. (iii)
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2 Short time existence

Before stating the main result, let us give the definition of a solution to the Cauchy problem (0.1)
adopted in this paper.

Definition 1 Let T ∈ (0,+∞] and u0 ∈ Lp(Rn) with 1 ≤ p ≤ ∞. By a solution u to the
equation (0.1) we mean a mild Lp-solution on [0, T ), i.e., u ∈ L1

loc

(
[0, T ), Lp(Rn)

)
satisfies the

Duhamel integral formula

u(t) = e−tL0u0 +

∫ t

0
e−(t−s)L0

(
∇µ.

(
u
(
ϕ(∇νNs+1) ∗ u

)))
(s) ds (2.1)

for all t ∈ (0, T ).

Theorem 1 Let p ∈ [1,∞] and u0 ∈ W k,p(Rn) with 0 ≤ k ≤ m− 1. Then, there exists a unique
solution u ∈ C

(
[0, T ),W k,p(Rn)

)
to the problem (0.1).

Proof. Let T > 0 and 0 ≤ k ≤ m−1. On the Banach spaceE := BC
(
[0, T ), W k,p(Rn)

)
endowed

with the norm |||w|||k,p = supt∈[0,T ) ‖w(t)‖k,p, we define the following bilinear form

F(u, ψ) = (−1)µ
∫ t

0

(
∇µN (t− s) ∗

(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ ψ(s)

)))
ds

for t ∈ [0, T ).

For all t ∈ [0, T ) and all multi-indices γ ∈ Nn such that |γ| ≤ k, by Young’s inequality, thanks
to (1.1) and Hölder’s property (1.4), we have∥∥DγF(u, ψ)

∥∥
p
≤
∫ t

0

∥∥∥∇µN (t− s) ∗
(
Dγ
(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ ψ(s)

)))∥∥∥
p

ds

≤
∫ t

0

∥∥∇µN (t− s)
∥∥
1

∥∥∥Dγ
(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ ψ(s)

))∥∥∥
p

ds

≤ C
∫ t

0
(t− s)−

µ
2m ‖u(s)‖k,p ‖ϕ(∇νN (s+ 1)) ∗ ψ(s)‖k,∞︸ ︷︷ ︸

ξ(s)

ds.

Also, by Young’s inequality (1.5), for all q such that p+ q = pq we obtain

ξ(s) ≤ ‖ϕ(∇νN (s+ 1))‖q ‖ψ(s)‖k,p
≤ C

∥∥∇νN (s+ 1)
∥∥M
qM
‖ψ(s)‖k,p

≤ C (s+ 1)
− 1

2mq
(q(n+ν)M−n) ‖ψ(s)‖k,p.

It follows from these estimates that∥∥DγF(u, ψ)
∥∥
p
≤ C

∫ t

0
(t− s)−

µ
2m (s+ 1)

− 1
2mq

(q(n+ν)M−n) ‖u(s)‖k,p ‖ψ(s)‖k,p ds

≤ C
∫ t

0
(t− s)−

µ
2m (s+ 1)

−(1− n
2mq
− µ

2m
) ‖u(s)‖k,p ‖ψ(s)‖k,p ds.

Then, by taking the supremum for t ∈ [0, T ), we obtain

|||DγF(u, ψ)|||k,p ≤ C Tn/2mq |||u(s)|||k,p |||ψ(s)|||k,p.

To conclude the proof it remains to use Lemma 1 with β = C Tn/2mq. �
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3 Lp-decay of solutions

The following result is concerned with the Lp-decay of the solution to the initial value problem (0.1).

Theorem 2 For all p such that n
n−µ < p < n

n−2m , there exists a constant C > 0 such that for all
t > 0 the solution u of (0.1) satisfies

‖u(t)‖p ≤ C‖u0‖1 t−
n
2m

(1− 1
p
)
.

Proof. From the Duhamel formula (2.1), we derive the following estimate

‖u(t)‖p ≤ ‖Nt ∗ u0‖p +

∫ t

0

∥∥∇µN (t− s) ∗
(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ u(s)

))∥∥
p

ds︸ ︷︷ ︸
X (t)

.

According to the contraction property (1.6), the Lp-estimates on the kernel (1.1), Young’s and
Hölder’s inequalities, we obtain

‖Nt ∗ u0‖p ≤ ‖Nt‖p‖u0‖1 ≤ C‖u0‖1 t−
n
2m

(1− 1
p
)

and

X (t) ≤
∫ t

0

∥∥∇µN (t− s)
∥∥
1

∥∥u(s)
(
ϕ(∇νNs+1) ∗ u

)
(s)
∥∥
p

ds

≤ C
∫ t

0
(t− s)−

µ
2m

∥∥(ϕ(∇νNs+1) ∗ u
)
(s)
∥∥
∞‖u(s)‖p ds

≤ C
∫ t

0
(t− s)−

µ
2m ‖ϕ(∇νN (s+ 1))‖∞‖u(s)‖1‖u(s)‖p ds

≤ C
∫ t

0
(t− s)−

µ
2m ‖∇νN (s+ 1)‖M∞ ‖u(s)‖1 ‖u(s)‖p ds

≤ C‖u0‖1
∫ t

0
(t− s)−

µ
2m (s+ 1)−

(n+ν)M
2m ‖u(s)‖p ds,

where C is a generic constant which may change its value in the sequel. These estimates yield

‖u(t)‖p ≤ C‖u0‖1
(
t
− n

2m
(1− 1

p
)

+

∫ t

0
(t− s)−

µ
2m (s+ 1)−

(n+ν)M
2m ‖u(s)‖p ds

)
,

whereupon

h(t) ≤ C0 + C0 t
κ

∫ t

0
(t− s)−

µ
2m (s+ 1)−τ s−κh(s) ds︸ ︷︷ ︸

Z(t)

, (3.1)

where

τ =
(n+ ν)M

2m
, κ =

n

2m
(1− 1/p), h(t) = tκ‖u(t)‖p and C0 = C‖u0‖1.
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Write Z(t) =
∫ (1−ε)t
0 · · · +

∫ t
(1−ε)t · · · := Z1(t) + Z2(t) for ε > 0 small enough. Observe that

Z1(t) ≤ (εt)−µ/2m
∫ (1−ε)t

0
(s+ 1)−τ s−κh(s) ds

and for f(t) = sups∈[0,t] h(s), we obtain

Z2(t) ≤
(
(1− ε)t

)−κ
f(t)

∫ t

(1−ε)t
(t− s)−

µ
2m ds ≤ (1− ε)−κ(εT )1−µ/2m

1− µ/2m
f(t) t−κ.

It then follows from (3.1) that for all t ∈ (0, T ] we have

h(t) ≤ C0 + C1 f(t) + C0 ε
−µ/2m tκ−µ/2m

∫ (1−ε)t

0
(s+ 1)−τ s−κh(s) ds, (3.2)

where C1 = C0
(1−ε)−κ(εT )1−µ/2m

1−µ/2m . Notice that the conditions given on the parameters guarantee that
µ
2m < κ < 1. Now, by taking ε small enough to get 0 < C1 < ε0 < 1 and applying the supremum
for t ∈ (0, T ] on the right- and left-hand side of (3.2), we find the following inequality

f(T ) ≤ C0 + ε0 f(T ) + C0 ε
−µ/2m T κ−µ/2m

∫ (1−ε)T

0
(s+ 1)−τ s−κf(s) ds,

which for all T ∈ [0, T ] implies that

f(T ) ≤ C0

1− ε0
+
C0 ε

−µ/2m T κ−µ/2m

1− ε0

∫ T
0

(s+ 1)−τ s−κf(s) ds. (3.3)

Applying weakly singular Gronwall’s lemma (see Lemma 2) to (3.3), yields

f(T ) ≤ A exp

(
B

∫ T
0

(s+ 1)−τ s−κ ds

)
with A = C0

1−ε0 and B = C0 ε−µ/2m T κ−µ/2m
1−ε0 . Consequently, for all t ∈ [0, T ],

‖u(t)‖p ≤ C t−
n
2m

(1− 1
p
)
,

where C = A exp
(
B
∫ T
0 (s+ 1)−τ s−κ ds

)
. �

Comments 1 (1) For the constant C we have the following estimates

C ≤ A


ecB, if τ + κ > 1,

(1 + T )cB, if τ + κ = 1,

exp
(
cBT 1−κ(1 + T )−τ

)
, if τ + κ < 1.

(2) The second part of the proof of Theorem 2 allows to state the following technical result (non-
classical Gronwall’s lemma): Let K > 0, δ > 0, 0 ≤ λ < θ < 1 and let f be a positive
continuous function on [0, T ] such that for all t ∈ (0, T ],

f(t) ≤ K
(
t−θ +

∫ t

0
(t− s)−λ(s+ 1)−δf(s) ds

)
.

Then, there exists a constant C > 0 such that for all t ∈ (0, T ] we have

f(t) ≤ C K t−θ.

The arguments used are an adaptation of the ones employed in, for example, [10, 12].
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(3) If u0 ∈ L1(Rn) ∩ Lp(Rn), then we obtain the following Lp-decay:

‖u(t)‖p ≤ C ‖u0‖p exp
(
c‖u0‖1 t1−µ/2m

)
. (3.4)

Indeed, as before, ‖Nt ∗ u0‖p ≤ ‖Nt‖1‖u0‖p ≤ C‖u0‖p and

‖u(t)‖p ≤ C‖u0‖p + C‖u0‖1
∫ t

0
(t− s)−

µ
2m (s+ 1)−

(n+ν)M
2m ‖u(s)‖p ds

≤ C‖u0‖p + C‖u0‖1
∫ t

0
(t− s)−

µ
2m ‖u(s)‖p ds,

which implies (3.4) according to the following Gronwall’s lemma (see, for example, [7, 12]): Let
A, B and λ be real numbers such that A > 0, B > 0, 0 < λ < 1 and let f : [0, T ] → [0,∞)
(where T ∈ [0,∞]) be a continuous function satisfying f(t) ≤ A + B

∫ t
0 (t − s)−λ f(s) ds

for all t ∈ [0, T ). Then, there exists a constant C > 0 such that for all t ∈ [0, T ), we have
f(t) ≤ A exp(B t1−λ).

4 Large time behaviour

The main result of this section deals with the asymptotic behaviour of solutions to (0.1). We show
that the higher derivatives of solutions behave like the heat kernel in the following sense.

Theorem 3 Let γ ∈ Nn be such that µ+ |γ| ≤ m− 1. Then, for all n
n−µ < p < n

n−2m there exists
a constant C > 0 such that for all t > 0 we have

‖Dγu(t)‖p ≤ C t−
n
2m

(1− 1
p
)− |γ|

2m (4.1)

and
‖Dγu(t)−M0D

γN (t)‖p ≤ C t−
n
2m

(1− 1
p
)− |γ|

2m P(t), (4.2)

where M0 =
∫
Rn u0(x) dx and

P(t) =


t−1/2m, if M > 2m

n+ν ,

t−1/2m ln(1 + t), if M = 2m
n+ν ,

max
(
t−1/2m, t−

µ+(n+ν)M−2m
2m

)
, if 2m−µ

n+ν < M < 2m
n+ν .

Proof. We begin by giving the upper bounds for higher order derivatives. According to (2.1), for all
multi-indices γ ∈ Nn such that µ+ |γ| ≤ m− 1 we have

Dγu(t) = (DγNt ∗ u0) +

∫ t

0

(
DγN (t− s) ∗ ∇µ.

(
u(ϕ(∇νNs+1) ∗ u)

))
(s) ds.

Using (1.1), we obtain

‖Dγu(t)‖p ≤ ‖DγNt ∗ u0‖p +A(t)

≤ ‖DγNt‖p‖u0‖1 +A(t)

≤ C‖u0‖1 t−
n
2m

(1−1/p)−|γ|/2m +A(t),
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where

A(t) =

∫ t

0

∥∥∇µ(DγN (t− s)
)
∗
(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ u(s)

))∥∥
p

ds. (4.3)

One the other hand, the computations on A(t) yield

A(t) ≤
∫ t

0
‖∇µ

(
DγN (t− s)

)
‖p ‖u(s)

(
ϕ(∇νN (s+ 1)) ∗ u(s)

)
‖1 ds

≤
∫ t

0
‖∇µ

(
DγN (t− s)

)
‖p ‖u(s)‖p ‖ϕ(∇νN (s+ 1))‖q ‖u(s)‖1 ds

(where 1/p+ 1/q = 1)

≤ ‖u0‖1
∫ t

0
‖∇µ

(
DγN (t− s)

)
‖p ‖u(s)‖p ‖∇νN (s+ 1)‖MqM ds

≤ C ‖u0‖1
∫ t

0
(t− s)−

n
2m

(1− 1
p
)−µ+|γ|

2m s
− n

2m
(1− 1

p
)
(1 + s)

−(1− µ
2m
− n

2mq
)
ds

≤ C ‖u0‖1 t1−
n
mq
−µ+|γ|

2m (1 + t)
−(1− µ

2m
− n

2mq
) ≤ Ct−

n
2m

(1−1/p)−|γ|/2m

thanks to (iii) of Lemma 3.

To prove (4.2), we use an approach similar to the above one and a density argument. Suppose
that u0 ∈ L1

(
Rn, 1 + |x|

)
and let the multi-index γ be such that µ+ |γ| ≤ m− 1. Then, we have

Dγu(t)−M0D
γN (t) =

(
(DγN (t) ∗ u0)−M0D

γN (t)
)
+

+

∫ t

0

(
∇µ
(
DγN (t− s)

)
∗
(
u(s)

(
ϕ(∇νN (s+ 1)) ∗ u(s)

)))
ds;

so ∥∥Dγu(t)−M0D
γN (t)

∥∥
p
≤ A(t) + B(t),

where B(t) :=
∥∥(DγN (t) ∗ u0)−M0D

γN (t)
∥∥
p

and A(t) is given by (4.3).

First, for the fundamental solution of the heat equation, (1.2) implies

B(t) ≤ C t−
n
2m

(1− 1
p
)− |γ|

2m
− 1

2m .

As before, the estimates on the term A(t) yield

A(t) ≤ C ‖u0‖1
∫ t

0
(t− s)−(

n
2mq

+
µ+|γ|
2m

)
(1 + s)

−( (n+ν)M
2m

− n
2mq

)
s
− n

2mq ds

≤ C ‖u0‖1t−
n
2m

(1− 1
p
)− |γ|

2m


t−µ/2m, if M > 2m

n+ν ,

t−µ/2m ln(1 + t), if M = 2m
n+ν ,

t1−
µ+(n+ν)M

2m , if 2m−µ
n+ν < M < 2m

n+ν ,

thanks to Lemma 3. These bounds imply (4.2) for u0 ∈ L1
(
Rn, 1 + |x|

)
and Theorem 3 is then

completely proved by using the density of L1
(
Rn, 1 + |x|

)
in L1(Rn). �
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