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1 Introduction

Fractional differential equations have been applied in various areas of engineering, mathematics,
physics and bio-engineering, and other applied sciences [16, 27]. For some fundamental results
in the theory of fractional calculus and fractional differential equations we refer the reader to the
monographs of Abbas et al. [2, 3], Samko et al. [25], Kilbas et al. [19] and Zhou [30]. Recently,
considerable attention has been given to the existence of solutions of initial and boundary value
problems for fractional differential equations with Hilfer fractional derivative; see [16, 18].

The measure of weak noncompactness was introduced by De Blasi [11]. The strong measure
of noncompactness was developed by Banaś and Goebel [6] and used in many papers; see, for
example, Abbas et al. [1], Akhmerov et al. [4], Alvàrez [5], Benchohra et al. [9], Guo et al. [15],
and the references therein. In [9, 22] the authors considered some existence results by applying the
techniques of the measure of noncompactness. Recently, several researchers have obtained other
results applying the technique of measure of weak noncompactness; see [3, 7, 8] and the references
therein.

Differential equations with maxima arise naturally when solving practical problems. For example,
many problems in the control theory correspond to the maximal deviation of the regulated quantity.
The existence and uniqueness of solutions of differential equations with maxima is considered in
[12, 13, 14, 17, 23, 26, 28, 29] (see also the references therein). In this paper, we discuss the existence
of weak solutions for the following coupled system of Hilfer fractional differential equations

(
Dα1,β1

0 u
)
(t) = f1

(
t, max

0≤τ≤t
‖u(τ)‖, max

0≤τ≤t
‖v(τ)‖

)
,(

Dα2,β2
0 v

)
(t) = f2

(
t, max

0≤τ≤t
‖u(τ)‖, max

0≤τ≤t
‖v(τ)‖

)
, t ∈ I := [0, T ]

(1.1)

with the initial conditions

(I1−γ10 u)(t)|t=0 = φ1,

(I1−γ20 v)(t)|t=0 = φ2,
(1.2)

where T > 0, αi ∈ (0, 1), βi ∈ [0, 1], γi = αi + βi − αiβi, φi ∈ E, fi : I × [0,∞)× [0,∞)→ E,
i = 1, 2, are given functions, E is a real (or complex) Banach space with norm ‖ · ‖ and the dual
E∗ such that E is the dual of a weakly compactly generated Banach space X , I1−γi0 is the left-sided
mixed Riemann–Liouville integral of order 1− γi, and Dαi,βi

0 is the generalized Riemann–Liouville
derivative (Hilfer) operator of order αi and type βi, i = 1, 2.

To the best of our knowledge, no papers are devoted to the existence of weak solutions for
such class of problems. Thus, the present paper initiates the application of the measure of weak
noncompactness to this class of coupled systems.



HILFER–PETTIS FRACTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 13

2 Preliminaries

Let C be the Banach space of all continuous functions v from I into E with the supremum (uniform)
norm

‖v‖∞ := sup
t∈I
‖v(t)‖.

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. By Cγ(I) and
C1
γ(I), we denote the weighted spaces of continuous functions defined by

Cγ(I) = {w : (0, T ]→ E : t1−γw(t) ∈ C}

with the norm
‖w‖Cγ := sup

t∈I
‖t1−γw(t)‖,

and

C1
γ(I) =

{
w ∈ C :

dw
dt
∈ Cγ

}
with the norm

‖w‖C1
γ

:= ‖w‖∞ + ‖w′‖Cγ .

Also, by C := Cγ1 × Cγ2 we denote the product weighted space with the norm

‖(u, v)‖C = ‖u‖Cγ1 + ‖v‖Cγ2 .

Let (E,w) = (E, σ(E,E∗)) be the Banach space E with its weak topology.

Definition 1 A Banach spaceX is called weakly compactly generated (WCG, for short) if it contains
a weakly compact set whose linear span is dense in X .

Definition 2 A function h : E → E is said to be weakly-sequentially continuous if h takes each
weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any (un) in E with
un → u in (E,w) we have h(un)→ h(u) in (E,w)).

Definition 3 ([24]) The function u : I → E is said to be Pettis integrable on I if and only if there is
an element uJ ∈ E corresponding to each measurable J ⊂ I such that φ(uJ) =

∫
J φ(u(s)) ds for

all φ ∈ E∗, where the integral on the right-hand side is assumed to exist in the sense of Lebesgue (by
definition, uJ =

∫
J u(s) ds).

Let P (I, E) be the space of all E-valued Pettis integrable functions defined on I and let L1(I, E)
be the Banach space of all measurable functions u : I → E which are Bochner integrable. Define
the class P1(I, E) by

P1(I, E) = {u ∈ P (I, E) : ϕ(u) ∈ L1(I,R) for every ϕ ∈ E∗}.

The space P1(I, E) is normed by

‖u‖P1 = sup
ϕ∈E∗
‖ϕ‖E∗≤1

∫ T

0
|ϕ(u(x))|dλ(x),

where λ stands for the Lebesgue measure on I.
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The following result is due to Pettis (see [24, Theorem 3.4 and Corollary 3.41]).

Proposition 1 ([24]) If u ∈ P1(I, E) and h is a measurable and essentially bounded real-valued
function, then uh ∈ P1(I, E).

For all that follows, the symbol “
∫

” denotes the Pettis integral.

Now, we give some results and properties of fractional calculus.

Definition 4 ([2, 19, 25]) The left-sided mixed Riemann–Liouville integral of order r > 0 of a
function w ∈ L1(I, E) is defined by

(Ir0w)(t) =
1

Γ(r)

∫ t

0
(t− s)r−1w(s) ds for a.e. t ∈ I ,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−t dt, ξ > 0.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and

(Ir10 I
r2
0 w)(t) = (Ir1+r20 w)(t) for a.e. t ∈ I.

Definition 5 ([2, 19, 25]) The Riemann–Liouville fractional derivative of order r ∈ (0, 1] of a
function w ∈ L1(I, E) is defined by

(Dr
0w)(t) =

(
d
dt
I1−r0 w

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−rw(s) ds for a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then, the following expression leads to the left
inverse operator as follows:

(Dr
0I
r
0w)(t) = w(t) for all t ∈ (0, T ].

Moreover, if I1−r0 w ∈ C1
1−γ(I), then the following composition is proved in [25]:

(Ir0D
r
0w)(t) = w(t)− (I1−r0 w)(0+)

Γ(r)
tr−1 for all t ∈ (0, T ].

Definition 6 ([2, 19, 25]) The Caputo fractional derivative of order r ∈ (0, 1] of a function w ∈
L1(I, E) is defined by

(cDr
0w)(t) =

(
I1−r0

d
dt
w

)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
w(s) ds for a.e. t ∈ I.
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In [16], Hilfer studied applications of a generalized fractional operator having the Riemann–
Liouville and the Caputo derivatives as special cases (see also [18]).

Definition 7 (Hilfer derivative) Let α ∈ (0, 1), β ∈ [0, 1],w ∈ L1(I, E), I(1−α)(1−β)0 w ∈ AC(I).
The Hilfer fractional derivative of order α and type β of w is defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d
dt
I
(1−α)(1−β)
0 w

)
(t) for a.e. t ∈ I. (2.1)

We will list some properties of the Hilfer derivative. Let α ∈ (0, 1), β ∈ [0, 1], γ = α+ β−αβ,
and w ∈ L1(I, E).

1. The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d
dt
I1−γ0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)

(t) for a.e. t ∈ I.

Moreover, the parameter γ satisfies the following estimates: γ ∈ (0, 1], γ ≥ α, γ > β,
1− γ < 1− β(1− α).

2. The generalization (2.1) for β = 0 coincides with the Riemann–Liouville derivative and for
β = 1 with the Caputo derivative, that is,

Dα,0
0 = Dα

0 and Dα,1
0 = cDα

0 .

3. If Dβ(1−α)
0 w exists and is in L1(I, E), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t) for a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I1−β(1−α)0 w ∈ C1
γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t) for a.e. t ∈ I.

4. If Dγ
0w exists and is in L1(I, E), then

(Iα0D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ0 (0+)

Γ(γ)
tγ−1 for a.e. t ∈ I.

Corollary 1 Let h ∈ Cγ(I). Then, the linear problem

(Dα,β
0 u)(t) = h(t), t ∈ I := [0, T ],

(I1−γ0 u)(t)|t=0 = φ,

has a unique solution which is given by

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).
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Remark 1 Let g ∈ P1(I, E). For every ϕ ∈ E∗, we have

ϕ(Iα0 g)(t) = (Iα0 ϕg)(t) for a.e. t ∈ I.

Definition 8 ([11]) Let E be a Banach space, ΩE the family of bounded subsets of E and B1 the
unit ball of E. The De Blasi measure of weak noncompactness is the map β : ΩE → [0,∞) defined
by β(X) = inf{ε > 0 : there exists a weakly compact subset Ω of E such that X ⊂ εB1 + Ω}.

The De Blasi measure of weak noncompactness has the following properties:

(a) if A ⊂ B, then β(A) ≤ β(B),

(b) β(A) = 0 if and only if A is weakly relatively compact,

(c) β(A ∪B) = max{β(A), β(B)},

(d) β(A
ω
) = β(A), where Aω denotes the weak closure of A,

(e) β(A+B) ≤ β(A) + β(B),

(f) β(λA) = |λ|β(A),

(g) β(convA) = β(A),

(h) β(
⋃
|λ|≤h λA) = hβ(A).

The next result follows directly from the Hahn–Banach theorem.

Proposition 2 Let E be a normed space and x0 ∈ E with x0 6= 0. Then, there exists ϕ ∈ E∗ with
‖ϕ‖E∗ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : I → E let us put

V (t) = {v(t) : v ∈ V }, t ∈ I

and
V (I) = {v(t) : v ∈ V, t ∈ I}.

Lemma 1 ([15]) Let H be a bounded and equicontinuous subset of C. Then, the function
t 7→ β(H(t)) is continuous on I , and

βC(H) = max
t∈I

β(H(t))

and

β

(∫
I
u(s) ds

)
≤
∫
I
β(H(s))ds,

whereH(t) = {u(t) : u ∈ H}, t ∈ I, and β, βC are the De Blasi measures of weak noncompactness
defined on the bounded sets of E and C, respectively.
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For our purpose we will need the following fixed point theorem.

Theorem 1 ([21]) Let Q be a nonempty, closed, convex and equicontinuous subset of a metrizable
locally convex vector spaceC(I, E) such that 0 ∈ Q. Suppose that T : Q→ Q is weakly-sequentially
continuous. If the implication

V = conv({0} ∪ T (V )) =⇒ V is relatively weakly compact (2.2)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence of weak solutions

Let us start by defining what we mean by a weak solution of the coupled system (1.1)–(1.2).

Definition 9 By a weak solution of the system (1.1)–(1.2) we mean a measurable coupled func-
tions (u, v) ∈ C that satisfy the conditions (I1−γ10 u)(0+) = φ1, (I1−γ20 v)(0+) = φ2, and
the equations (Dα1,β1

0 u)(t) = f1(t,max0≤τ≤t ‖u(τ)‖,max0≤τ≤t ‖v(τ)‖) and (Dα2,β2
0 v)(t) =

f2(t,max0≤τ≤t ‖u(τ)‖,max0≤τ≤t ‖v(τ)‖) on I.

The following hypotheses will be used in the sequel.

(H1) For a.e. t ∈ I , the functions (u, v) 7→ fi(t, u, v), i = 1, 2, are weakly-sequentially continuous.

(H2) For each u, v ∈ [0,∞), the functions t 7→ fi(t, u, v) are Pettis integrable on I.

(H3) There exist pi, qi ∈ C(I, [0,∞)), i = 1, 2, such that for all ϕ ∈ E∗, i = 1, 2, we have

|ϕ(fi(t, u, v))| ≤ pi(t)u+ qi(t)v

‖ϕ‖E∗ + u+ v
for a.e. t ∈ I and each u, v ∈ [0,∞).

(H4) For each bounded and measurable set B ⊂ E and for each t ∈ I , we have

β(fi(t, ‖B‖, ‖B‖)) ≤ t1−r(pi(t) + qi(t))β(B), i = 1, 2,

where ‖B‖ = maxt∈I max0≤τ≤t{‖w(τ)‖ : w(τ) ∈ B}.

Set
p∗i = sup

t∈I
pi(t) and q∗i = sup

t∈I
qi(t), i = 1, 2.

Theorem 2 Assume that the hypotheses (H1)–(H4) hold. If

L :=
(p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)
+

(p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)
< 1, (3.1)

then the system (1.1)–(1.2) has at least one weak solution defined on I .
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Proof. Define the operators N1 : Cγ1 → Cγ1 and N2 : Cγ2 → Cγ2 by

(N1u)(t) =
φ1

Γ(γ1)
tγ1−1 +

1

Γ(α1)

∫ t

0
(t− s)α1−1f1

(
s, max

0≤τ≤s
‖u(τ)‖, max

0≤τ≤s
‖v(τ)‖

)
ds (3.2)

and

(N2v)(t) =
φ2

Γ(γ2)
tγ2−1 +

1

Γ(α2)

∫ t

0
(t− s)α2−1f2

(
s, max

0≤τ≤s
‖u(τ)‖, max

0≤τ≤s
‖v(τ)‖

)
ds. (3.3)

Consider the continuous operator N : C → C defined by

(
N(u, v)

)
(t) =

(
(N1u)(t), (N2v)(t)

)
. (3.4)

First, notice that the hypotheses imply that for each (u, v) ∈ Cγ1 × Cγ2 the functions t 7→ (t −
s)α−1fi(s, u, v), for a.e. t ∈ I are Pettis integrable. Thus, the operator N is well-defined. For all
ϕ ∈ E∗, let R > 0 be such that R = R1 +R2 with

Ri >
|ϕ(φi)|
Γ(αi)

+
(p∗i + q∗i )T

1−γi+αi

Γ(1 + αi)
, i = 1, 2,

and consider the set

Q =
{

(u, v) ∈ Cγ1 × Cγ2 : ‖(u, v)‖C ≤ R, ‖t1−γ12 u(t2)− t1−γ11 u(t1)‖

≤ (p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)
(t2 − t1)α1 +

(p∗1 + q∗1)

Γ(α1)

∫ t1

0
|t1−γ12 (t2 − s)α1−1

− t1−γ11 (t1 − s)α1−1| ds and ‖t1−γ22 v(t2)− t1−γ21 v(t1)‖

≤ (p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)
(t2 − t1)α2 +

(p∗2 + q∗2)

Γ(α2)

∫ t1

0
|t1−γ22 (t2 − s)α2−1

−t1−γ21 (t1 − s)α2−1| ds
}
.

Clearly, the set Q is closed, convex end equicontinuous. We shall show that the operator N satisfies
all the assumptions of Theorem 1. The proof will be given in several steps.

Step 1. N maps Q into itself. Let (u, v) ∈ Q, t ∈ I and assume that (N(u, v))(t) 6= (0, 0).
Then, there exists ϕ ∈ E∗ with ‖ϕ‖E∗ = 1 such that ‖t1−γ1(N1u)(t)‖ = |ϕ(t1−γ1(N1u)(t))| and
‖t1−γ2(N2v)(t)‖ = |ϕ(t1−γ2(N2v)(t))|. Thus,

∥∥t1−γ1(N1u)(t)
∥∥

=

∣∣∣∣ϕ( φ1
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1f1

(
s, max

0≤τ≤s
‖u(τ)‖, max

0≤τ≤s
‖v(τ)‖

)
ds

)∣∣∣∣.
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Then,∥∥t1−γ1(N1u)(t)
∥∥

≤
∣∣∣∣ϕ( φ1

Γ(γ1)

)∣∣∣∣+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1

∣∣∣ϕ(f1(s, max
0≤τ≤s

‖u(τ)‖, max
0≤τ≤s

‖v(τ)‖
))∣∣∣ ds

≤ |ϕ(φ1)|
Γ(α1)

+
(p∗1 + q∗1)T 1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1 ds

≤ |ϕ(φ1)|
Γ(α1)

+
(p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)

≤ R1.

Also, we obtain∥∥t1−γ2(N2v)(t)
∥∥

≤
∣∣∣∣ϕ( φ2

Γ(γ2)

)∣∣∣∣+
t1−γ2

Γ(α2)

∫ t

0
(t− s)α2−1

∣∣∣ϕ(f2(s, max
0≤τ≤s

‖u(τ)‖, max
0≤τ≤s

‖v(τ)‖
))∣∣∣ ds

≤ |ϕ(φ2)|
Γ(α2)

+
(p∗2 + q∗2)T 1−γ2

Γ(α2)

∫ t

0
(t− s)α2−1 ds

≤ |ϕ(φ2)|
Γ(α2)

+
(p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)

≤ R2.

Hence,
‖N(u, v)‖C ≤ R1 +R2 = R.

Next, let t1, t2 ∈ I be such that t1 < t2 and let (u, v) ∈ Q with

t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1) 6= (0, 0).

Then, there exists ϕ ∈ E∗ with ‖ϕ‖E∗ = 1 such that∥∥t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1)
∥∥ =

∣∣ϕ(t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1))
∣∣

and ∥∥t1−γ22 (N2v)(t2)− t1−γ21 (N2v)(t1)
∥∥ =

∣∣ϕ(t1−γ22 (N2v)(t2)− t1−γ21 (N2v)(t1))
∣∣.

Then, ∥∥t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1)
∥∥ =

∣∣ϕ(t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1))
∣∣

≤ ϕ

(
t1−γ12

∫ t2

0
(t2 − s)α1−1 f1

(
s,max0≤τ≤s ‖u(τ)‖,max0≤τ≤s ‖v(τ)‖

)
Γ(α1)

ds

−t1−γ11

∫ t1

0
(t1 − s)α1−1 f1

(
s,max0≤τ≤s ‖u(τ)‖,max0≤τ≤s ‖v(τ)‖

)
Γ(α1)

ds

)
.
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This gives∥∥t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1)
∥∥

≤ t1−γ12

∫ t2

t1

(t2 − s)α1−1
∣∣ϕ(f1(s,max0≤τ≤s ‖u(τ)‖,max0≤τ≤s ‖v(τ)‖

))∣∣
Γ(α1)

ds

+

∫ t1

0

∣∣t1−γ12 (t2 − s)α1−1 − t1−γ11 (t1 − s)α1−1
∣∣×

×
∣∣ϕ(f1(s,max0≤τ≤s ‖u(τ)‖,max0≤τ≤s ‖v(τ)‖

))∣∣
Γ(α1)

ds

≤ t1−γ12

∫ t2

t1

(t2 − s)α1−1 p1(s) + q1(s)

Γ(α1)
ds

+

∫ t1

0

∣∣t1−γ12 (t2 − s)α1−1 − t1−γ11 (t1 − s)α1−1
∣∣p1(s) + q1(s)

Γ(α1)
ds.

Thus, we get∥∥t1−γ12 (N1u)(t2)− t1−γ11 (N1u)(t1)
∥∥

≤ (p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)
(t2 − t1)α1 +

p∗1 + q∗1
Γ(α1)

∫ t1

0

∣∣t1−γ12 (t2 − s)α1−1 − t1−γ11 (t1 − s)α1−1
∣∣ds.

Also, we obtain∥∥t1−γ22 (N2v)(t2)− t1−γ21 (N2v)(t1)
∥∥

≤ (p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)
(t2 − t1)α2 +

p∗2 + q∗2
Γ(α2)

∫ t1

0

∣∣t1−γ22 (t2 − s)α2−1 − t1−γ21 (t1 − s)α2−1
∣∣ds.

Hence, N(Q) ⊂ Q.

Step 2. N is weakly-sequentially continuous. Let (un, vn) be a sequence inQ and let (un(t))→ u(t)
and (vn(t))→ v(t) in (E,ω) for each t ∈ I . Fix t ∈ I. Since for any i ∈ {1, 2} the function fi sat-
isfies the assumption (H1), we deduce that fi(t,max0≤τ≤t ‖un(τ)‖,max0≤τ≤t ‖vn(τ)‖) converges
weakly uniformly to fi(t,max0≤τ≤t ‖u(τ)‖,max0≤τ≤t ‖v(τ)‖). Hence, the Lebesgue dominated
convergence theorem for the Pettis integral implies that (N(un, nn))(t) converges weakly uniformly
to (N(u, v))(t) in (E,ω) for each t ∈ I . Thus, N(un, vn) → N(u, v). Hence, N : Q → Q is
weakly-sequentially continuous.

Step 3. The implication (2.2) holds. Let V be a subset of Q such that V = conv(N(V ) ∪ {(0, 0)}).
Obviously,

V (t) ⊂ conv(NV )(t) ∪ {(0, 0)} for every t ∈ I .

Further, as V is bounded and equicontinuous, by Lemma 3 in [10] the function t 7→ β(V (t)) is
continuous on I . From (H3), (H4), Lemma 1 and the properties of the measure β, for any t ∈ I , we
have

t1−γ1u(t) ≤ β
(
t1−γ1(NV )(t) ∪ {(0, 0)}

)
≤ β

(
t1−γ1(NV )(t)

)
≤ T 1−γ1

Γ(α1)

∫ t

0
|t− s|α1−1(p1(s) + q1(s))β(V (s)) ds
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≤ T 1−γ1

Γ(α1)

∫ t

0
|t− s|α1−1s1−γ1(p1(s) + q1(s))u(s) ds

≤ (p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)
‖u‖Cγ1 .

Also, we obtain

t1−γ2v(t) ≤ β
(
t1−γ2(NV )(t) ∪ {(0, 0)}

)
≤ β

(
t1−γ2(NV )(t)

)
≤ T 1−γ2

Γ(α2)

∫ t

0
|t− s|α2−1(p2(s) + q2(s))β(V (s)) ds

≤ T 1−γ2

Γ(α2)

∫ t

0
|t− s|α2−1s1−γ2(p2(s) + q2(s))v(s) ds

≤ (p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)
‖v‖Cγ2 .

Thus, ‖(u, v)‖C ≤ L‖(u, v)‖C . From (3.1), we get ‖(u, v)‖C = 0, that is, β(V (t)) = 0 for each
t ∈ I. Then, by Theorem 2 in [20], V is weakly relatively compact in C. Applying now Theorem 1,
we conclude that N has a fixed point which is a weak solution of the coupled system (1.1)–(1.2). �

4 An example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .) :

∞∑
n=1

|un| <∞

}
be a Banach space with the norm

‖u‖ =

∞∑
n=1

|un|.

As an application of our results we consider the following coupled system of Hilfer fractional
differential equations(

D
1
2
, 1
2

0 un
)
(t) = fn

(
t, max

0≤τ≤t
‖u(τ)‖, max

0≤τ≤t
‖v(τ)‖

)
,(

D
1
2
, 1
2

0 vn
)
(t) = gn

(
t, max

0≤τ≤t
‖u(τ)‖, max

0≤τ≤t
‖v(τ)‖

)
, t ∈ [0, 1]

(4.1)

with the initial conditions

(I
1
4
0 u)(t)|t=0 = (2−1, 2−2, . . . , 2−n, . . .),

(I
1
4
0 v)(t)|t=0 = (0, 0, . . . , 0, . . .),

(4.2)

where

fn(t, u, v) =
ct2

1 + |u|+ |v|
un(t)

et+4
, t ∈ [0, 1]
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and

gn(t, u, v) =
ce−4

1 + |u|+ |v|
vn(t), t ∈ [0, 1]

with

c :=
e4

8
Γ

(
1

2

)
, u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .),

max
0≤τ≤t

‖u(τ)‖ =
(

max
0≤τ≤t

‖u1(τ)‖, max
0≤τ≤t

‖u2(τ)‖, . . . , max
0≤τ≤t

‖un(τ)‖, . . .
)

and
max
0≤τ≤t

‖v(τ)‖ =
(

max
0≤τ≤t

‖v1(τ)‖, max
0≤τ≤t

‖v2(τ)‖, . . . , max
0≤τ≤t

‖vn(τ)‖, . . .
)
.

Set
f = (f1, f2, . . . , fn, . . .) and g = (g1, g2, . . . , gn, . . .).

Clearly, the functions f and g are continuous. Moreover, for each u, v ∈ E and t ∈ [0, 1], we have∥∥∥f(t, max
0≤τ≤t

‖u(τ)‖, max
0≤τ≤t

‖v(τ)‖
)∥∥∥ ≤ ct2 1

et+4

|u|
1 + |u|+ |v|

,

and ∥∥∥g(t, max
0≤τ≤t

‖u(τ)‖, max
0≤τ≤t

‖v(τ)‖
)∥∥∥ ≤ ce−4 |v|

1 + |u|+ |v|
.

Hence, the hypothesis (H3) is satisfied with p∗1 = ce−4, p∗2 = 0, q∗1 = 0 and q∗2 = ce−4. We shall
show that condition (3.1) holds with T = 1. Indeed,

(p∗1 + q∗1)T 1−γ1+α1

Γ(1 + α1)
+

(p∗2 + q∗2)T 1−γ2+α2

Γ(1 + α2)
=

4ce−4

Γ(12)
=

1

2
< 1.

Simple computations show that all conditions of Theorem 2 are satisfied. It follows that the coupled
system (4.1)–(4.2) has at least one weak solution defined on [0, 1].

Conclusion We have provided some sufficient conditions guaranteeing the existence of weak
solutions for some coupled systems of Hilfer differential equations with maxima. The achieved
results are obtained using the notion of measure of weak noncompactness. Such notion requires the
use of weak conditions on the right-hand side, like the weak sequential continuity.
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[6] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New
York, 1980.

[7] M. Benchohra, J. Graef, F-Z. Mostefai, Weak solutions for boundary-value problems with
nonlinear fractional differential inclusions, Nonlinear Dynamics and Systems Theory 11 (2011),
no. 3, 227–237.

[8] M. Benchohra, J. Henderson, F-Z. Mostefai, Weak solutions for hyperbolic partial fractional
differential inclusions in Banach spaces, Computers & Mathematics with Applications 64
(2012), no. 10, 3101–3107.

[9] M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential
equations in Banach spaces, Communications in Applied Analysis 12 (2008), no. 4, 419–428.

[10] D. Bugajewski, S. Szufla, Kneser’s theorem for weak solutions of the Darboux problem in a
Banach space, Nonlinear Analysis: Theory, Methods & Applications 20 (1993), no. 2, 169–173.

[11] F. S. De Blasi, On the property of the unit sphere in a Banach space, Bulletin Mathématique de
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