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1 Introduction

The homotopy perturbation method (HPM) was first proposed by He (1998) to deal with linear
and nonlinear problems [11]. Various studies have investigated this suggested method since it
was proposed. These studies have applied it to solve various linear and nonlinear initial value
problems [1, 2, 11]. A major advantage of HPM is that it addresses a problem directly without
the need for any form of transformation, linearization, discrimination, or any other unrealistic
assumption.

This is in contrast with the classical HPM and other series solution methods which form a re-
current scheme of the solution using only one type of the problem conditions: either the initial
conditions or the boundary conditions.

Since fractional differential equations can be extensively used in fluid mechanics, mathema-
tical biology, electro-chemistry, physics, and in other similar fields and because of their various
applications, they have been given a lot of attention by researchers in recent years. For instance,
fractional derivatives can be used to model the nonlinear oscillation of earthquake. Also, through
applying fractional derivatives in fluid-dynamic traffic model, one can eliminate the problems and
deficiency resulting from the assumption of continuum traffic flow [17]. As a result of the works
done by researchers in the related area in recent years, a number of fractional differential equations
have been investigated and consequently solutions for these equations have been proposed; among
the equations that have been investigated are: impulsive fractional differential equations [15], frac-
tional advection-dispersion equations [12], certain types of time-fractional diffusion equations [19],
fractional generalized Burgers’ fluid [20], fractional KdV-type equations [8], space-time fractional
Whitham-Broer-Kaupand equations [9], fractional heat- and wave-like equations [14], and space
fractional backward Kolmogorov equations [13].

In a study, Tarig M. Elzaki and Sailh M. Elzaki [4–6], indicated that the modified Sumudu
transform [3, 10, 21] or the Elzaki transform can be successfully applied to partial differential
equations, ordinary differential equations, system of ordinary and partial differential equations and
integral equations. The Elzaki transform is a very efficient tool that can be applied to solve some
differential equations that we cannot solve using the Sumudu transform [7].

The present paper is organized as follows. In Section 2, we have presented some fundamental
definitions of fractional calculus, the Elzaki transform of fractional derivative and the classical HPM.
Then, in Section 3, we have introduced and elaborated on the homotopy perturbation Elzaki transform
method (HPETM). And finally, in Section 4, we have offered some examples to solve in order to
show the validity and efficiency of this approach.

2 Preliminaries

In this part of the paper, we present and define fractional equations, the Elzaki transform and we
obtain the Elzaki transform of the Caputo fractional derivative. Furthermore, the fractional homotopy
perturbation method is introduced and explained in detail.
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2.1 Fractional calculus

In this subsection of the paper, we present and define the Riemann–Liouville fractional integral
and the Caputo fractional derivative (see also [18]).

Definition 1 A real function f(x), x > 0, is considered to be in the space Cν , (ν ∈ R), if there
exists a real number n(> ν) so that f(x) = xnf1(x), where f1(x) ∈ C[0,+∞), and it is said to be
in the space Ckν if and only if f (k) ∈ Cν , k ∈ N.

Definition 2 The Riemann–Liouville fractional integral operator of order α > 0 of a function
f ∈ Cν , ν ≥ −1, is given by

Iαa f(x) =
1

Γ(α)

∫ x

a
(x− r)α−1f(r) dr,

Iαf(x) = Iα0 f(x), I0f(x) = f(x).

Definition 3 The Caputo fractional derivative of f is defined as

Dαf(x) = Ik−αDkf(x) =
1

Γ(k − α)

∫ x

0
(x− r)k−α−1f (k)(r) dr, x > 0,

where f ∈ Ck−1, k − 1 < α ≤ k and k ∈ N.

Property 1 For k − 1 < α ≤ k, k ∈ N, f ∈ Ckν , ν ≥ −1 and x > 0, the following properties are
satisfied:

(i) Dα
a I

α
a f(x) = f(x);

(ii) IαaD
α
a f(x) = f(x)−

∑k−1
j=0 f

(j)(a+) (x−a)
j

j! .

2.2 Elzaki transform

The basic definition of the modified Sumudu transform or the Elzaki transform is given as follows.
The Elzaki transform of the function f(t) is:

T (v) = E{f(t), v} = v

∫ ∞
0

f(t)e−
t
v dt, t > 0. (2.1)

Tarig M. Elzaki and Sailh M. Elzaki in [4, 5] presented a modified version of the Sumudu
transform or the Elzaki transform. They used this transform to solve partial differential equations,
ordinary differential equations, systems of ordinary and partial differential equations and integral
equations. The Elzaki transform is a very efficient and powerful tool that can be used to solve some
differential equations which cannot be solved by the Sumudu transform (see [7]).

In order to obtain the Elzaki transform of partial derivatives, we have used integration of parts,
and then the result is (cf. [7]):
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1) E
{∂f(x,t)

∂t

}
= 1

vT (x, v)− vf(x, 0);

2) E
{∂2f(x,t)

∂t2

}
= 1

v2
T (x, v)− f(x, 0)− v ∂f(x,0)∂t ;

3) E
{∂f(x,t)

∂x

}
= d

dxT (x, v);

4) E
{∂2f(x,t)

∂x2

}
= d2

dx2
T (x, v).

2.3 Elzaki transform of the Caputo fractional derivative

In order to obtain the Elzaki transform of the Caputo fractional derivative, we apply the Laplace
transform formula for the Caputo fractional derivative (see [18]):

L{Dαf(x), s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (2.2)

Theorem 1 Let T (v) be the Elzaki transform of f(t), that is, T (v) = E{f(t), v} and let

g(t) =

{
f(t− τ), t ≥ τ,
0, t < τ.

Then E{g(t)} = e
−τ
v T (v).

Proof. See [6]. �

The Elzaki transform can certainly be used to deal with all problems that are usually treated by
the well-known and widely applied Laplace transform.

In fact, as we will see in the next theorem, the Elzaki transform is closely related to the Laplace
transform F (s).

Theorem 2 ([6]) Let

A =
{
f(t)| there exist M,k1, k2 > 0 such that |f(t)| < Me|t|/ki , if t ∈ (−1)j × [0, ∞)

}
and let f(t) ∈ A. If F (s) is the Laplace transform of f(t), then the Elzaki transform T (v) of f(t) is
given by

T (v) = vF

(
1

v

)
. (2.3)

Theorem 3 Suppose T (v) is the Elzaki transform of the function f(t). Then

E{Dαf(t), v} =
T (v)

vα
−
n−1∑
k=0

vk−α+2f (k)(0).
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Proof. From Theorem 2 we have

E{Dαf(t), v} = vL

{
Dαf(t),

1

v

}
.

Now, applying equation (2.2), we get

E{Dαf(t), v} = v

((
1

v

)α
F

(
1

v

)
−
n−1∑
k=0

(
1

v

)α−k−1
f (k)(0)

)
=
vF ( 1v )

vα
−
n−1∑
k=0

vk−α+2f (k)(0).

�

2.4 Homotopy perturbation method

In order to understand the basic idea of He’s homotopy perturbation method, let us consider the
following general nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (2.4)

with the boundary conditions
B (u, ∂u/∂n) , r ∈ Γ, (2.5)

in which A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

Now, we can divide the operatorA into two parts: L andN , where L is linear, andN is nonlinear.
Thus, equation (2.4) can be rewritten as:

L(u) +N(u)− f(r) = 0. (2.6)

Then, by using a homotopy technique, we can form a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, p ∈ [0, 1], (2.7)

or
H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0, (2.8)

in which p ∈ [0, 1] is considered as an embedding parameter, and u0 is the initial approximation of
equation (2.4). This will meet the boundary conditions. Then, the result will be:

H(v, 0) = L(v)− L(u0) = 0, (2.9)

H(v, 1) = A(v)− f(r) = 0. (2.10)

The process of deformation involves the changing process of p from zero to unity, which includes
the process of v(r, p) changing from u0(r) to u(r). Also, L(v)− L(u0) and A(v)− f(r) are called
homotopic in topology. If we suppose the embedding parameter p (0 ≤ p ≤ 1) is small, using the
classical perturbation technique, we can thus suppose that the solution of equations (2.9) and (2.10)
can be given as a power series in p, i.e.,

v = v0 + pv1 + p2v2 + p3v3 + . . . , (2.11)
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and assuming p = 1 leads to the approximate solution of equation (2.7) as:

u = lim
p→1

v = v0 + v1 + v2 + v3 + . . . . (2.12)

It is interesting to mention that the most important advantage of He’s homotopy perturbation
method is that one can construct the perturbation equation in various ways, through homotopy in
topology, that is this method is problem dependent. Moreover, the initial approximation can be freely
selected.

3 Homotopy perturbation Elzaki transform method (HPETM)

In this section, we introduce the fractional homotopy perturbation Elzaki transform method. We
consider the following general nonlinear problem, say in two independent variables x and t:

Dα
t u(x, t) = R u(x, t) + f(x, t), (3.1)

where Dα
t is the fractional Caputo derivative with respect to t, α > 0, R is an operator in x and t

which might include derivatives with respect to ‘x’, u(x, t) is an unknown function, and f(x, t) is
the source in homogeneous term.

Taking Elzaki transforms on both sides of equation (3.1), we get

E{Dα
t u(x, t)} = E{R u(x, t)}+ E{f(x, t)}. (3.2)

Using the differentiation property of the Elzaki transform, we have

E{u(x, t)} =
n−1∑
k=0

vk+2u(k)(x, 0) + vα(E{R u(x, t)}+ E{f(x, t)}). (3.3)

Applying the inverse Elzaki transform to both sides of equation (3.3), we find that

u(x, t) = G(x, t)− E−1
(
vα
(
E{R u(x, t)}+ E{f(x, t)}

))
, (3.4)

where G(x, t) represents the term arising from the source term and the prescribed initial conditions.

Now, we apply the homotopy perturbation method:

u(x, t) =
∞∑
n=0

pnun(x, t). (3.5)

And the nonlinear term can be decomposed as

R u(x, t) =
∞∑
n=0

pnHn(u), (3.6)

where Hn(u) are given by

Hn(u0, u1, · · · , un) =
1

n!

∂

∂pn

[
R

( ∞∑
i=0

piui

)]
. (3.7)
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Substituting equations (3.5) and (3.6) into equation (3.4), we get:

∞∑
n=0

pnun(x, t) = G(x, t) + p

{
E−1

(
vα
(
E

{
R

∞∑
n=0

pnun(x, t) +

∞∑
n=0

pnHn(u)

}))}
. (3.8)

This is a mixture of the Elzaki transform and the homotopy perturbation method for solving nonlinear
partial differential equations of fractional order.

Comparing the coefficient of like powers of p, the following approximations are obtained:

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = E−1
(
vα
(
E{Ru0(x, t) +H0(u)}

))
,

p2 : u2(x, t) = E−1
(
vα
(
E{Ru1(x, t) +H1(u)}

))
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then the solution is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · .

4 Applications

In this section, we apply the Elzaki transform and the homotopy perturbation method to solve
a nonlinear time-fractional advection partial differential equation, a time-fractional hyperbolic
equation and a time-fractional Fisher’s equation. All of the plots and computing for these equations
have been done on a PC applying some programs written in Maple.

Example 1 Consider the nonlinear time-fractional advection partial differential equation

dα

dtα
u(x, t) + u(x, t) ux(x, t) = x(1 + t2), t > 0, x ∈ R, 0 < α ≤ 1, (4.1)

with the initial condition
u(x, 0) = 0. (4.2)

Taking the Elzaki transform of equation (4.1) subjected to the initial condition, we have

E{u(x, t)} = xvα+2 + 2xvα+4 − vαE{u(x, t)ux(x, t)}. (4.3)

The inverse Elzaki transform implies that

u(x, t) =
xtα

Γ(α+ 1)
+

2xtα+2

Γ(α+ 3)
− E−1 {vαE{u(x, t)ux(x, t)}} . (4.4)

Now, applying the homotopy perturbation method, we get

∞∑
n=0

pnun(x, t) =
xtα

Γ(α+ 1)
+

2xtα+2

Γ(α+ 3)
+ p

{
E−1

(
vα

( ∞∑
n=0

pnHn(u)

))}
, (4.5)
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where Hn(u) are He’s polynomials that represent the nonlinear terms. The first few components of
He’s polynomials are given by:

H0(u) = −u0u0x,
H1(u) = −(u0u1x + u1u0x),

H2(u) = −(u2u0x + u2xu0 + u1u1x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparing the coefficients of the same powers of p , we get:

p0 : u0(x, t) = x

(
tα

Γ(α+ 1)
+

2tα+2

Γ(α+ 3)

)
,

p1 : u1(x, t) = −x
(

Γ(2α+ 1)t3α

Γ(α+ 1)2Γ(3α+ 1)
+

4Γ(2α+ 3)t3α+2

Γ(α+ 1)Γ(α+ 3)Γ(3α+ 3)

+
4Γ(2α+ 5)t3α+4

Γ(α+ 3)3Γ(3α+ 5)Γ(5α+ 7)

)
,

p2 : u2(x, t) = 2x

(
Γ(2α+ 1)Γ(4α+ 1)t5α

Γ(α+ 1)3Γ(3α+ 1)Γ(5α+ 1)
+

8Γ(2α+ 5)Γ(4α+ 7)t5α+6

Γ(α+ 3)3Γ(3α+ 5)Γ(5α+ 7)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, the third-order term approximate solution for equation (4.1) is given by

u(x, t) = x

(
tα

Γ(α+ 1)
+

2tα+2

Γ(α+ 3)

)
− x
(

Γ(2α+ 1)t3α

Γ(α+ 1)2Γ(3α+ 1)

+
4Γ(2α+ 3)t3α+2

Γ(α+ 1)Γ(α+ 3)Γ(3α+ 3)
+

4Γ(2α+ 5)t3α+4

Γ(α+ 3)3Γ(3α+ 5)Γ(5α+ 7)

)
+ 2x

(
Γ(2α+ 1)Γ(4α+ 1)t5α

Γ(α+ 1)3Γ(3α+ 1)Γ(5α+ 1)

8Γ(2α+ 5)Γ(4α+ 7)t5α+6

Γ(α+ 3)3Γ(3α+ 5)Γ(5α+ 7)

)
.

The solution that we have found is equivalent to the exact solution in a closed form u(x, t) = xt,
which is the same third-order term approximate solution for equations (4.1)–(4.2) obtained from
[16] using VIM. We can also solve the nonlinear time-fractional advection partial differential
equation (4.1) in [16] through applying ADM.

In Table 1, we can see the approximate solutions for α = 1, which is derived for different values
of x and t using HPETM, HPM and VIM.
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t x uVIM uHPM uHPETM uExact

0.2 0.25 0.050309 0.0499876 0.050000 0.050000
0.50 0.100619 0.099978 0.100000 0.100000
0.75 0.150928 0.149968 0.150001 0.150000
1.0 0.201237 0.199957 0.200001 0.200000

0.4 0.25 0.101894 0.099645 0.100023 0.100000
0.50 0.203787 0.199290 0.200046 0.200000
0.75 0.305681 0.298935 0.300069 0.300000
1.0 0.407575 0.398580 0.400092 0.400000

0.6 0.25 0.153094 0.147158 0.150411 0.150000
0.50 0.306188 0.294317 0.300823 0.300000
0.75 0.459282 0.441475 0.451234 0.450000
1.0 0.612376 0.588634 0.601646 0.600000

Table 1: Numerical values when α = 1 for equation (4.1)

Figure 1: (a) Exact solution (b) The approximate solution in the case α = 1.0

(c) The third-order equation (4.1) for different values of α when x = 0.3

Example 2 Consider the nonlinear time-fractional hyperbolic equation

dα

dtα
u(x, t) =

∂

∂x

(
u(x, t)ux(x, t)

)
, t > 0, x ∈ R, 1 < α ≤ 2, (4.6)

with the initial conditions
u(x, 0) = x2, ut(x, 0) = −2x2. (4.7)

Taking the Elzaki transform of equation (4.6) subjected to the initial conditions, we have

E{u(x, t)} = x2v2 − 2x2v3 + vαE{u2x(x, t)u(x, t)uxx(x, t)}. (4.8)
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The inverse Elzaki transform implies that

u(x, t) = x2 − 2x2t+ E−1
{
vαE{u2x(x, t)u(x, t)uxx(x, t)}

}
. (4.9)

Now, applying the homotopy perturbation method, we get

∞∑
n=0

pnun(x, t) = x2 − 2x2t+ p

{
E−1

(
vα

( ∞∑
n=0

pnHn(u)

))}
, (4.10)

where

H0(u) = u20x + u0u0xx,

H1(u) = 2u0xu1x + u0u1xx + u1u0xx,

H2(u) = 2u0xu2x + u0u2xx + u2u0xx + u1u1xx,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparing the coefficients of the same powers of p, we get:

p0 : u0(x, t) = x2 − 2tx2,

p1 : u1(x, t) =
6x2tα

Γ(α+ 1)
− 24x2tα+1

Γ(α+ 2)
+

48x2tα+2

Γ(α+ 3)
,

p2 : u2(x, t) = 72x2
(

t2α

Γ(2α+ 1)
− 4t2α+1

Γ(2α+ 2)
+

8t2α+2

Γ(2α+ 3)

)
− 144x2

(
Γ(α+ 2)t2α+1

Γ(α+ 1)Γ(2α+ 2)
− 4Γ(α+ 3)t2α+2

Γ(α+ 2)Γ(2α+ 3)
×

× 8t2α+2

Γ(2α+ 3)
+

82Γ(α+ 4)t2α+3

Γ(α+ 3)Γ(2α+ 4)

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The third-order term approximate solution for (4.6) is given by

u(x, t) = x2

[
1− 2t+ 6

(
tα

Γ(α+ 1)
− 4tα+1

Γ(α+ 2)
+

8tα+2

Γ(α+ 3)

)

+ 72

(
t2α

Γ(2α+ 1)
− 4t2α+1

Γ(2α+ 2)
+

8t2α+2

Γ(2α+ 3)

)
− 144

(
Γ(α+ 2)t2α+1

Γ(α+ 1)Γ(2α+ 2)
− 4Γ(α+ 3)t2α+2

Γ(α+ 2)Γ(2α+ 3)

+
8t2α+2

Γ(2α+ 3)
+

82Γ(α+ 4)t2α+3

Γ(α+ 3)Γ(2α+ 4)

)]
.

The resulting solution is equivalent to the exact solution in a closed form: u(x, t) = (x/t + 1)2,
which is the same third-order term approximate solution for (4.6)–(4.7) derived from [16] using VIM.
Through applying ADM, the time-fractional hyperbolic differential equation (4.6) can also be solved
in [16].

The approximate solutions for α = 2.0 obtained for different values of x and t using HPETM,
HPM and VIM, are shown in Table 2.
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t x uVIM uHPM uHPETM uExact

0.2 0.25 0.043400 0.043400 0.0433951 0.043403
0.50 0.173600 0.173600 0.173580 0.173611
0.75 0.390600 0.390600 0.390556 0.390625
1.0 0.694400 0.694400 0.694321 0.694444

0.4 0.25 0.031779 0.031779 0.031567 0.031888
0.50 0.127118 0.127118 0.126268 0.127551
0.75 0.286015 0.286015 0.284103 0.286990
1.0 0.508471 0.508471 0.505072 0.508471

0.6 0.25 0.023665 0.023665 0.022005 0.024414
0.50 0.094660 0.094660 0.088018 0.097656
0.75 0.212984 0.212984 0.198040 0.219727
1.0 0.378638 0.378638 0.352071 0.390625

Table 2: Numerical values when α = 2 for equation (4.6)

Figure 2: (a) Exact solution (b) The approximate solution in the case α = 1.0

(c) The third-order equation (4.6) for different values of α when x = 0.3

Example 3 Consider the nonlinear time-fractional Fisher’s equation

dα

dtα
u(x, t) = uxx(x, t) + 6u(x, t)(1− u(x, t)), t > 0, x ∈ R, 0 < α ≤ 1, (4.11)

with the initial condition
u(x, 0) =

1

(1 + ex)2
. (4.12)

To find the solution by HPETM, we apply the homotopy perturbation method. After taking the Elzaki
and the inverse Elzaki transforms of equation (4.11), we get:

∞∑
n=0

pnun(x, t) =
1

(1 + ex)2
+ p

{
E−1

(
vα

( ∞∑
n=0

pnHn(u)

))}
, (4.13)



102 A. Neamaty, B. Agheli and R. Darzi, J. Nonl. Evol. Equ. Appl. 2015 (2016) 91–104

where:

H0(u) = u0xx(x, t) + 6u0(x, t)(1− u0(x, t)),
H1(u) = u1xx(x, t) + 6u1(x, t)(1− 2u0(x, t)),

H2(u) = u2xx(x, t) + 6u2(x, t)(1− 2u0(x, t))− 6u21(x, t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparing the coefficients of the same powers of p, we get:

p0 : u0(x, t) =
1

(1 + ex)2
,

p1 : u1(x, t) =
10ex

(1 + ex)3
tα

Γ(α+ 1)
,

p2 : u2(x, t) =
50ex(2e

x−1)

(1 + ex)4
t2α

Γ(2α+ 1)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The third-order term approximate solution for (4.11) is given by:

u(x, t) =
1

(1 + ex)2
+

10ex

(1 + ex)3
tα

Γ(α+ 1)
+

50ex(2e
x−1)

(1 + ex)4
t2α

Γ(2α+ 1)
.

The solution found here is equivalent to the exact solution in a closed form: u(x, t) = 1/(1+ex−5t)2,
which results in the same third-order term approximate solution for equations (4.11)–(4.12) obtained
from [16] through using VIM. We can further solve the nonlinear time-fractional advection partial
differential equation (4.11) in [16] using ADM.

The approximate solutions for α = 1 obtained for different values of x and t using HPETM,
HPM and VIM, can be seen in Table 3.

t x uVIM uHPM uHPETM uExact

0.1 0.25 0.315940 0.315940 0.317948 0.316042
0.50 0.249926 0.249926 0.250500 0.250000
0.75 0.191606 0.191606 0.190964 0.191689
1.0 0.142411 0.142411 0.140979 0.142537

0.2 0.25 0.459320 0.459320 0.481199 0.461284
0.50 0.386450 0.386450 0.396941 0.387456
0.75 0.315478 0.315478 0.315266 0.316042
1.0 0.249092 0.249092 0.241175 0.250000

0.3 0.25 0.591179 0.591179 0.681440 0.604195
0.50 0.527635 0.527635 0.581861 0.534447
0.75 0.459719 0.459719 0.475833 0.461284
1.0 0.387025 0.387025 0.372917 0.387456

Table 3: Numerical values when α = 1 for equation (4.11)
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Figure 3: (a) The exact solution (b) The approximate solution in the case α = 1.0

(c) The third-order equation (4.11) for different values of α when x = 0.3

5 Conclusion

In this paper, we have proposed a mixed version of the Elzaki transform and the homotopy pertur-
bation method in order to solve nonlinear partial differential equations of fractional order. We have
shown that the solution of such equations is simple when we use the Adomian decomposition method,
but the calculation of Adomian’s polynomials is complex in this method. The major advantage of
this technique in comparison with the decomposition method is that the developed algorithm can
solve nonlinear partial differential equations without the need for Adomian’s polynomials.
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[10] N. Güzel, M. Kurulay, Solution of stiff systems by using differential transform method,
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