
Journal of Nonlinear Evolution Equations and Applications ISSN 2161-3680
Volume 2016, Number 5, pp. 71–92 (April 2017) http://www.jneea.com

ON THE MULTIPOINT BOUNDARY PROBLEMS
OF INTERVAL-VALUED SECOND-ORDER

DIFFERENTIAL EQUATIONS UNDER GENERALIZED
H-DIFFERENTIABILITY

NGUYEN DINH PHU∗, NGUYEN NHUT HUNG
Faculty of Mathematics and Computer Science, University of Science,

VNU Ho Chi Minh City, Vietnam

Received on September 14, 2015

Accepted on September 13, 2016

Communicated by Mouffak Benchohra

Abstract. In this paper we discuss some multipoint boundary value problems (MBVPs) for interval-
valued second-order differential equations (ISDEs) under generalized Hukuhara differentiability.
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1 Introduction

The interval-valued analysis and interval-valued differential equations (IDEs) are the special cases
of the set-valued analysis and set-valued differential equations, respectively. In many cases, when
modelling real-world phenomena, information about the behaviour of a dynamical system is uncertain
and one has to consider these uncertainties to gain better meaning of full models. The interval-valued
differential equations can be used to model dynamical systems subject to uncertainties. The papers
[2, 3, 6, 9, 12, 14] are focused on the interval-valued differential equations. These equations can
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be studied with a framework of the classical Hukuhara derivative DHX(t) (see [1, 5, 10, 13, 16]).
However, it causes that the solutions have increasing length of their values. Stefanini and Bede [18]
proposed to consider the so-called generalized Hukuhara derivative of interval-valued functions. The
interval-valued differential equations with this derivative can have solutions with decreasing length of
their values. There are some very important extensions of the interval-valued differential equations;
for example, in the papers [6, 12, 14, 15] one can find the studies on interval-valued differential
equations under generalized Hukuhara differentiability, i.e., equations of the form

Dg
HX(t) = F (t,X(t)), (1.1)

where Dg
H is understood as the generalized Hukuhara derivative, with the initial conditions:

X(t0) = X0 ∈ KC(R), t ∈ [t0, t0 + p]. (1.2)

The problem (1.1)–(1.2) is called the initial value problem for an interval-valued differential equation
(IVP for IDE).

In [7] and [8] the authors considered the initial value problem for interval-valued second-order
differential equations (IVP for ISDEs) of the form:

D2,g
H X(t) = F (t,X(t), Dg

HX(t)), (1.3)

with the initial conditions:

X(t0) = I1, Dg
HX(t0) = I2, t ∈ [t0, t0 + p], (1.4)

where X(t), F (t,X(t)) ∈ KC(R). And after giving some results on the differentiability of second-
order of interval-valued functions, using the method of successive approximations and contraction
principle, they proved local and global existence and uniqueness results for the IVP for IDEs
(1.3)–(1.4).

In this work, assuming that t ∈ [a, b], we will study the multipoint boundary value problem for
the interval-valued second-order differential equation (1.3) (MBVP for ISDE) with the multipoint
boundary conditions: {

α11X(a) + α12D
g
HX(a) = Γ1,

α21X(b) + α22D
g
HX(b) = Γ2,

(1.5)

where Γ1 = [Γ−1 ,Γ
+
1 ], Γ2 = [Γ−2 ,Γ

+
2 ] ∈ KC(R) , α11, α12, α21, α22 ∈ R with α2

11 + α2
12 6=

0, α2
21 + α2

22 6= 0 and Γ1,Γ2 6= [0, 0].

It is clear that the MBVP for ISDE (1.3), (1.5) is different from the IVP for ISDE (1.3)–(1.4).

In this paper, we have discussed some MBVPs for ISDEs (1.3), (1.5) under generalized Hukuhara
differentiability in KC(R). The paper is organized as follows. Section 2 is devoted to presenting
the preliminaries of interval-valued analysis. In particular, we recall some results concerning first-
and second-order generalized Hukuhara derivatives. In Section 3, we formulate some multipoint
boundary value problems for interval-valued second-order differential equations under generalized
Hukuhara differentiability (MBVPs for ISDEs) in KC(R). Moreover, we give an algorithm for
solving such MBVPs for ISDEs. In the last section, we give some examples illustrating our results.



ON SOME MULTIPOINT BOUNDARY VALUE PROBLEMS 73

2 Preliminaries

By KC(R) we denote the set of all closed intervals (non-empty compact and convex subsets) of
R. The addition and scalar multiplication in KC(R) we define as usual, i.e., for A,B ∈ KC(R),
A = [A−, A+], B = [B−, B+], where A− ≤ A+, B− ≤ B+ belong to R, and λ ≥ 0, we have

A+B = [A− +B−, A+ +B+], λA = [λA−, λA+], (−λ)A = [−λA+,−λA−].

Furthermore, letA ∈ KC(R), λ1, λ2, λ3, λ4 ∈ R and λ3λ4 ≥ 0. Then we have λ1(λ2A) = (λ1λ2)A
and (λ3 + λ4)A = λ3A+ λ4A.

Definition 1 Let A,B ∈ KC(R). The Hausdorff metric H between the intervals A and B in KC(R)
is defined as follows:

H[A,B] = max
{
|A− −B−|, |A+ −B+|

}
. (2.1)

We define the magnitude and the length of A ∈ KC(R) by

‖A‖ = max{|A−|, |A+|} = H[A, {0}], len(A) = A+ −A−,

respectively, where {0} is the zero element [0, 0] ∈ KC(R), which is regarded as one point.

The Hausdorff metric (2.1) has the following properties:

H[A+ C,B + C] = H[A,B] and H[A,B] = H[B,A],

H[A+B,C +D] ≤ H[A,C] +H[B,D],

H[λA, λB] = |λ|H[A,B]

for all A,B,C,D ∈ KC(R) and λ ∈ R. It is known that (KC(R), H) is a complete, separable and
locally compact metric space.

Definition 2 Let A,B ∈ KC(R). If there exists C ∈ KC(R) such that A = B + C, then we call C
the Hukuhara difference of A and B, and denote it by A	B, that is, C = A	B.

Let us note that A	B 6= A+ (−1)B.

Definition 3 Let A,B ∈ KC(R). If there exists an interval C ∈ KC(R) such that A = B + C or
B = A+ (−1)C, then we call C the generalized Hukuhara difference of A and B, and denote it by
A	gH B, that is, C = A	gH B.

It is known thatA	B exists when len(A) ≥ len(B). Moreover, we have the following properties
for A,B,C,D ∈ KC(R) (see [4, 14]):

• if A	B and A	 C do exist, then H[A	B,A	 C] = H[B,C];

• if A	B and C 	D do exist, then H[A	B,C 	D] = H[A+D,B + C];

• ifA	B andA	(B+C) do exist, then so does (A	B)	C and (A	B)	C = A	(B+C);
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• ifA	B andA	C,C	B do exist, then so does (A	B)	(A	C), and (A	B)	(A	C) =
C 	B;

• if A	B exists, then so does the generalized Hukuhara difference A	gH B, and A	gH B =
A	B;

• A	gH A = 0;

• (A+B)	gH B = A;

• A	gH B = B 	gH A = C if and only if C = 0 and A = B.

Definition 4 We say that the interval-valued mapping X : [a, b] ⊂ R+ → KC(R) is continuous at a
point t ∈ [a, b], if for every ε > 0 there exists δ = δ(t, ε) > 0 such that for all s ∈ [a, b] such that
|t− s| < δ one has H[X(t), X(s)] ≤ ε.

Definition 5 Let X : [a, b] ⊂ R+ → KC(R) and t ∈ (a, b). We say that X is Hukuhara differen-
tiable at t, if there exists DHX(t) ∈ KC(R) such that for all h > 0 sufficiently small the Hukuhara
differences X (t+ h)	X(t) and X(t)	X(t− h) exist and

lim
h↘0

H

[
X (t+ h)	X(t)

h
,DHX(t)

]
= lim

h↘0
H

[
X (t)	X(t− h)

h
,DHX(t)

]
= 0. (2.2)

Definition 6 Let X : [a, b] ⊂ R+ → KC(R) and t ∈ (a, b). We say that X is generalized Hukuhara
differentiable at t, if there exists Dg

HX(t) ∈ KC(R) such that for all h > 0 sufficiently small the
generalized Hukuhara differences X (t+ h)	gH X(t) and X(t)	gH X(t− h) exist and

lim
h↘0

H

[
X (t+ h)	gH X(t)

h
,Dg

HX(t)

]
= lim

h↘0
H

[
X (t)	gH X(t− h)

h
,Dg

HX(t)

]
= 0. (2.3)

At the borders of the domain of definition of X , t ∈ {a, b}, only the difference and limit which is
expressed in terms of the well-defined X(t± h) is required to exist and to be zero, respectively.

The generalized Hukuhara differentiability was introduced in [18] and studied in, for example,
[4, 5, 6, 7, 8, 14, 15, 17].

Corollary 1 Let X : [t0, T ]→ KC(R) such that X(t) = [X−(t), X+(t)] ∈ KC(R) be Hukuhara
differentiable at t ∈ (t0, T ). Then the bottom function X−(t) and the top function X+(t) are
differentiable and

(i) if X(t) is Hukuhara differentiable, then

DHX(t) =
[
min{(X−)

′
(t), (X+)

′
(t)},max{(X−)

′
(t), (X+)

′
(t)}

]
;

(ii) if X(t) is (Hg1)-differentiable, then Dg1
HX(t) = [(X−)

′
(t), (X+)

′
(t)];

(iii) if X(t) is (Hg2)-differentiable, then Dg2
HX(t) = [(X+)

′
(t), (X−)

′
(t)].
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For an interval-valued function X : [t0, T ]→ KC(R), if it is Hg1 one defines the integral (I1)
by the expression

∫ t

t0

X(s) ds =

[∫ t

t0

X−(s) ds,

∫ t

t0

X+(s) ds

]
, (2.4)

and if it is Hg2 one defines the integral (I2) by the expression

∫ t

t0

X(s) ds =

[∫ t

t0

X+(s) ds,

∫ t

t0

X−(s) ds

]
. (2.5)

In this case, we can write the Newton–Leibniz formula by: X(t0) = X(t) + (−1)
∫ t
t0
Dg
HX(s) ds.

This direction of research is motivated by the results of B. Bede and S. G. Gal [4], Chalco-Cano
and Román-Flores [6], V. Lupulescu [12], Marek T. Malinowski [14, 15].

In [8], the authors have defined the second-order generalized Hukuhara differentiability of
interval-valued functions X as follows:

Definition 7 Let X : [t0, T ]→ KC(R) and t ∈ [t0, T ]. We say that X(t) is generalized Hukuhara
differentiable in second-order at t, if there exists D2,g

H X(t) ∈ KC(R) such that for all h > 0
sufficiently small the differences Dg

HX (t)	Dg
HX(t+ h) and Dg

HX(t)	Dg
HX(t− h) exist and

the following limits hold (in the metric D)

lim
h↘0+

H

[
Dg
HX (t+ h)	Dg

HX(t)

h
,D2,g

H X(t)

]
= lim

h↘0+
H

[
Dg
HX (t)	Dg

HX(t− h)

h
,D2,g

H X(t)

]
= 0.

(2.6)

Theorem 1 (see [7, 8]) Let X : [t0, T ] → KC(R) and Dg
HX(t) : [t0, T ] → KC(R) be interval-

valued functions, where X(t) = [X−(t), X+(t)]. If X(t), Dg
HX(t) are (Hg1)-differentiable (or

(Hg2)-differentiable), then X−(t), X+(t) and (X−(t))′, (X+(t))′ are differentiable functions and

(i) D2,g
H X(t) = [(X−(t))′′, (X+(t))′′], where X(t) and Dg

HX(t) are (Hg1)-differentiable
functions;

(ii) D2,g
H X(t) = [(X+(t))′′, (X−(t))′′], where X(t) is a (Hg1)-differentiable function and

Dg
HX(t) is a (Hg2)-differentiable function;

(iii) D2,g
H X(t) = [(X+(t))′′, (X−(t))′′], where X(t) is a (Hg2)-differentiable function and

Dg
HX(t) is a (Hg1)-differentiable function;

(iv) D2,g
H X(t) = [(X−(t))′′, (X+(t))′′], where X(t) and Dg

HX(t) are (Hg2)-differentiable
functions.
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3 Main results

3.1 Some MBVPs for ISDEs

Definition 8 In the space KC(R) we consider the interval-valued second-order differential equation
under generalized Hukuhara differentiability (ISDE):

D2,g
H X(t) = F (t,X(t), Dg

HX(t)), (3.1)

with solutions that satisfy the multipoint boundary conditions:{
α11X(a) + α12D

g
HX(a) = Γ1,

α21X(b) + α22D
g
HX(b) = Γ2,

(3.2)

where Γ1 = [Γ−1 ,Γ
+
1 ],Γ2 = [Γ−2 ,Γ

+
2 ] ∈ KC(R), α11, α12, α21, α22 ∈ R with α2

11 + α2
12 6= 0,

α2
21 + α2

22 6= 0 and Γ1,Γ2 6= [0, 0], and call (3.1)–(3.2) the multipoint boundary value problem for
the interval-valued second-order differential equation under generalized Hukuhara differentiability
(MBVP for ISDE).

Definition 9 An interval-valued function X : [a, b] ⊂ R+ → KC(R) is called a solution of the
MBVP for ISDE (3.1)–(3.2), if :

(i) X(t) and Dg
HX(t) are (Hg)-differentiable functions such that D2,g

H X(t) can be represented
in one of the forms described in Theorem 1;

(ii) X(t) and Dg
HX(t) satisfy the MBVP for ISDE (3.1)–(3.2).

Definition 10 By the multipoint boundary value problem for an interval-valued second-order in-
homogeneous linear differential equation under generalized Hukuhara differentiability (MBVP for
ISIDE) we mean the equation

D2,g
H X(t) = (−1)[p(t)Dg

HX(t) + q(t)X(t)] +R(t), (3.3)

where X(t) = [X−(t), X+(t)], R(t) = [R−(t), R+(t)] ∈ KC(R) and p(t), q(t) ∈ R, together with
the multipoint boundary conditions{

α11X(a) + α12D
g
HX(a) = Γ1,

α21X(b) + α22D
g
HX(b) = Γ2,

(3.4)

where Γ1 = [Γ−1 ,Γ
+
1 ],Γ2 = [Γ−2 ,Γ

+
2 ] ∈ KC(R), α11, α12, α21, α22 ∈ R and with the condition

Γ1,Γ2 6= [0, 0].

Definition 11 An interval-valued function X : [a, b] ⊂ R+ → KC(R) is called a solution of the
MBVP for ISIDE (3.3)–(3.4), if :

(i) X(t) and Dg
HX(t) are (Hg)-differentiable functions such that D2,g

H X(t) can be represented
in one of the forms described in Theorem 1;
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(ii) X(t) and Dg
HX(t) satisfy the MBVP for ISIDE (3.3)–(3.4).

Definition 12 By the multipoint boundary value problem for an interval-valued second-order homo-
geneous linear differential equation under generalized Hukuhara differentiability (MBVP for ISHDE)
we mean the equation

D2,g
H X(t) = (−1)[p(t)Dg

HX(t) + q(t)X(t)], (3.5)

where X(t) = [X−(t), X+(t)], R(t) = [R−(t), R+(t)] ∈ KC(R) and p(t), q(t) ∈ R, togheter with
the multipoint boundary conditions{

α11X(a) + α12D
g
HX(a) = Γ1,

α21X(b) + α22D
g
HX(b) = Γ2,

(3.6)

where Γ1 = [Γ−1 ,Γ
+
1 ],Γ2 = [Γ−2 ,Γ

+
2 ] ∈ KC(R), α11, α12, α21, α22 ∈ R and with the condition

Γ1,Γ2 6= [0, 0].

Definition 13 An interval-valued function X : [a, b] ⊂ R+ → KC(R) is called a solution of the
MBVP for ISHDE (3.5)–(3.6), if :

(i) X(t) and Dg
HX(t) are (Hg)-differentiable functions such that D2,g

H X(t) can be represented
in one of the forms described in Theorem 1;

(ii) X(t) and Dg
HX(t) satisfy the MBVP for ISHDE (3.5)–(3.6).

Remark 1 The type of the multipoint boundary value problems for interval-valued second-order
differential equations under generalized Hukuhara differentiability (MBVPs for ISDEs) depends on
the coefficients αij (i, j = 1, 2) appearing in (3.2). For example, when α21 = α22 = 0 we have the
initial value problem for the interval-valued second-order differential equation under generalized
Hukuhara differentiability (IVP for ISDE (1.1) – see [7] and [8]). When α12 = α22 = 0 (or when
α11 = α21 = 0) we have the two point boundary value problem, and when one of the coefficients
αij equals 0 we have the three point boundary value problem for the interval-valued second-order
differential equation under generalized Hukuhara differentiability.

3.2 Algorithm for solving the MBVPs

3.2.1 The Hukuhara derivatives method

Our strategy of solving (3.3)–(3.4) is based on the choice of the derivative in the interval-valued
differential equation. In order to solve (3.3)–(3.4), we have two steps: first, we choose the type of
the derivative and change the problem (3.3)–(3.4) to a system of ODEs by using Theorem 1 and
considering initial values. In the second step, we solve the obtained system of ODEs.

By Theorem 1, we obtain that four systems of ODEs are possible for the problem (3.3)–(3.4):
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Case 1: X(t) and Dg
HX(t) are (Hg1)-differentiable:

(X−)
′′
(t) + p(t)(X−)

′
(t) + q(t)X−(t) = R−(t),

(X+)
′′
(t) + p(t)(X+)

′
(t) + q(t)X+(t) = R+(t),

α11X
−(a) + α12(X

−)
′
(a) = Γ−1 , α11X

+(a) + α12(X
+)
′
(a) = Γ+

1 ,

α21X
−(b) + α22(X

−)
′
(b) = Γ−2 , α21X

+(b) + α22(X
+)
′
(b) = Γ+

2 ,

(3.7)

Case 2: X(t) is (Hg1)-differentiable and Dg
HX(t) is (Hg2)-differentiable:

(X+)
′′
(t) + p(t)(X−)

′
(t) + q(t)X−(t) = R−(t),

(X−)
′′
(t) + p(t)(X+)

′
(t) + q(t)X+(t) = R+(t),

α11X
−(a) + α12(X

−)
′
(a) = Γ−1 , α11X

+(a) + α12(X
+)
′
(a) = Γ+

1 ,

α21X
−(b) + α22(X

−)
′
(b) = Γ−2 , α21X

+(b) + α22(X
+)
′
(b) = Γ+

2 ,

(3.8)

Case 3: X(t) is (Hg2)-differentiable and Dg
HX(t) is (Hg1)-differentiable:

(X+)
′′
(t) + p(t)(X+)

′
(t) + q(t)X−(t) = R−(t),

(X−)
′′
(t) + p(t)(X−)

′
(t) + q(t)X+(t) = R+(t),

α11X
−(a) + α12(X

+)
′
(a) = Γ−1 , α11X

+(a) + α12(X
−)
′
(a) = Γ+

1 ,

α21X
−(b) + α22(X

+)
′
(b) = Γ−2 , α21X

+(b) + α22(X
−)
′
(b) = Γ+

2 ,

(3.9)

Case 4: X(t) and Dg
HX(t) are (Hg2)-differentiable:

(X−)
′′
(t) + p(t)(X+)

′
(t) + q(t)X−(t) = R−(t),

(X+)
′′
(t) + p(t)(X−)

′
(t) + q(t)X+(t) = R+(t),

α11X
−(a) + α12(X

+)
′
(a) = Γ−1 , α11X

+(a) + α12(X
−)
′
(a) = Γ+

1 ,

α21X
−(b) + α22(X

+)
′
(b) = Γ−2 , α21X

+(b) + α22(X
−)
′
(b) = Γ+

2 .

(3.10)

In the followings, specifically, we give some solving methods for this multipoint boundary
value problem for interval-valued second-order differential equations under generalized Hukuhara
differentiability (MBVP for ISDEs).

Theorem 2 Assume that F : [a, b] × KC(R) × KC(R) → KC(R) is continuous. A mapping
X : [a, b]→ KC(R) is a solution to the problem (3.1)–(3.2) if and only if it is (Hg)–differentiable
on [a, b] and Dg

HX(a), Dg
HX(b) satisfy (3.2) and

(i) X(t) = X(a) + Dg
HX(a)(t − a) +

∫ t
a

(∫ γ
a F (s,X(s), Dg

HX(s)) ds
)

dγ, where X(t) and
Dg
HX(t) are (Hg1)-differentiable functions, or

(ii) X(t) = X(b) 	 (−1)Dg
HX(b)(b − t) 	 (−1)

∫ b
t

(∫ b
γ F (s,X(s), Dg

HX(s)) ds
)

dγ, where
X(t) is a (Hg1)-differentiable function and Dg

HX(t) is a (Hg2)-differentiable function.

Proof. Since F is continuous, it must be integrable. So (3.1) can be written in each case as follows.
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(i) Let X and Dg
HX(t) be (Hg1)-differentiable functions. Then equation (3.1) can be rewritten

equivalently as Dg
HX(t) = Dg

HX(a) +
∫ t
t0
F (s,X(s), Dg

HX(s)) ds, and thus

X(t) = X(a) +Dg
HX(a)(t− a) +

∫ t

a

(∫ γ

a
F (s,X(s), Dg

HX(s)) ds

)
dγ.

(ii) Let X and Dg
HX(t) be (Hg2)-differentiable functions. Then equation (3.1) can be rewritten

equivalently as

X(t) = X(b)	 (−1)Dg
HX(b)(b− t)	 (−1)

∫ b

t

(∫ b

γ
F (s,X(s), Dg

HX(s)) ds

)
dγ.

�

Theorem 3 Let F : [a, b] × KC(R) × KC(R) → KC(R) be continuous, and suppose that there
exist L1, L2 ∈ R+ such that

H(F (t,X1, Y1), F (t,X2, Y2)) ≤ L1H(X1, X2) + L2H(Y1, Y2)

for all t ∈ [a, b], X1, X2, Y1, Y2 ∈ KC(R). Then the MBVP for ISDEs (3.1)–(3.2) has a unique
solution on [a, b].

Proof. Since the proof is similar for all four cases, we only consider the case of (Hg2)-
differentiable interval-valued mapping X . In this case, we consider the complete metric space(
C1([a, b],KC(R)), H1

0

)
, and define the operator

T : C1([a, b],KC(R)) −→ C1([a, b],KC(R)),

X 7−→ TX,

given by

(TX)(t) = X(b)	 (−1)Dg
HX(b)(b− t)	 (−1)

∫ b

t

(∫ b

γ
F (s,X(s), Dg

HX(s)) ds

)
dγ.

Note how we had to change the variable of integration (γ or s) to keep t, the independent variable, as
the limit of the last integration. Beside that, we note that

Dg
H(TX)(t) = Dg

HX(b)	 (−1)

∫ t

a
F (s,X(s), Dg

HX(s)) ds, t ∈ [a, b].

We can prove that T is a contractive mapping with respect to the metric H0
1 . And so, by the Banach

fixed point theorem the operator T has a unique fixed point in the space C1
(
[a, b],KC(R)

)
, which is

a unique solution for the MBVP (3.1)–(3.2) in the case of (Hg2)-differentiable functions. �

3.2.2 The real Green’s function method

The aim of this subsection is to give the unfamiliar reader some insight toward Green’s functions in
the space KC(R), specifically in the applications to multipoint boundary value problems.
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We will build the real Green’s function method to solve the multipoint boundary value problem
for interval-valued second-order differential equations under generalized Hukuhara differentiability
(MBVP for ISDEs) (3.1)–(3.2) in the case when interval-valued functions X(t) and Dg

HX(t) are
(Hg1)-differentiable. What we want to say is that we will build the real Green’s function for each
certain multipoint boundary value problem, because it is very difficult to build an interval-valued
Green’s function.

First, we will consider the problem (3.3)–(3.4) in a special case when R(t) = 0. That means
we will consider the multipoint boundary value problem for the interval-valued second-order ho-
mogeneous linear differential equation under generalized Hukuhara differentiability (MBVP for
ISHDE):

D2,g
H X(t) = (−1){p(t)Dg

HX(t) + q(t)X(t)}, (3.11)

where X(t) = [X−(t), X+(t)] ∈ KC(R) and p(t), q(t) ∈ R, with the multipoint boundary condi-
tions {

α11X(a) = (−1)α12D
g
HX(a),

α21X(b) = (−1)α22D
g
HX(b),

(3.12)

where α11, α12, α21, α22 ∈ R with α2
11 + α2

12 6= 0, α2
21 + α2

22 6= 0.

We denote X(t) = [X−(t), X+(t)]. Hence, from (3.11)–(3.12) we obtain

[X ′′−(t), X ′′+(t)] = (−1){p(t)[X ′−(t), X ′+(t)] + q(t)[X−(t), X+(t)]}, (3.13){
α11[X

−(a), X+(a)] = (−1)α12[X
′−(a), X ′+(a)],

α21[X
−(b), X+(b)] = (−1)α22[X

′−(b), X ′+(b)].
(3.14)

Put x̄ = X−(t)+X+(t)
2 . Thus, we can transform the interval-valued problem (3.13)–(3.14) into the

real-valued problem of the following form:

x̄
′′
(t) + p(t)x̄

′
(t) + q(t)x̄(t) = 0, (3.15){

α11x̄(a) + α12x̄
′
(a) = 0,

α21x̄(b) + α22x̄
′
(b) = 0.

(3.16)

(Note that ”0” in (3.15)–(3.16) is zero in the real numbers.)

Therefore, we will build the real Green’s function of the real-valued problem (3.15)–(3.16).

Consider the multipoint boundary value problem for the interval-valued second-order nonho-
mogeneous linear differential equation under generalized Hukuhara differentiability (MBVP for
ISIDE):

D2,g
H X(t) = (−1)[p(t)Dg

HX(t) + q(t)X(t)] +R(t), (3.17)

where X(t) = [X−(t), X+(t)], R(t) = [R−(t), R+(t)] ∈ KC(R) and p(t), q(t) ∈ R, with the
multipoint boundary conditions {

α11X(a) + α12D
g
HX(a) = Γ1,

α21X(b) + α22D
g
HX(b) = Γ2,

(3.18)

where Γ1 = [Γ−1 ,Γ
+
1 ],Γ2 = [Γ−2 ,Γ

+
2 ] ∈ KC(R), α11, α12, α21, α22 ∈ R and with the condition

Γ1,Γ2 6= [0, 0].
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Theorem 4 The general solution of the MBVP for ISIDE (3.17)–(3.18) is of the form:

X(t) =

∫ b

a
G(t, s)R(s) ds+ Z(t). (3.19)

where R(s) is the interval-valued function appearing in (3.17) and Z(t) is the general solution of
the ISDE (3.11) with the real Green’s function G(t, s) defined by:

G(t, s) =


u1(s)u2(t)

w(s)
, if a 6 s 6 t 6 b,

u1(t)u2(s)

w(s)
, if a 6 t 6 s 6 b,

(3.20)

where u1, u2 are two linearly independent real solutions of the homogeneous real differential equation
of the form x̄

′′
(t)+p(t)x̄

′
(t)+q(t)x̄(t) = 0 with α11x̄(a)+α12x̄

′
(a) = 0 and α21x̄(b)+α22x̄

′
(b) =

0, where x̄ = X−(t)+X+(t)
2 and w(t) is the Wronskian determinant of u1, u2.

Proof. A solution of the equation (3.17) is of the form X(t) = Y (t) + Z(t), where Y (t) satisfies
the following MBVP for ISIDE

D2,g
H Y (t) = (−1)[p(t)Dg

HY (t) + q(t)Y (t)] +R(t), (3.21)

with the multipoint boundary conditions{
α11Y (a) = (−1)α12D

g
HY (a),

α21Y (b) = (−1)α22D
g
HY (b),

(3.22)

and Z(t) satisfies the following MBVP for ISHDE

D2,g
H Z(t) = (−1){p(t)Dg

HZ(t) + q(t)Z(t)}, (3.23)

with the multipoint boundary conditions{
α11Z(a) + α12D

g
HZ(a) = Γ1,

α21Z(b) + α22D
g
HZ(b) = Γ2.

(3.24)

Now, we find the real Green’s function for the equation (3.17)–(3.18).

Putting ȳ = Y −(t)+Y +(t)
2 , f̄ = R−(t)+R+(t)

2 , we can transform the interval-valued problem (3.17)–
(3.18) into the real-valued problem similar to (3.15)–(3.16). The real Green’s function corresponding
to (3.15)–(3.16) must satisfy

G′′(t, s) + p(t)G′(t, s) + q(t)G(t, s) = δ(t− s), (3.25)

with the multipoint boundary conditions{
α11G(a, s) + α12G

′
(a, s) = 0,

α21G(b, s) + α22G
′
(b, s) = 0.

(3.26)
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The continuity and jump conditions are

G(s−, s) = G(s+, s),

G
′
(s+, s)−G′(s−, s) = 1.

Let u1 and u2 be two linearly independent solutions of the boundary problem for the real homo-
geneous equation of the form ȳ

′′
(t) + p(t)ȳ

′
(t) + q(t)ȳ(t) = 0 with α11ȳ(a) + α12ȳ

′
(a) = 0 and

α21ȳ(b) + α22ȳ
′
(b) = 0. The non-vanishing of the Wronskian ensures that these solutions exist.

Let w(t) denote the Wronskian of u1 and u2. Since the homogeneous equation with homogeneous
boundary conditions has only the trivial solution, w(t) is nonzero on [a, b]. The real Green’s function
has the form

G(t, s) =

{
c1u1, if a 6 s 6 t 6 b,
c2u2, if a 6 t 6 s 6 b.

(3.27)

The continuity and jump conditions for the real Green’s function give us the equations

c1u1(s)− c2u2(s) = 0,

c1u
′
1(s)− c2u

′
2(s) = −1.

By solving this system, we obtain

c1 =
u2(s)

w(s)
, c2 =

u1(s)

w(s)
.

Thus, the real Green’s function is given by

G(t, s) =


u1(s)u2(t)

w(s)
, if a 6 s 6 t 6 b,

u1(t)u2(s)

w(s)
, if a 6 t 6 s 6 b.

(3.28)

The special solution for the equation (3.17) is

Y (t) =

∫ b

a
G(t, s)R(s) ds.

Note that R(s) is the interval-valued function appearing in (3.17), and this special solution does
not need to satisfy the boundary condition (3.18). However, it must be one of the solutions of the
equation (3.17).

Thus, if there is a unique solution for (3.23)–(3.24), the general solution for (3.17)–(3.18) is

X(t) =

∫ b

a
G(t, s)R(s) ds+ Z(t). (3.29)

�

In addition, if we want to find a special solution of (3.21)–(3.22), then we have to substitute the
general solution (3.29) to the boundary conditions (3.18).
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Theorem 5 Let F : [a, b] × KC(R) × KC(R) → KC(R) be continuous, and suppose that there
exist L1, L2 ∈ R+ such that

H[F (t,X(t), Dg
HX(t)), F (t, Y (t), Dg

HY (t))]

≤ L1.H[X(t), Y (t)] + L2.H[Dg
HX(t), Dg

HY (t)]
(3.30)

for all t ∈ [a, b], X(t), Dg
HX(t), Y (t), Dg

HY (t) ∈ KC(R), where the real numbers L1, L2 are such
that

L1(b− a)2

8
+
L2(b− a)

2
< 1. (3.31)

Then the MBVP for ISDEs (3.1)–(3.2) has a unique solution on [a, b] of the form:

X(t) =

∫ b

a
G(t, s)F (s,X(s), Dg

HX(s)) ds+W (t),

where the real Green’s function G(t, s) is defined as above and W (t) is the general solution of the
ISDE (3.23).

Proof. Consider the operator

T : C1([a, b],KC(R))→ C1([a, b],KC(R))

defined by

T (X(t)) =

∫ b

a
G(t, s)F (s,X(s), Dg

HX(s)) ds+W (t). (3.32)

We have the following estimate

H [T (X(t)), T (Y (t))]

6 H

[∫ t

a
G(t, s)F (s,X(s), Dg

HX(s)) ds+W (t),

∫ t

a
G(t, s)F (s, Y (s), Dg

HY (s)) ds+W (t)

]
6
∫ t

a
|G(t, s)| .H[F (s,X(s), Dg

HX(s)), F (s, Y (s), Dg
HY (s))] ds

6
∫ b

a
|G(t, s)| .L1.H[X(s), Y (s)] + L2.H[Dg

HX(s), Dg
HY (s)] ds

6
∫ b

a
|G(t, s)| ds.H∗[X,Y ],

where H∗[X,Y ] = maxa6t6b
{
M.H[X(t), Y (t)] +N.H[Dg

HX(t), Dg
HY (t)]

}
. So

H [T (X(t)), T (Y (t))] 6
(b− a)2

8
H∗[X,Y ].

Analogously, we have

H
[
(TX)

′
(t), (TY )

′
(t)
]
6
∫ b

a
|Gt(t, s)| ds.H∗[X,Y ],

H
[
(TX)

′
(t), (TY )

′
(t)
]
6

(b− a)

2
H∗[X,Y ].
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Then H∗ [T (X(t)), T (Y (t))] 6
[
(b−a)2

8 + (b−a)
2

]
H∗[X,Y ], and X(t) ∈ C1([a, b]) is a fixed point

of the contractive operator T and this X(t) is the unique solution of the MBVP for ISDE (3.1)–(3.2)
of the form

X(t) =

∫ b

a
G(t, s)F (s,X(s), Dg

HX(s)) ds+W (t). �

Remark 2 When α12 = α22 = 0 (or when α11 = α21 = 0) we have the two point boundary value
problem. We have to use the real Green’s function method.

Particularly, we consider the most simple ISDE:

D2,g
H X(t) = Q(t), (3.33)

where X(t) = [X−(t), X+(t)], H(t) = [H−(t), H+(t)] ∈ KC(R), with the two point boundary
conditions:

X(a) = I1, X(b) = I2, (3.34)

where I1 = [I−1 , I
+
1 ], I2 = [I−2 , I

+
2 ] ∈ KC(R).

Theorem 6 The general solution of the MBVP for ISDE (3.33)–(3.34) is of the form:

X(t) =

∫ b

a
G(t, s)Q(s) ds+ Z(t), (3.35)

where Q(s) is the interval-valued function appearing in (3.33), Z(t) is the general solution of the
interval-valued differential equation (3.33) in the case Q(t) = 0 and the real Green’s function
G(t, s) is defined by:

G(t, s) =


(t− b)(s− a)

b− a
, if a 6 s 6 t 6 b,

(s− b)(t− a)

b− a
, if a 6 t 6 s 6 b.

(3.36)

Proof. Similar to the proof of Theorem 4 we will find the real Green’s function for the equation of
the form

D2,g
H Y (t) = Q(t), Y (a) = Y (b) = [0, 0]. (3.37)

Put ȳ = Y −(t)+Y +(t)
2 and h̄ = Q−(t)+Q+(t)

2 . We can transform the interval-valued problem (3.37)
into the real-valued problem of the form

ȳ
′′

= h̄(t), ȳ(a) = ȳ(b) = 0. (3.38)

A pair of solutions to ȳ
′′

= 0 is ȳ1 = 1 and ȳ2 = t.

The real Green’s function satisfies

G′′(t, s) = δ(t− s), G(a, s) = G(b, s) = 0. (3.39)

The real Green’s function has the form

G(t, s) =

{
c1 + c2t, if a 6 s 6 t 6 b,
d1 + d2t, if a 6 t 6 s 6 b.

(3.40)
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Applying the boundary conditions G(a, s) = G(b, s) = 0, we see that c1 = −c2a and d1 = −d2b.
The real Green’s function now has the form

G(t, s) =

{
c2(t− b), if a 6 s 6 t 6 b,
d2(t− a), if a 6 t 6 s 6 b.

(3.41)

Since the real Green’s function must be continuous,

c2(s− b) = d2(s− a), d2 = c2
(s− b)
(s− a)

. (3.42)

From the jump condition
G
′
(s+, s)−G′(s−, s) = 1, (3.43)

we get c2 = (s−a)
(b−a) . Thus, the real Green’s function is

G(t, s) =


(t− b)(s− a)

b− a
, if a 6 s 6 t 6 b,

(s− b)(t− a)

b− a
, if a 6 t 6 s 6 b.

(3.44)

The special solution for the equation (3.33) is

Y (t) =

∫ b

a
G(t, s)Q(s) ds.

Note that Q(s) is the interval-valued function appearing in (3.33), and this special solution does not
need to satisfy the boundary condition (3.34).

Thus, if the interval-valued differential equation subject to the inhomogeneous boundary condi-
tions (3.34) has the unique solution Z(t), the general solution for (3.33)–(3.34) is

X(t) =

∫ b

a
G(t, s)Q(s) ds+ Z(t). (3.45)

�

Remark 3 In the case, when the interval-valued functions X(t) and Dg
HX(t) are (Hg2)-

differentiable we have solved the multipoint boundary value problem for the interval-valued second-
order differential equation under generalized Hukuhara differentiability (MBVP for ISDE) (3.1)–(3.2).
Analogously, we can treat the case, when the interval-valued functions X(t) and Dg

HX(t) are (Hg1)-
differentiable. We have some illustrations for the (Hg2)-case, for example, in following Case 2 of (b)
of (4.1)–(4.2).

4 Illustrations

Example 1 Using the Hukuhara derivatives and the real Green’s function methods solve the follow-
ing MBVP for ISDE:

D2,g
H X(t) = [t2, et], t ∈ [0, 2] (4.1)

with the boundary conditions:

X(0) = [0, 1], X(2) = [−2, 4]. (4.2)
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(a) By the Hukuhara derivatives method solve the MBVP (4.1)–(4.2).

Case 1: From (3.7), we get 
(X−)

′′
(t) = t2,

(X+)
′′
(t) = et,

X−(0) = 0, X+(0) = 1,

X−(2) = −2, X+(2) = 4.

(4.3)

By solving (4.3), we obtain that X(t) =
[
t4

12 −
5t
3 , e

t − t( e
2

2 − 2)
]

and Dg
HX(t) are (Hg1)-

differentiable. Moreover, X(t) satisfies the boundary conditions (4.2). Hence, there is a solution in
this case. This solution is shown in Figure 1.

X(t) =
[
t4

12 −
5t
3 , e

t − t( e2

2 − 2)
]

t
Exact solution Absolute error Absolute error Absolute error
X−(t) X+(t) degree 2 degree 3 degree 4

0.0000 0.0000 1.0000 0.0864 0.1261 0.0096 0.0129 0.4383e-15 0.0009
0.2000 -0.3332 0.8825 0.0096 0.0158 0.0096 0.0120 0.0555e-15 0.0017
0.4000 -0.6645 0.8140 0.0608 0.0886 0.0096 0.0133 0.1110e-15 0.0004
0.6000 -0.9892 0.8054 0.0720 0.1031 0.0016 0.0034 0.0000e-15 0.0011
0.8000 -1.2992 0.8699 0.0512 0.0728 0.0064 0.0079 0.0000e-15 0.0012
1.0000 -1.5833 1.0238 0.0096 0.0136 0.0096 0.0136 0.0000e-15 0.0001
1.2000 -1.8272 1.2867 0.0384 0.0545 0.0064 0.0103 0.4441e-15 0.0012
1.4000 -2.0132 1.6829 0.0752 0.1075 0.0016 0.0010 0.4441e-15 0.0013
1.6000 -2.1205 2.2418 0.0800 0.1158 0.0096 0.0139 0.8882e-15 0.0002
1.8000 -2.1252 2.9995 0.0288 0.0435 0.0096 0.0157 0.0000e-15 0.0019
2.0000 -2.0000 4.0000 0.1056 0.1536 0.0096 0.0147 0.4441e-15 0.0009

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X
(t
)

-3

-2

-1

0

1

2

3

4

X+(t)
X-(t)

Figure 1: (Hg1)-solution X(t) (with (Hg1)-derivative Dg1
H ) of the MBVP for ISDEs (4.1)–(4.2)

Case 2: From (3.8), we get 
(X+)

′′
(t) = t2,

(X−)
′′
(t) = et,

X−(0) = 0, X+(0) = 1,

X−(2) = −2, X+(2) = 4.

(4.4)
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By solving (4.4), we get X(t) =
[
et − t( e22 + 1

2)− 1, t4

12 + 5t
6 + 1

]
. Note that this solution X(t) is

(Hg1)-differentiable and its derivative Dg
HX(t) is (Hg2)-differentiable. Adding that X(t) satisfies

the boundary conditions (4.2), we infer that such a solution is acceptable. This solution is shown in
Figure 2.

X(t) =
[
et − t( e2

2 + 1
2 )− 1, t4

12 + 5t
6 + 1

]
t

Exact solution Absolute error Absolute error Absolute error
X−(t) X+(t) degree 2 degree 3 degree 4

0.0000 0.0000 1.0000 0.1261 0.0864 0.0129 0.0096 0.0009 0.0888e-14
0.2000 -0.6175 1.1668 0.0158 0.0096 0.0120 0.0096 0.0017 0.0222e-14
0.4000 -1.1860 1.3355 0.0886 0.0608 0.0133 0.0096 0.0004 0.0222e-14
0.6000 -1.6946 1.5108 0.1031 0.0720 0.0034 0.0016 0.0011 0.0000e-14
0.8000 -2.1301 1.7008 0.0728 0.0512 0.0079 0.0064 0.0012 0.0000e-14
1.0000 -2.4762 1.9167 0.0136 0.0096 0.0136 0.0096 0.0001 0.0000e-14
1.2000 -2.7133 2.1728 0.0545 0.0384 0.0103 0.0064 0.0012 0.0444e-14
1.4000 -2.8171 2.4868 0.1075 0.0752 0.0010 0.0016 0.0013 0.0888e-14
1.6000 -2.7582 2.8795 0.1158 0.0800 0.0139 0.0096 0.0002 0.0000e-14
1.8000 -2.5005 3.3748 0.0435 0.0288 0.0157 0.0096 0.0019 0.0444e-14
2.0000 -2.0000 4.0000 0.1536 0.1056 0.0147 0.0096 0.0009 0.1776e-14

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X
(t
)

-3

-2

-1

0

1

2

3

4

X+(t)
X-(t)

Figure 2: (Hg1)-solution X(t) (with Dg
HX(t) being (Hg2)-differentiable)

of the MBVP for ISDEs (4.1)–(4.2)

Case 3, Case 4: From (3.9) and (3.10) we have no solutions of the MBVP for ISDEs (4.1)–(4.2).

(b) By the real Green’s function method solve the MBVP for ISDE (4.1)–(4.2).

Case 1: By Theorem 6 the general solution of the MBVP for ISDE (4.1)–(4.2) is of the form:

X(t) =

∫ 2

0
G(t, s)[t2, et] ds+W (t), (4.5)

where the real Green’s function G(t, s) is defined by (3.36) and W (t) is the general solution of the
homogeneous interval-valued differential equation.
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Thus, the Green’s function G(t, s) is defined by:

G(t, s) =


(t− 2)s

2
, if 0 6 s 6 t 6 2,

(s− 2)t

2
, if 0 6 t 6 s 6 2,

(4.6)

and we get

X(t) =

∫ t

0
G(t, s)[t2, et] ds+

∫ 2

t
G(t, s)[t2, et] ds+W (t)

=

[
t4

12
− 2t

3
, et − te2

2
+
t

2
− 1

]
+
[
C1t+ C2, C3t+ C4

]
=

[
t4

12
+ C∗1 t+ C2, e

t + C∗3 t+ C4

]
,

where C∗1 , C2, C∗3 , C4 are constants. Applying the boundary condition (4.2), we find that the solution
is

X(t) =

[
t4

12
− 5t

3
, et − t

(e2
2
− 2
)]

(for the numerical simulation and illustrations see Figure 1).

Case 2: This case is similar to Case 1. However, in this case Dg
HX(t) is (Hg2)-differentiable. Thus,

by Theorem 6 the general solution of the MBVP for ISDE (4.1)–(4.2) is of the form:

X(t) =

∫ 2

0
G(t, s)[et, t2] ds+W (t), (4.7)

where the real Green’s function G(t, s) is defined by (3.36) and W (t) is the general solution of the
homogeneous interval-valued differential equation. Note that

∫ 1
0 G(t, s)[et, t2] ds is a solution of

equation (4.1).

Thus, the real Green’s function G(t, s) is defined by:

G(t, s) =


(t− 2)s

2
, if 0 6 s 6 t 6 2,

(s− 2)t

2
, if 0 6 t 6 s 6 2,

(4.8)

and we get

X(t) =

∫ t

0
G(t, s)[et, t2] ds+

∫ 2

t
G(t, s)[et, t2] ds+W (t)

=

[
et − te2

2
+
t

2
− 1,

t4

12
− 2t

3

]
+
[
C1t+ C2, C3t+ C4

]
=

[
et + C∗1 t+ C2,

t4

12
+ C∗3 t+ C4

]
,

where C∗1 , C2, C∗3 , C4 are constants. Applying the boundary conditions (4.2), we find that the
solution is

X(t) =

[
et − t

(e2
2

+
1

2

)
− 1,

t4

12
+

5t

6
+ 1

]
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(for the numerical simulation and illustrations see Figure 2).

We know that in Case 3 and Case 4 from (3.9) and (3.10) we have no solutions of the MBVP for
ISDEs (4.1)–(4.2).

Example 2 By the Hukuhara derivatives and by the real Green’s function methods solve the following
MBVP for ISDE:

D2,g
H X(t) +

1

t
Dg
H −

1

t2
X(t) = sin(t)[1, 2], t ∈

[π
2
, π
]

(4.9)

with the boundary conditions: X
(π

2

)
− 1

2
Dg
HX

(π
2

)
= [0, 1],

X(π)−Dg
HX(π) = [−1, 1].

(4.10)

(a) We will find a solution of the MBVP for ISDE (4.9)–(4.10) by the Hukuhara derivatives method.

Case 1: From (3.7), we get
(X−)

′′
(t) + 1

t (X
−)
′
(t)− 1

t2
X−(t) = sin(t),

(X+)
′′
(t) + 1

t (X
+)
′
(t)− 1

t2
X+(t) = 2 sin(t),

X−(π2 )− 1
2(X−)

′
(π2 ) = 0, X+(π2 )− 1

2(X+)
′
(π2 ) = 1,

X−(π)− (X−)
′
(π) = −1, X+(π)− (X+)

′
(π) = 1.

(4.11)

By solving (4.11), we obtain that

X(t) =

[
2π

3t
+

1

3t
− cos(t)

t
− sin(t)− 2t(3π + π2 + 2)

3π2(π − 1)
,

6π + 3π2 + 2

3t(π + 1)
− 2 cos(t)

t
− 2 sin(t) +

2t(6π − 3π2 + 4)

3π2(π − 1)

]
and Dg

HX(t) are (Hg1)-differentiable. Moreover, X(t) satisfies the boundary conditions (4.10).
Hence, there is a solution in this case. The numerical simulation for this solution is shown in Figure 3.

X(t) =
[
2π
3t

+ 1
3t

− cos(t)
t

− sin(t)− 2t(3π+π2+2)

3π2(π−1)
, 6π+3π2+2

3t(π+1)
− 2 cos(t)

t
− 2 sin(t) + 2t(6π−3π2+4)

3π2(π−1)

]
t

Exact solution Absolute error Absolute error Absolute error
X−(t) X+(t) degree 4 degree 5 degree 6

1.5708 -0.5095 0.9203 0.0714e-3 0.0711e-3 0.1371e-4 0.2090e-4 0.0888e-5 0.1311e-5
1.7279 -0.6526 0.9244 0.1605e-3 0.1693e-3 0.4518e-4 0.6883e-4 0.4159e-5 0.6136e-5
1.8850 -0.7652 0.9821 0.0118e-3 0.0303e-3 0.3101e-4 0.4706e-4 0.6231e-5 0.9182e-5
2.0420 -0.8513 1.0867 0.1067e-3 0.1126e-3 0.2978e-4 0.4559e-4 0.0984e-5 0.1427e-5
2.1991 -0.9148 1.2321 0.0619e-3 0.0442e-3 0.1503e-4 0.2274e-4 0.4780e-5 0.7063e-5
2.3562 -0.9592 1.4119 0.0336e-3 0.0514e-3 0.3360e-4 0.5141e-4 0.0581e-5 0.0832e-5
2.5133 -0.9879 1.6199 0.0826e-3 0.0759e-3 0.0570e-4 0.0893e-4 0.4556e-5 0.6742e-5
2.6704 -1.0047 1.8495 0.0463e-3 0.0202e-3 0.3060e-4 0.4680e-4 0.0163e-5 0.0219e-5
2.8274 -1.0130 2.0938 0.0390e-3 0.0472e-3 0.1978e-4 0.3046e-4 0.5004e-5 0.7422e-5
2.9845 -1.0166 2.3460 0.0780e-3 0.0431e-3 0.3738e-4 0.5731e-4 0.3638e-5 0.5389e-5
3.1416 -1.0189 2.5991 0.0457e-3 0.0318e-3 0.1201e-4 0.1840e-4 0.0804e-5 0.1191e-5
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2.5

3

X+(t)
X-(t)

Figure 3: (Hg1)-solution X(t) (with (Hg1)-derivative Dg1
H ) of the MBVP for ISDEs (4.9)–(4.10)

In Case 2, Case 3 and Case 4 from (3.8), (3.9) and (3.10) we have no solutions of the MBVP
for ISDE (4.9)–(4.10).

(b) By the real Green’s function method solve the MBVP for ISDE (4.9)–(4.10).

Case 1: By Theorem 4 the general solution of the MBVP for ISDE (4.9)–(4.10) is of the form:

X(t) =

∫ 2π

0
G(t, s) sin(s)[1, 2] ds+ Z(t), (4.12)

where the real Green’s function G(t, s) is defined by (3.20), with u1(t) = t and u2(t) = t−1

being two linearly independent solutions of homogeneous real differential equation of the form
x̄
′′
(t)+ 1

t x̄
′
(t)− 1

t2
x̄(t) = 0 with the homogeneous real boundary conditions, and Z(t) is the general

solution of the homogeneous interval-valued differential equation.

Thus, the real Green’s function G(t, s) is defined by:

G(t, s) =


−s

2t−1

2
, if π2 6 s 6 t 6 π,

−t
2
, if π2 6 t 6 s 6 π,

(4.13)

and we have

X(t) =

∫ t

0
G(t, s) sin(s)[1, 2] ds+

∫ 2π

t
G(t, s) sin(s)[1, 2] ds+ Z(t)

=

[
π

2t
− cos(t)

t
− sin(t)− t

2
,
π

t
− 2 cos(t)

t
− 2 sin(t)− t

]
+

[
C1t
−1 − C2

t

2
, C3t

−1 − C4
t

2

]
=

[
−cos(t)

t
− sin(t) + C∗1 t

−1 + C∗2 t, −
2 cos(t)

t
− 2 sin(t) + C∗3 t

−1 + C∗4 t

]
,

(4.14)

where C∗1 , C∗2 , C∗3 , C∗4 are constants. Applying the boundary conditions (4.10), we find that the
solution is

X(t) =

[
2π

3t
+

1

3t
− cos(t)

t
− sin(t)− 2t(3π + π2 + 2)

3π2(π − 1)
,

6π + 3π2 + 2

3t(π + 1)
− 2 cos(t)

t
− 2 sin(t) +

2t(6π − 3π2 + 4)

3π2(π − 1)

]
;
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the illustration of X is shown in Figure 3.

We know that in Case 2, Case 3 and Case 4 from (3.8), (3.9) and (3.10) we have no solutions of
the MBVP for ISDE (4.9)–(4.10).

5 Conclusion

There are some kinds of MBVP for ISDEs. We remark that the solutions of MBVP for ISDEs shrunk
much more than the solutions of IVP for ISDEs. The reason for that is that for MBVP for ISDEs
there are more binding conditions. We have described an algorithm for solving such types of MBVPs
in KC(R) using, for example, the Hukuhara differentiability method and the real Green’s function
method. Moreover, we gave some simple examples of solutions of MBVP for ISDEs illustrating our
algorithm.
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