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Abstract. This article is concerned with a discrete Nicholson’s blowflies model, which involves a
nonlinear density-dependent mortality term. By using a fixed point theorem and Lyapunov functional
method, we obtain the existence and locally exponential stability of pseudo almost periodic solutions
for the addressed Nicholson’s blowflies model. In addition, an example is given to illustrate our
results.
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1 Introduction and preliminaries

In population dynamics, the classical Nicholson’s blowflies equation developed by Gurney et al. [12]
takes the following form:

x′(t) = −αx(t) + βx(t− τ)e−γx(t−τ),
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where x(t) denotes the population of sexually mature adults at time t, β is the maximum possible
per capita daily egg production rate, 1

γ is the size at which the population reproduces at its maximum
rate, α is the per capita daily adult death rate, and τ is the generation time.

Recently, the study on Nicholson’s blowflies model has attracted much attention. Especially,
several authors have made contribution on the existence of periodic solutions and almost periodic
type solutions (see, e.g., [1, 2, 3, 5, 6, 9, 10, 11, 14, 15, 16, 17, 18, 19, 21] and references therein).
Especially, in [10, 16, 19], the authors investigated the existence and stability of almost periodic
solutions for Nicholson’s blowflies models with a nonlinear density-dependent mortality term:

x′(t) = −α(t) + b(t)e−x(t) + β(t)x(t− τ(t))e−γ(t)x(t−τ(t)). (1.1)

In fact, as pointed out by Berezansky et al. in [4], a new study indicates that a linear model
of density-dependent mortality will be most accurate for populations at low densities, and marine
ecologists are currently in the process of constructing new fishery models with nonlinear density-
dependent mortality rates. Therefore, studying the dynamical behavior for Nicholson’s blowflies
models with a nonlinear density-dependent mortality term is an interesting and important topic.

In this paper, we aim to study the existence and stability of pseudo almost periodic solutions for
the following discrete Nicholson’s blowflies model given by

∆x(n) = −α(n)x(n) + b(n) + β(n) lnx(n− τ(n)) · x(n)

xγ(n)(n− τ(n))
, (1.2)

where n ∈ Z and α, b, β, γ, τ : Z→[0,+∞) are pseudo almost periodic sequences. Equation (1.2)
can be seen as a discrete analogue of equation (1.1). In fact, letting x(t) = ln y(t) in equation (1.1),
one can obtain

y′(t) = −α(t)y(t) + b(t) + β(t) ln y(t− τ(t)) · y(t)

yγ(t)(t− τ(t))
.

Throughout this paper, we denote by R the set of real numbers, by R+ the set of nonnegative real
numbers, by N the set of positive integers, by Z the set of integers, and by Z+ the set of nonnegative
integers. Moreover, for every bounded sequence f : Z→ R, we denote

f+ = sup
n∈Z

f(n), f− = inf
n∈Z

f(n).

Next, let us recall some basic definitions and results about almost periodic type sequences. For
more details, we refer the reader to [7, 8, 20].

Definition 1 A set E ⊂ Z is called relatively dense if there exists l ∈ N such that

[n, n+ l] ∩ E 6= ∅

for every n ∈ Z.

Definition 2 A function f : Z→ R is called an almost periodic sequence if for every ε > 0,

P (ε, f) = {τ ∈ Z : |f(n+ τ)− f(n)| < ε for all n ∈ Z}

is a relatively dense set in Z. Denote by AP (Z,R) the set of all such functions.
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Denote by PAP0(Z,R) the space of all bounded functions f : Z→ R such that

lim
n→∞

1

2n

n∑
k=−n

|f(k)| = 0.

Definition 3 A function f : Z → R is called a pseudo almost periodic sequence if it admits a
decomposition f = g + h, where g ∈ AP (Z,R) and h ∈ PAP0(Z,R). Denote by PAP (Z,R) the
set of all such functions.

Lemma 1 Let X ∈ {AP (Z,R), PAP (Z,R)}. Then the following hold true:

(a) f ∈ X implies that f is bounded;

(b) f, g ∈ X implies that f + g, f · g ∈ X; moreover, f, g ∈ X implies that f/g ∈ X provided
that infn∈Z |g(n)| > 0;

(c) X is a Banach space equipped with the supremum norm;

(d) f ∈ X implies that f(·+ k) ∈ X for every k ∈ Z;

(e) f ∈ X implies that F ◦ f ∈ X for every continuous function F : R→ R.

Now, let us recall some basic results about the difference system

x(n+ 1) = A(n)x(n), n ∈ Z, (1.3)

where for every n ∈ Z, x(n) ∈ Rq and A(n) is an invertible q × q matrix. Denote

Φ(n,m) =


A(n− 1) · · ·A(m), if n > m,

I, if n = m,

A−1(n) · · ·A−1(m), if n < m.

Definition 4 ([20]) We say that the linear difference system (1.3) has an exponential dichotomy on
Z if there are positive constants K,λ and a family of projections P (n) such that

P (n+ 1)A(n) = A(n)P (n), n ∈ Z,

and

|Φ(n,m)P (m)| ≤ Ke−λ(n−m), n ≥ m, |Φ(n,m)(I − P (m))| ≤ Ke−λ(m−n), m > n.

Lemma 2 ([20]) If the linear difference system (1.3) has an exponential dichotomy on Z and f : Z→
R is bounded, then the inhomogeneous system

x(n+ 1) = A(n)x(n) + f(n), n ∈ Z,

has a unique bounded solution given by

x(n) =

n−1∑
m=−∞

Φ(n,m+ 1)P (m+ 1)f(m)−
+∞∑
m=n

Φ(n,m+ 1)(I − P (m+ 1))f(m), n ∈ Z.
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Throughout the rest of this paper, for every subset Ω ⊂ R, we denote by PAP (Z,Ω) the set of all
functions f ∈ PAP (Z,R) with f(Z) ⊂ Ω. We also use the notations AP (Z,Ω) and PAP0(Z,Ω),
which are similar to PAP (Z,Ω). The following two lemmas were proved in [13].

Lemma 3 Let φ ∈ PAP (Z,R) and τ ∈ PAP (Z,Z). Then, φ(· − τ(·)) ∈ PAP (Z,R).

Lemma 4 Let θ, f ∈ PAP (Z,R) with ‖θ‖ < 1, and

F (n) =
n−1∑

m=−∞

[
n−1∏

i=m+1

θ(i)

]
f(m), n ∈ Z,

where we denote
∏n−1
i=n θ(i) = 1 for simplicity. Then, F ∈ PAP (Z,R).

2 Main results

For the next existence theorem, we will use the following assumptions:

(A0) α ∈ PAP (Z,R) with 0 < α− ≤ α+ < 1, b, β, γ ∈ PAP (Z,R+) with b−, β−, γ− > 0 and
τ ∈ PAP (Z,Z+);

(A1) there exist Γ1 ≥ Γ2 ≥ 1 such that

b+Γγ
−

2 + β+Γ1 ln Γ1

α−Γγ
−

2

≤ Γ1 and
b−Γγ

+

1 + β−Γ2 ln Γ2

α+Γγ
+

1

≥ Γ2;

(A2) β+(Γ1Γ
γ−−1
2 + Γγ

−

2 ln Γ1 + γ+Γγ
+

1 ln Γ1) < α−Γ2γ−

2 .

Theorem 1 Let (A0)–(A2) hold. Then there exists a unique pseudo almost periodic solution of
equation (1.2) in Ψ∗ = {ϕ ∈ PAP (Z,R) : Γ2 ≤ ϕ(n) ≤ Γ1 for all n ∈ Z}.

Proof. Fix φ ∈ Ψ∗. Let us consider an auxiliary equation

∆x(n) = −α(n)x(n) + b(n) + β(n) lnφ(n− τ(n)) · φ(n)

φγ(n)(n− τ(n))
, (2.1)

i.e.,

x(n+ 1) = (1− α(n))x(n) + b(n) + β(n) lnφ(n− τ(n)) · φ(n)

φγ(n)(n− τ(n))
.

Noting that 0 < α− ≤ α+ < 1, we know that the linear equation x(n+1) = (1−α(n))x(n) admits
an exponential dichotomy on Z with P (n) ≡ I .

Noting that
φγ(n)(n− τ(n)) = elnφ

γ(n)(n−τ(n)) = eγ(n) lnφ(n−τ(n)),

by (A0), Lemma 3 and (e) of Lemma 1, we conclude that n 7→ φγ(n)(n− τ(n)) is in PAP (Z,R).
Again by (A0), Lemma 3, and (b) of Lemma 1, in view of

inf
n∈Z

φγ(n)(n− τ(n)) ≥ Γγ
−

2 ,
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we deduce that

n 7→ b(n) + β(n) lnφ(n− τ(n)) · φ(n)

φγ(n)(n− τ(n))

is in PAP (Z,R).

Then, by Lemma 2, equation (2.1) has a unique bounded solution given by

xφ(n) =

n−1∑
k=−∞

[
n−1∏
r=k+1

(1− α(r))

]
·
[
b(k) + β(k) lnφ(k − τ(k)) · φ(k)

φγ(k)(k − τ(k))

]
.

Define a mapping T on Ψ∗ by

(Tφ)(n) = xφ(n), φ ∈ Ψ∗, n ∈ Z.

It follows from α ∈ PAP (Z,R), ‖1−α‖ ≤ 1−α− < 1, and Lemma 4 that T (Ψ∗) ⊂ PAP (Z,R).

Next, let us show that T (Ψ∗) ⊂ Ψ∗. For every φ ∈ Ψ∗ and n ∈ Z, we have

(Tφ)(n) ≤
n−1∑
k=−∞

n−1∏
r=k+1

(1− α−)

(
b+ + β+ ln Γ1 ·

Γ1

Γγ
−

2

)

≤
n−1∑
k=−∞

(1− α−)n−k−1
(
b+ + β+ ln Γ1 ·

Γ1

Γγ
−

2

)

=
b+Γγ

−

2 + β+Γ1 ln Γ1

α−Γγ
−

2

≤ Γ1.

Also, for every φ ∈ Ψ∗ and n ∈ Z, we have

(Tφ)(n) ≥
n−1∑
k=−∞

n−1∏
r=k+1

(1− α+)

(
b− + β− ln Γ2 ·

Γ2

Γγ
+

1

)

=
n−1∑
k=−∞

(1− α+)n−k−1
(
b− + β− ln Γ2 ·

Γ2

Γγ
+

1

)

=
b−Γγ

+

1 + β−Γ2 ln Γ2

α+Γγ
+

1

≥ Γ2.

This tells that T is a self-mapping from Ψ∗ to Ψ∗.
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For all ϕ, ψ ∈ Ψ∗, there holds

‖T (ϕ)− T (ψ)‖
= sup

n∈Z
|(Tϕ)(n)− (Tψ)(n)|

= sup
n∈Z

∣∣∣∣∣
n−1∑
k=−∞

n−1∏
r=k+1

[1− α(r)]β(k)

[
lnϕ(k − τ(k)) · ϕ(k)

ϕγ(k)(k − τ(k))

− lnψ(k − τ(k)) · ψ(k)

ψγ(k)(k − τ(k))

]∣∣∣∣∣
= sup

n∈Z

∣∣∣∣∣
n−1∑
k=−∞

n−1∏
r=k+1

[1− α(r)]β(k)

{
ϕ(k)

ϕγ(k)(k − τ(k))

[
lnϕ(k − τ(k))− lnψ(k − τ(k))

]
+

lnψ(k − τ(k))

ψγ(k)(k − τ(k))
[ϕ(k)− ψ(k)]

− lnψ(k − τ(k)) · ϕ(k)

ϕγ(k)(k − τ(k)) · ψγ(k)(k − τ(k))

[
ϕγ(k)(k − τ(k))− ψγ(k)(k − τ(k))

]}∣∣∣∣∣
≤ sup

n∈Z

n−1∑
k=−∞

n−1∏
r=k+1

(1− α−)β+
{

ϕ(k)

ϕγ(k)(k − τ(k))
· 1

Γ2
‖ϕ− ψ‖+

lnψ(k − τ(k))

ψγ(k)(k − τ(k))
· ‖ϕ− ψ‖

+
lnψ(k − τ(k)) · ϕ(k)

ϕγ(k)(k − τ(k)) · ψγ(k)(k − τ(k))
· γ+Γγ

+−1
1 ‖ϕ− ψ‖

}
≤ sup

n∈Z

n−1∑
k=−∞

n−1∏
r=k+1

(1− α−)β+

(
Γ1

Γγ
−

2

· 1

Γ2

+
ln Γ1

Γγ
−

2

+
ln Γ1 · Γ1

Γγ
−

2 · Γ
γ−

2

· γ+Γγ
+−1

1

)
‖ϕ− ψ‖

=
β+(Γ1Γ

γ−−1
2 + Γγ

−

2 ln Γ1 + γ+Γγ
+

1 ln Γ1)

α−Γ2γ−

2

· ‖ϕ− ψ‖.

By (A2), T is a contraction. Therefore, T has a unique fixed point in Ψ∗, which means that equation
(1.2) has a unique pseudo almost periodic solution in Ψ∗. This completes the proof. �

Next, let us discuss the exponential stability of pseudo almost periodic solutions of equation (1.2).

Theorem 2 Suppose that (A0)–(A2) are satisfied, x∗ is the unique pseudo almost periodic solution
of equation (1.2) in Ψ∗, and x is an arbitrary solution of equation (1.2) with the property that there
exists N ∈ N such that Γ2 ≤ x(n) ≤ Γ1 for all n ≥ N . Moreover, assume that the following
estimate holds

β+(Γ1Γ
γ−−1
2 + Γγ

−

2 ln Γ1 + γ+Γγ
+

1 ln Γ1) <
1− α+

1− α−
· α−Γ2γ−

2 . (2.2)

Then, there is a constant λ > 0 such that

|x(n)− x∗(n)| ≤Me−λn, n ≥ N,

where M = eλN ·maxN−τ+≤n≤N |x(n)− x∗(n)|.
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Proof. Let y(n) = x(n)− x∗(n), n ≥ N . Then

4y(n) = −α(n)y(n) + β(n)

[
x(n) lnx(n− τ(n))

xγ(n)(n− τ(n))
− x∗(n) lnx∗(n− τ(n))

x
γ(n)
∗ (n− τ(n))

]
,

i.e.,

4y(n) = − α(n)

1− α(n)
y(n+ 1)

+
β(n)

1− α(n)

[
x(n) lnx(n− τ(n))

xγ(n)(n− τ(n))
− x∗(n) lnx∗(n− τ(n))

x
γ(n)
∗ (n− τ(n))

]
.

(2.3)

By (2.2), we can choose a sufficiently small λ > 0 such that

β+
(

Γ1Γ
γ−−1
2 · eλ(τ++1) + Γγ

−

2 ln Γ1 · eλ + γ+Γγ
+

1 ln Γ1 · eλ(τ
++1)

)
(1− α+)Γ2γ−

2

<
α−

1− α−
+ 1− eλ.

(2.4)

Consider the discrete Lyapunov functional

V (n) = |y(n)|eλn, n ≥ N.

It is easy to see that V (n) ≤M for all n ∈ [N − τ+, N ]. We claim that V (n) ≤M for all n > N .
In fact, if this is not true,

{n > N : V (n) > M} 6= ∅.

Set
n0 = min{n > N : V (n) > M} − 1.

Then n0 ≥ N and
V (n0 + 1) > M, V (n) ≤M, n ∈ [N − τ+, n0].

In addition, without loss of generality, we can assume that Γ2 ≤ x(n) ≤ Γ1 for all n ≥ N − τ+.
Then, by (2.3) and (2.4), we have

∆V (n0)

= ∆(|y(n0)|eλn0)

= ∆|y(n0)|eλ(n0+1) + |y(n0)|∆eλn0

≤ −α(n0)

1− α(n0)
|y(n0 + 1)|eλ(n0+1) + |y(n0)|

(
eλ(n0+1) − eλn0

)
+

β(n0)

1− α(n0)

∣∣∣∣∣x(n0) lnx(n0 − τ(n0))

xγ(n0)(n0 − τ(n0))
− x∗(n0) lnx∗(n0 − τ(n0))

x
γ(n0)
∗ (n0 − τ(n0))

∣∣∣∣∣ eλ(n0+1)

≤ − α−

1− α−
M +M(eλ − 1)

+
β+

1− α+

∣∣∣∣∣x(n0) lnx(n0 − τ(n0))

xγ(n0)(n0 − τ(n0))
− x∗(n0) lnx∗(n0 − τ(n0))

x
γ(n0)
∗ (n0 − τ(n0))

∣∣∣∣∣ eλ(n0+1)
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≤M
(
eλ − 1− α−

1− α−
)

+
β+
(

Γ1Γ
γ−−1
2 · |y(n0 − τ(n0))|+ Γγ

−

2 ln Γ1 · |y(n0)|
)
eλ(n0+1)

(1− α+)Γ2γ−

2

+
β+
(
γ+Γγ

+

1 ln Γ1 · |y(n0 − τ(n0))|
)
eλ(n0+1)

(1− α+)Γ2γ−

2

≤M
(
eλ − 1− α−

1− α−
)

+
Mβ+

(
Γ1Γ

γ−−1
2 · eλ(τ++1) + Γγ

−

2 ln Γ1 · eλ + γ+Γγ
+

1 ln Γ1 · eλ(τ
++1)

)
(1− α+)Γ2γ−

2

= M

eλ − 1− α−

1− α−

+
β+
(

Γ1Γ
γ−−1
2 · eλ(τ++1) + Γγ

−

2 ln Γ1 · eλ + γ+Γγ
+

1 ln Γ1 · eλ(τ
++1)

)
(1− α+)Γ2γ−

2

,
which means that ∆V (n0) < 0 and leads to a contradiction. So V (n) ≤M for all n ≥ N , i.e.,

|x(n)− x∗(n)| ≤Me−λn, n ≥ N.
�

At last, we give an example to show that all the assumptions in the above two theorems can be
satisfied.

Example 1 Let α, β, γ, b ∈ PAP (Z,R) and τ ∈ PAP (Z,Z+) be such that

α− = 0.3, α+ = 0.4, β− = 0.1, β+ = 0.2,

and
γ+ = γ− = 1, b− = 40, b+ = 41.

So (A0) holds. Choosing Γ2 = e4 < Γ1 = 4e4, we have

b+Γγ
−

2 + β+Γ1 ln Γ1

α−Γγ
−

2

≈ 151.030 < Γ1 = 4e4 ≈ 218.393,

and
b−Γγ

+

1 + β−Γ2 ln Γ2

α+Γγ
+

1

= 100.25 > Γ2 = e4 ≈ 54.598.

Thus, (A1) holds. Moreover,

β+(Γ1Γ
γ−−1
2 + Γγ

−

2 ln Γ1 + γ+Γγ
+

1 ln Γ1)

α−Γ2γ−

2

≈ 0.378 < 1,
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which means that (A2) holds, and

β+(Γ1Γ
γ−−1
2 + Γγ

−

2 ln Γ1 + γ+Γγ
+

1 ln Γ1)

α−Γ2γ−

2

<
1− α+

1− α−
=

6

7
,

i.e., (2.2) holds. Thus, all the assumptions of Theorem 1 and Theorem 2 are satisfied.
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