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Abstract. In this paper we study gradient estimates for all positive solutions of a class of heat-type
equations defined on a Riemannian manifold whose metric is evolving by the generalized geometric
flow. In particular, we apply Laplacian comparison theorem and maximum principle to obtain Li–Yau
type gradient estimates (local and global). As a corollary, differential Harnack inequalities are
derived. The reason for this on the one hand is to show the advantage of using Ricci flow and on the
other hand is to prepare ground for applications to other special cases of geometric flow.
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1 Introduction

Let M be an n-dimensional complete manifold on which a one parameter family of Riemannian
metrics g(t), t ∈ [0, T ] is defined. We say that gij(x, t) is a solution to the generalized geometric
flow, if it is evolving by the following equation

∂

∂t
gij(x, t) = 2hij(x, t), (x, t) ∈M × [0, T ] (1.1)

with gij(0) = g0, where hij is a general time-dependent symmetric (0, 2)-tensor and T > 0 is taken
to be the maximum time of existence for the flow. The scaling factor 2 in (1.1) is insignificant. By a
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positive solution to the heat-type equation on the manifold we mean a smooth function, at least C2 in
x and C1 in t, u(x, t) = u ∈ C2,1(M × [0, T ]), which satisfies the following equation(

∆g −
∂

∂t
−R

)
u(x, t) = 0, (x, t) ∈M × [0, T ], (1.2)

where the symbol ∆g is the Laplace–Beltrami operator acting on functions in space with respect
to metric g(t) in time and R : M × [0, T ] → R is a C∞-function on M . We study Li–Yau type
gradient estimates for all positive solutions of a class of equations of the form (1.2). A very good
example is the conjugate heat equation �∗u = (∆g−∂t+gijhij)u(x, t) = 0 (i.e., adjoint to the heat
operator � = (∆g − ∂t)), which the author studied in [1] under both forward and backward in time
Ricci flow. The case hij = −Rij (resp. Rij) is precisely when the manifold is being evolved with
respect to forward (resp. backward) Ricci flow. In fact, one of the motivations to study this subject
arises from the question: Is there any merit or demerit of flowing Riemannian manifold by the Ricci
flow? Here, we show the advantage of using Ricci flow, which is due to the presence of contracted
second Bianchi identity. Noticing that Ricci flow theory has led to numerous breakthroughs in the
field of Mathematics and Physics, a very much celebrated of which is the complete solution to the
Poincaré conjecture (due to G. Perelman’s completion of Hamilton’s program). On the other hand,
the result here gives a general framework to considering special cases of geometric flow, e.g. the
case of Ricci flow coupled to harmonic map heat flow, where hij = −Rij + γ∇iu⊗∇ju, γ > 0
and u is a harmonic map between M and another manifold isometrically embedded in Euclidean
space as considered in a recent preprint [2] by Bǎileşteanu.

The importance of gradient estimates as well as those of Harnack inequalities can not be
overemphasised in the fields of differential geometry and analysis among their numerous applications.
Differential Harnack inequalities are used to study the behaviours of solutions to the heat equation in
space-time. Li and Yau’s paper [12] can be said to mark the beginning of rigorous applications of
these concepts. They derived gradient estimates for positive solutions to the heat operator defined
on a complete manifold with static metric, from which they obtained Harnack inequalities. These
inequalities were in turn used to establish various lower and upper bounds on the heat kernel.
Precisely, Li and Yau’s result for static metrics is the following

Theorem A (Li–Yau [12]) Let (M, g) be an n-dimensional complete Riemannian manifold. Sup-
pose there exists some non-negative constant k such that the Ricci curvature Rij(g) ≥ −k. Let
u ∈ C2,1(M × [0, T ]) be any smooth positive solution to the heat equation(

∆− ∂

∂t

)
u(x, t) = 0 (1.3)

in the geodesic ball B2ρ × [0, T ]. Then, the following estimate holds

sup
x∈Bρ

{
|∇u|2

u2
− αut

u

}
≤ nα2

2t
+
Cα2

ρ2

(
α2

α2 − 1
+
√
kρ

)
+

nα2k

2(α− 1)
(1.4)

for all (x, t) ∈ B2ρ,T , t > 0 and some constant C depending only on n and α > 1. Moreover, the
following estimate

sup
x∈Bρ

{
|∇u|2

u2
− αut

u

}
≤ nα2

2t
+

nα2k

2(α− 1)
(1.5)

holds for a complete non-compact manifold by letting ρ→∞.
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The above results have been improved by Davies [7, Section 5.3] as follows

sup
x∈Bρ

{
|∇u|2

u2
− αut

u

}
≤ nα2

2t
+

nα2k

4(α− 1)
. (1.6)

If k = 0, one can choose α = 1 and the second terms in both (1.5) and (1.6) disappear giving the
sharp estimate

|∇u|2

u2
− ut
u
≤ n

2t
.

We remark that α can be chosen as a constant function of time only in such a way that it goes to 1 as
t → 0, see for instance Hamilton [9], Huang, Huang and Li [10] and Li and Xu [11]. There have
been increasing efforts towards obtaining counterparts of the above estimates on evolving manifolds.
In [1], the author studied heat equation and its conjugate, where Laplacian is perturbed with the
curvature operator on metrics evolving by either forward or backward Ricci flow. Precisely, assume
u = u(x, t) solves the conjugate heat equation

(∂t −∆ +R)u(x, t) = 0, (x, t) ∈M × [0, T ], T <∞, (1.7)

where R is the scalar curvature, the metric trace of its Ricci curvature tensor and T <∞ is taking to
be the maximum time of existence of the Ricci flow. Define the geodesic cube Q2ρ ⊂M by

Q2ρ,T := {(x, t) ∈M × (0, T ] : d(x, y, t) ≤ 2ρ},

we have

Theorem B ([1]) Let (M, g(t)), t ∈ [0, T ] be a complete solution to the backward Ricci flow (i.e.,
hij = Rij) with R ≥ −k1, Rc ≥ −k2 and |∇R| ≤ k3, for some constants k1, k2, k3 ≥ 0. Let
u = u(x, t) be any positive solution to the heat equation (1.7) defined in Q2ρ,T ⊂ (M × [0, T ]),
satisfying 0 < u ≤ A. There exist absolute constants C1, C2 depending on n such that

|∇u|2

u2
≤
(

1 + log

(
A

u

))2(1

t
+ C2k1 + 4k2 + 2k3 +

1

ρ2

(
ρC1

√
k2 + C2

))
.

Similarly, let (M, g(t)), t ∈ [0, T ] be a complete solution to the forward Ricci flow (i.e., hij = −Rij);
then

|∇u|2

u2
≤
(

1 + log

(
A

u

))2(1

t
+ C2k1 + 2k3 +

C2

ρ2

)
.

In [1] we equally proved results for gradient estimates and Harnack inequalities (space-time) for
the positive solutions to the heat equation in the geodesic cube Q2ρ,T of bounded Ricci curvature
manifold evolving by the Ricci flow as follows:

Theorem C ([1]) Let (M, g(t)), t ∈ [0, T ] be a complete solution of the forward Ricci flow such that
the Ricci curvature is bounded in Q2ρ,T , i.e., −k1g(x, t) ≤ Rc(x, t) ≤ k2g(x, t) for some positive
constants k1 and k2, with (x, t) ∈ Q2ρ,T ⊂ (M × [0, T ]). Suppose a smooth positive function
u ∈ C2,1(M × [0, t]) solves the heat equation (1.3) in the cube Q2ρ,T . Then, for any given α > 1
with 1

p + 1
q = 1

α and all (x, t) ∈ Q2ρ × [0, T ], the following estimate holds for f = log u

sup
x∈Q2ρ

{
|∇f |2 − αft

}
≤ αnp

4t
+ Cα2

(
α2p

ρ2(α− 1)
+

1

t
+ (k1 + k2)

)
+

α2np

2(α− 1)
k1 +

αn

2
(k1 + k2)

√
pq,

(1.8)
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where C is an arbitrary constant depending only on the dimension of the manifold. Moreover, we
have the following Harnack inequalities

u(x1, t1)

u(x2, t2)
≤
(
t2
t1

)np
4

exp

{
αΘ(x1, t1;x2, t2)

4(t2 − t1)
+

(t2 − t1)
2(α− 1)

A(n, α, p, q, k1, k2)

}
, (1.9)

where

Θ(x1, t1;x2, t2) = inf

∫ 1

0
|γ̇(s)|2 ds,

the infimum is taken over all the smooth paths γ : [t1, t2] → M connecting x1 and x2, and
A(n, α, p, q, k1, k2) = nαpk1 + n(α− 1)(k1 + k2)

√
pq.

We remark that estimates and bounds on parabolic equations behave in a similar way whether
the metric is static or moving. This can be justified by the fact that heat diffusion on a bounded
geometry with either static or evolving metric behaves like heat diffusion in Euclidean space, many a
times, their estimates even coincide. In this paper however, we examine the general framework for
the gradient estimates of a class of parabolic equations as in (1.2) under the generalized geometric
flow in the form of (1.1). We also derive differential Harnack inequalities and LYH type estimate.
The plan is as follows: In Section 2 we highlight the basic tools used in the paper and prove some
technical results in a lemma. This lemma further reveals the advantage of contracted second Bianchi
identity. In Section 3, we discuss local space-time gradient estimates for the heat-type equation (1.2)
on a manifold evolving by the generalized flow (1.1). As an application of these results we obtain
Li–Yau type Harnack inequalities.

2 Preliminaries and technical results

Throughout, we work on a C∞ manifold which is endowed with Riemannian metric ds2 = g =
gijdx

idxj , where {xi}, 1 ≤ i ≤ n is a local coordinate systems and n is the dimension of the
manifold. The operator ∆ is the Laplace-Beltrami operator on (M, g) which is defined by

∆g =
1√
|g|

∂i

(√
|g| gij∂j

)
and ∇ = gij∂i is the gradient operator, where |g| = determinant of g and gij = (gij)

−1, inverse
metric. A natural function that will be defined on M is the distance function from a given point.
Namely, let p ∈M and define d(x, p) for all x ∈M , where dist(·, ·) is the geodesic distance. Note
that d(x, p) is only Lipschitz continuous, i.e., everywhere continuous except on the cut locus of p
and on the point where x and p coincide. It is then easy to see that

|∇d| = gij∂id ∂jd = 1 on M \
{
{p} ∪ cut(p)

}
.

Let d(x, y, t) be the geodesic distance between x and y with respect to the metric g(t), we define a
smooth cut-off function ϕ(x, t) with support in the geodesic cube

Q2ρ,T := {(x, t) ∈M × (0, T ] : d(x, y, t) ≤ 2ρ}.

For any C2-function ψ(s) on [0,+∞) with

ψ(s) =

{
1, s ∈ [0, 1],

0, s ∈ [2,+∞)
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and

ψ′(s) ≤ 0, ψ′′(s) ≤ C1 and
|ψ′|2

ψ
≤ C2,

where C1, C2 are absolute constants, such that

ϕ(x, t) = ψ

(
d(x, p, t)

ρ

)
and ϕ

∣∣
Q2ρ,T

= 1.

We will apply maximum principle and invoke Calabi’s trick to assume everywhere smoothness
of ϕ(x) since ψ(s) is in general Lipschitz. We need Laplacian comparison theorem to do some
calculation on ϕ(x, t). Here is the statement of the theorem: Let M be a complete n-dimensional
Riemannian manifold whose Ricci curvature is bounded from below by Rc ≥ (n− 1)k for some
constant k ∈ R. Then the Laplacian of the distance function satisfies

∆d(x, p) ≤


(n− 1)

√
k cot(

√
kρ), k > 0,

(n− 1)ρ−1, k = 0,

(n− 1)
√
|k| coth(

√
|k|ρ), k < 0.

Throughout, we will impose boundedness condition on the Ricci curvature of the metric g(t).
We notice that when the metric evolves by the Ricci flow, boundedness and sign assumptions are
preserved as long as the flow exists, so it follows that the metrics are uniformly equivalent. Precisely,
if −K1g ≤ Rc ≤ K2g, where g(t), t ∈ [0, T ] is a Ricci flow, then

e−k1T g(0) ≤ g(t) ≤ ek2T g(0). (2.1)

To see the above bounds (2.1) we consider the evolution of a vector form |X|g = g(X,X), X ∈ TxM .
By the equation of the Ricci flow ∂

∂tg(X,X) = −2Rc(X,X), 0 ≤ t1 ≤ t2 ≤ T and by the
boundedness of the Ricci curvature we have∣∣∣∣ ∂∂tg(X,X)

∣∣∣∣ ≤ K2g(X,X),

which implies (by integrating from t1 to t2)∣∣∣∣log
g(t2)(X,X)

g(t1)(X,X)

∣∣∣∣ ≤ K2t
∣∣∣t2
t1
.

Taking the exponential of this estimate with t1 = 0 and t2 = T yields |g(t)| ≤ ek2T g(0) from which
the uniform boundedness of the metric follows. See [5] and [6] for details on the theory of the
Ricci flow. Similarly, if there holds the boundedness assumption −cg ≤ h ≤ Cg, the metric g(t) is
uniformly bounded from below and above for all times 0 ≤ t ≤ T under the geometric flow (1.1).
Then, it does not matter what metric we use in the argument that follows.

Most of our calculations are done in local coordinates where {xi} is fixed in a neighbourhood of
every point x ∈ M . We switch between the Rc and Rij for the Ricci curvature notation, and any
time Rij is used we assume to be on local coordinates at x. We also define some classical identities
on function f ∈ C∞ at a point x in a local normal coordinate system, namely, Bochner–Weitzenböck
identity

∆|∇f |2 = 2|fij |2 + 2fjfjji + 2Rijfifj (2.2)



6 Abimbola Abolarinwa, J. Nonl. Evol. Equ. Appl. 2015 (2015) 1–19

and Ricci identity
fjfjii − fjfjji = Rijfifj .

We make use of the above identities and we try as much as possible to be explicit at any point where
they are used.

Lemma 2.1 Suppose a one-parameter family of smooth metrics g(t) solves the geometric flow (1.1).
Then, we have the following evolutions

(1)
∂

∂t
gij = −2gikgjlhkl = −2hij ,

(2)
∂

∂t
Γkij = gkl

(
∂ihjl + ∂jhil − ∂lhij

)
,

(3)
∂

∂t
|∇f |2 = −2hijfifj + 2fifti,

(4)
∂

∂t
(∆f) = ∆(ft)− 2hijfij − 2〈div h,∇f〉+ 〈∇H,∇f〉.

Here gij is the matrix inverse of gij , Γkij are the Christoffel’s symbols with respect to Levi–Civita
connection, ∆ = ∆g(t), H = gijhij , the metric trace of a symmetric 2-tensor hij and f is a smooth
function defined on M .

Proof. Recall that both gij and hij are symmetric tensors and gijgjl = δil . Note also that Levi–Civita
connection is not a tensor, but the time derivative of a connection is (2, 1) tensor. Then (2) holds as a
tensor equation in any coordinate system and at any point. The proofs of (1) and (2) are the same as
those of [5, Lemmas 3.1 and 3.2]. We only give the computations in local coordinates which lead to
the proofs of (3) and (4):

∂t(|∇f |2) = ∂t(g
ij∂if∂jf)

= (∂tg
ij)∂if∂jf + 2gij∂if∂jft

= −2hij∂if∂jf + 2gij∂if∂jft

= −2hijfifj + 2fift,i.

Using evolutions in (1) and (2) we have

∂

∂t
(∆f) =

∂

∂t
[gij(∂i∂j − Γkij∂k)f ]

=
∂

∂t
(gij)(∂i∂j − Γkij∂k)f + gij(∂i∂j − Γkij∂k)

∂

∂t
f − gij

(
∂

∂t
Γkij

)
∂kf

= −2hij∇i∇jf + ∆(ft)− gijgkl
(
∇ihjl +∇jhil −∇lhij

)
∇kf

= ∆(ft)− 2hijfij − 2gkl
(
gij∇ihjl −

1

2
gij∇lhij

)
∇kf

= ∆(ft)− 2hijfij − 2〈div h,∇f〉+Hifj ,

where div is the divergence operator, i.e., (div h)k = gij∇ihjk. �
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Remark 2.2 If it was under the Ricci flow, the contracted second Bianchi identity would make the
addition of the last two terms in the RHS of the last equality to vanish. This accounts for the reason
we do not need any bound on the gradient of the Ricci curvature when the manifold evolves by
the Ricci flow, where as in the next section we need to control the growth of curvature, namely
|∇h|, |∇H|.

3 Gradient estimates and Harnack inequalities

This section extends the results of Sections three and four of [1] (Theorem B above) to a more general
situation of geometric flow. This generalization further reveals the advantage of contracted second
Bianchi identity we enjoy under the Ricci flow and makes it more obvious that it could be easier to
handle the case of Ricci flow under less severe assumption on the curvature. Moreover, this case of
generalized flow can be applied to some other special cases such as mean curvature flow, Bernard
List extended Ricci flow and Reto Müller Ricci-harmonic map flow. Let (M, g(t)), t ∈ [0, T ] be a
smooth one parameter family of complete Riemannian metrics evolving by the geometric flow

∂

∂t
gij(x, t) = 2hij(x, t), (x, t) ∈M × [0, T ], (3.1)

where hij is a smooth family of symmetric (0, 2)-tensors which may depend on the metric g, its trace
is denoted by H = gijhij . Let u = u(x, t) be a positive solution to the following heat-type equation

(
∆g −

∂

∂t
−R

)
u(x, t) = 0, (x, t) ∈M × [0, T ], (3.2)

where R(x, t) is a smooth function on M × [0, T ] and ∆ is the usual Laplace-Beltrami operator
acting on functions with respect to the metric g(t). Here, we use the notation R(x, t) since we
may have to treat it just like scalar curvature of the metric g(t) as in [1] but should not be confused
with scalar curvature tensor R. In general, it should be viewed as a potential function, which could
even be nonlinear. An interesting case is to make R = H , the metric trace of the symmetric
tensor hij . For some of the cases described above see [8, 12, 16] and [4, Chapters 24 and 25] for
related issues. After the completion of our work, the preprint [2] by Bailesteanu was brought to our
notice, where he considered a special case of Ricci flow coupled to harmonic map heat flow with
hij = −Rij + γ∇iu ⊗ ∇ju, γ > 0 and u is a harmonic map between M and another manifold
isometrically embedded in Euclidean space. This flow was introduced by Muller in [14] and can be
traced back to List [13].

In the next, we give the following important lemma which is a generalization of Lemma 3.1 in
[1]. It is due to Li and Yau [12]. This is very crucial to derivation of both local and global estimate
of Li–Yau type.

Lemma 3.1 Let (M, g(t)) be a complete solution to the generalized flow (3.1) in some time interval
[0, T ]. Suppose there exist some non-negative constants k1, k2, k3, and k4 such that Rij(g) ≥
−K1g, −k2g ≤ h ≤ k3g and |∇h| ≤ k4 for all t ∈ [0, T ]. For any smooth positive solution
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u ∈ C2,1(M × [0, T ]) to the heat-type equation (3.2) in the geodesic cube Q2ρ,T , it holds that

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 −
(
|∇f |2 − α∂tf − αR

)
+

2α

np
t
(
|∇f |2 − ∂tf −R

)2
− 2
(
k1 + (α− 1)k3

)
t|∇f |2 − 3αn

1
2k4t|∇f | −

αnq

2
t(k2 + k3)

2

− 2t(α− 1)〈∇f,∇R〉 − αt∆R,

(3.3)

where f = log u, F = t
(
|∇f |2 − α∂tf − αR

)
and α ≥ 1 are given such that 1

p + 1
q = 1

α for any
real numbers p, q > 0.

Proof. (Still working in local coordinate system). Notice that ft = ∆f + |∇f |2 − R. Taking
covariant derivative of F we have

Fi = t(2fjfji − αfti − αRi)

and with Bochner’s formula we have

∆F =

n∑
i=1

Fii = t
(
2f2ij + 2fjfjji + 2Rijfij − α∆(ft)− α∆R

)
.

Using Lemma 2.1, we get

∆F = t
[
2f2ij + 2fjfjji + 2Rijfij − α(∆f)t − 2αhijfij

− 2α(div h)ifj + αHifj − α∆R
]

= t
(
2f2ij − 2αhijfij

)
+ 2t

〈
∇f,∇

(
ft +R− |∇f |2

)〉
− αt

(
ft +R− |∇f |2

)
t

− 2αt(div h)ifj + αtHifj − αt∆R+ 2tRijfij .

Notice that

− αt
(
ft +R− |∇f |2

)
t

= t
(
α|∇f |2 − αft − αtR

)
t

= t
{
|∇f |2 − αft − αR+ (α− 1)|∇f |2

}
t

= t

{
F

t
+ (α− 1)|∇f |2

}
t

= Ft −
F

t
+ t(α− 1)

(
|∇f |2

)
t

(3.4)

and

2t
〈
∇f,∇

(
ft +R− |∇f |2

)〉
+ t(α− 1)

(
|∇f |2

)
t

= 2t
〈
∇f,∇

(
ft +R− |∇f |2

)〉
+ 2t(α− 1)〈∇f,∇(ft)〉 − 2t(α− 1)hijfifj

= 2t
〈
∇f,∇

(
αft +R− |∇f |2

)〉
− 2t(α− 1)hijfifj

= −2t

〈
∇f,∇

(
F

t
+ (α− 1)R

)〉
− 2t(α− 1)hijfifj

= −2〈∇f,∇F 〉 − 2t(α− 1)〈∇f,∇R〉 − 2t(α− 1)hijfifj .

(3.5)
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With (3.4) and (3.5) we get

∆F − Ft = t
(
2f2ij − 2αhijfij

)
− 2〈∇f,∇F 〉 − F

t
− 2t(α− 1)hijfifj

− αt
(
2(div h)ifj −Hifj

)
− 2t(α− 1)〈∇f,∇R〉 − αt∆R+ 2tRijfij .

Now we can choose any two real numbers p, q > 0 such that 1
p + 1

q = 1
α , so that we can write

2f2ij − 2αhijfij =
2α

p
f2ij + 2

α

q

(
f2ij − hijfij

)
=

2α

p
f2ij + 2α

(
1
√
q
fij −

√
q

2
hij

)2

− αq

2
h2ij

≥ 2α

p
f2ij −

αq

2
h2ij ,

where we have used completing the square method to arrive at the last inequality. Also by Cauchy–
Schwarz inequality

(∆f)2 = |gij∂i∂jf |2 ≤ nf2ij

holds at an arbitrary point (x, t) ∈ Q2ρ,T , therefore we have f2ij ≥ 1
n(∆f)2. We can also write the

boundedness condition on hij as −(k2 + k3)g ≤ hij ≤ (k2 + k3)g, so that

sup
M
|hij |2 ≤ n(k2 + k3)

2,

since hij is a symmetric tensor. Therefore, we have

t
(
2f2ij − 2αhijfij

)
≥ 2αt

np
(∆f)2 − αnq

2
t(k2 + k3)

2. (3.6)

Notice also that

αt
(

2(div h)ifj −Hifj

)
= 2αt

(
div h− 1

2
∇H

)
fj

= 2αt
(
gij∇ihjl −

1

2
gij∇ihij

)
∇jf

≤ 2αt

(
3

2
|g||∇h|

)
|∇f |

≤ 3αtn
1
2k4|∇f |.

Using the last inequality and (3.6) with the hypothesis of the theorem, we have

(∆− ∂t)F ≥ −2〈∇f,∇F 〉 − F

t
− 2t(α− 1)k3|∇f |2 − 2tk1|∇f |2

+
2αt

np

(
|∇f |2 − ft −R

)2 − 3αtn
1
2k4|∇f | −

αnq

2
t(k2 + k3)

2

− 2t(α− 1)〈∇f,∇R〉 − αt∆R.

Our calculation is valid in the cube Q2ρ,T . Hence the desired claim follows. �
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Next we give the general local space-time gradient estimate corresponding to those of (1.8) of
Theorem C.

Theorem 3.2 Let (M, g(t)), t ∈ [0, T ] be a complete solution to the geometric flow (3.1). Suppose
there exist some non-negative constants k1, k2, k3, and k4 such that Rij(g) ≥ −k1g, −k2g ≤ h ≤
k3g and |∇h| ≤ k4 for all t ∈ [0, T ]. Let u ∈ C2,1(M × [0, T ]) be any smooth positive solution to
the heat-type equation (3.2) in the geodesic cube Q2ρ,T , with |∇R| ≤ β and |∆R| ≤ ξ. Then, the
following estimate holds

sup
x∈Q2ρ

{
|∇f |2 − αft − αR

}
≤ αnp

4t
+
Cα

ρ2

(
αp

α− 1
+
ρ

t
+ ρ
√
k1 + ρ2(k2 + k3)

2

)
+

αnp

α− 1

(
k1 + (α− 1)k3 + k4

)
+

(α− 1)

2
βt

√
αnp(

k1 + (α− 1)k3 + k4
)

+
αn

2
(k2 + k3 + 2

√
k4)
√
pq + α

√
npξ

2

(3.7)

for all (x, t) ∈ Q2ρ,T , t > 0 and some constant C depending only on n, where f = log u,
F = t

(
|∇f |2 − α∂tf − αR

)
and α > 1 are given such that 1

p + 1
q = 1

α for any real numbers
p, q > 0.

This can be written in a more compact form

sup
x∈Q2ρ

{
|∇f |2 − αft − αR

}
≤ αnp

4t
+ C ′

(
k1 + k2 + k3 + k4 +

√
k1 +

√
k4 + β + ξ +

1

t

)
+

αnp

α− 1

(
k1 + (α− 1)k3 + k4

)
,

where C ′ depends on n, ρ and α only.

Proof. We are still using the same notations as in the last lemma; here we write K̃ = (k2 + k3)
2.

For a fixed τ ∈ (0, T ] and a smooth cut-off function ϕ(x, t) (also chosen as before), we now estimate
the inequality (3.3) at the point (x0, t0) ∈ Q2ρ,T ⊂ (M × [0, T ]) such that dist(x, x0, t) < ρ. The
argument follows;

(∆− ∂t)(ϕF ) = 2∇ϕ∇F + ϕ(∆− ∂t)F + F (∆− ∂t)ϕ. (3.8)

Suppose (ϕF ) attains its maximum value at (x0, t0) ∈M× [0, T ], for t0 > 0. Since (ϕF )(x, 0) = 0
for all x ∈M , we have by the maximum principle that

∇(ϕF )(x0, t0) = 0,
∂

∂t
(ϕF )(x0, t0) ≥ 0, ∆(ϕF )(x0, t0) ≤ 0, (3.9)

where the function (ϕF ) is being considered with support on Q2ρ × [0, T ] and we have assumed
that (ϕF )(x0, t0) > 0 for t0 > 0. By (3.9) we notice that

(∆− ∂t)(ϕF )(x0, t0) ≤ 0.
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Hence, we have by using the inequality (3.3) and the equation (3.8):

0 ≥ (∆− ∂t)(ϕF ) ≥ 2∇ϕ∇F − 2ϕ|∇f |∇F − ϕF
t

+ ϕ

{
2α

np
t
(
|∇f |2 − ∂tf −R

)2 − 2
(
k1 + (α− 1)k3 + k4

)
t|∇f |2

− 2α2nt
(q

4
K̃ + k4

)}
− 2t(α− 1)|∇f ||∇R|ϕ− αtϕ|∆R|+ C3F,

(3.10)

where we have used the inequality

3αn
1
2k4t|∇f | ≤ 2tk4|∇f |2 + 2α2ntk4

and

(∆− ∂t)ϕ ≥
(
−C2

ρ2
− C1(n− 1)

ρ

√
k1 coth(

√
k1ρ)− C2K̃

)
=: C3,

where C1, C2 depend only on n as defined in section three. The calculation of C3 is as follows:

|∇ϕ|2

ϕ
=
|ψ′|2 · |∇d|2

ρ2ϕ
≤ C2

ρ2

and by the Laplacian comparison theorem we have

∆ϕ =
ψ′∆d

ρ
+
ψ′′|∇d|2

ρ
≥ −C1

ρ
(n− 1)

√
k2 coth(

√
k2ρ)− C2

ρ2

≥ −C1

ρ
(n− 1)

√
k2 coth(

√
k2ρ)− C2

ρ2
≥ −C1

ρ

√
k2 −

C2

ρ2
.

Next is to estimate time derivative of ϕ: consider a fixed smooth path γ : [a, b]→M whose length
at time t is given by d(γ) =

∫ b
a |γ

′(t)|g(t) dr, where r is the arc length. Differentiating we get

∂

∂t
(d(γ)) =

1

2

∫ b

a

∣∣∣γ′(t)∣∣∣−1
g(t)

∂g

∂t

(
γ′(t), γ′(t)

)
dr =

∫
γ
hij(X,X) dr,

where X is the unit tangent vector to the path γ (for details see [5, Lemma 3.11]). Now

∂

∂t
ϕ = ψ′

1

ρ

d

dt
(d(t)) = ψ′

1

ρ

∫
γ
hij(X,X) dr ≤

√
C2

ρ
(k2 + k3)

2

∫
γ

dr =
√
C2K̃.

Hence

C3 := −C1

ρ

√
k2 −

C2

ρ2
−
√
C2K̃

will be used later.

Notice that since ∇(ϕF ) = 0, the product rule tells us that we can always replace −F∇ϕ with
ϕ∇F at the maximum point (x0, t0). Indeed, the following identity holds

−ϕ∇F · ∇f = F∇ϕ · ∇f.
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The above inequality (3.10) holds in the part of Q2ρ,T , where ϕ(x, t) is strictly positive (0 <
ϕ(x, t) ≤ 1 ). Multiplying by (tϕ) after some simple calculation involving the last identity at the
maximum point we get

0 ≥− 2t
C2

ρ2
ϕF − ϕ2F − 2t

√
C2

ρ2
|∇f |ϕ

3
2F

+
2t2

n

{
α

p

(
ϕ|∇f |2 − ϕ∂tf − ϕR

)2 − n(k1 + (α− 1)k3 + k4
)
ϕ2|∇f |2

−α2n2
(
q

4
K̃ + k4

)
ϕ2

}
− 2t2(α− 1)|∇f ||∇R|ϕ2 − αt2ϕ2|∆R|+ C3tϕF.

Using a similar technique as in Li–Yau paper [12] when t > 0, let y = ϕ|∇f |2 and z = ϕ(ft +R)

to obtain ϕ2|∇f |2 ≤ ϕy ≤ y and y
1
2 (y − αz) = 1

t |∇f |ϕ
3
2F , with t(y − αz) = ϕF . We get

0 ≥− 2t
C2

ρ2
ϕF − ϕ2F − 2t

√
C2

ρ2
|∇f |ϕ

3
2F

+
2t2

n

{
α

p
(y − z)2 − n

(
k1 + (α− 1)k3 + k4

)
y − α2n2

(
q

4
K̃ + k4

)
ϕ2

}
− 2t2(α− 1)y

1
2 |∇R| − αt2ϕ2|∆R|+ C3tϕF.

Rearranging, using bounds on the gradients ofR, namely, |∇R| ≤ β, |∆R| ≤ ξ, and denoting

D = D(α, k1, k3, k4) =
(
k1 + (α− 1)k3 + k4

)
we have

0 ≥ −ϕ2F +
2t2

n

{
α

p
(y − z)2 − 2nDy + nDy − np(α− 1)βy

1
2

− np
√
C2

ρ2
y(y − αz)− α2n2

(
q

4
K̃ + k4

)
ϕ2

}
− αt2ϕ2ξ +

(
C3t− 2t

C2

ρ2

)
ϕF.

(3.11)

Notice by direct calculation that

(y − z)2 =

[
1

α
(y − αz) +

α− 1

α
y

]2
=

1

α2
(y − αz)2 +

(α− 1)2

α2
y2 +

2(α− 1)

α2
y(y − αz).
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Then, the second term in the right-hand side of the last inequality can be simplified as follows:

2t2

n

{
α

p

[
(y − z)2 − 2npD

α
y +

npD

α
y − np(α− 1)

α
βy

1
2 − np

α

√
C2

ρ2
y(y − αz)

]

− α2n2
(
q

4
K̃ + k4

)
ϕ2

}

=
2t2

n

{
α

p

[
1

α2
(y − αz)2 +

(
(α− 1)2

α2
y2 − 2npD

α
y

)
+

(
npD

α
y − np

α
(α− 1)βy

1
2

)

+

(
2(α− 1)

α2
y − np

α

√
C2

ρ
y

1
2

)
(y − αz)

]
− α2n2

(
q

4
K̃ + k4

)
ϕ2

}

≥ 2t2

n

{
1

αp
(y − αz)2 − αn2pD2

(α− 1)2
− n(α− 1)2

4D
β2 − C2αn

2p

8ρ2(α− 1)
(y − αz)

− α2n2
(
q

4
K̃ + k4

)
ϕ2

}

=
2

αnp
(ϕF )2 − 2αnpD2

(α− 1)2
t2 − (α− 1)2

2D
β2t2 − C2αnp

4ρ2(α− 1)
t(ϕF )

− 2α2n

(
q

4
K̃ + k4

)
t2ϕ2.

We have used the inequality of the form ax2 − bx ≥ − b2

4a , (a, b > 0), to compute

(α− 1)2

α2
y2 − 2npD

α
y ≥ − n

2p2D2

(α− 1)2
,

2(α− 1)

α2
y − np

α

√
C2

ρ
y

1
2 ≥ −C2

n2p2

8(α− 1)ρ2
,

npD

α
y − np

α
(α− 1)βy

1
2 ≥ −np(α− 1)2

4αD
β2.

Therefore, putting all these together into (3.11), we get

0 ≥ 2

αnp
(ϕF )2 +

(
C3t− 1− 2t

C2

ρ2
− C2αnp

4ρ2(α− 1)
t

)
(ϕF )

−
(

2αnpD2

(α− 1)2
t2 +

(α− 1)2

2D
β2t2 + 2α2n

(q
4
K̃ + k4

)
t2ϕ2 + αt2ϕ2ξ

)
.

Obviously, the last expression is a quadratic polynomial in (ϕF ), then we develop a formula for
quadratic inequality of the form ax2 + bx+ c ≤ 0, for x ∈ R. Note that when a > 0 and c < 0, then
b2 − 4ac > 0 and we have an upper bound

x ≤ −b+
√
b2 − 4ac

2a
≤ 1

2a

{
−b+

√
−4ac

}
.

The next step is to make the term

b =

(
C3t− 1− 2t

C2

ρ2
− C2αnp

4ρ2(α− 1)
t

)
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more explicit to obtain

b = −
[
C4

ρ2
t

(
αp

α− 1
+
ρ

t
+ ρ
√
k1 + ρ2(k2 + k3)

2

)
+ 1

]
,

where C4 = max{C1, C2}. Hence, we have

ϕF ≤ αnp

4
+
αnp

4ρ2
C4t

(
αp

α− 1
+
ρ

t
+ ρ
√
k1 + ρ2(k2 + k3)

2

)
+

αnp

α− 1
t
(
k1 + (α− 1)k3 + k4

)
+

(α− 1)

2
βt

√
αnp(

k1 + (α− 1)k3 + k4
)

+
αn

2
(k2 + k3 + 2

√
k4)t
√
pq + αt

√
npξ

2
.

To obtain the required bound on F (x, τ) for an appropriate range of x ∈ M , we take ϕ(x, τ) ≡ 1
whenever dist(x, x0, τ) < ρ and since (x0, t0) is the maximum point for (ϕF ) in Q2ρ,T , we have

F (x, τ) = (ϕF )(x, τ) ≤ (ϕF )(x0, t0)

for all x ∈M , such that dist(x, x0, τ) < ρ and τ ∈ (0, T ] was arbitrarily chosen, then we have the
conclusion in a more compact way, that

sup
x∈Q2ρ

{
|∇f |2 − αft − αR

}
≤ αnp

4t
+ C ′

(
K1 + k2 + k3 + k4 +

√
k1 +

√
k4 + β + ξ +

1

t

)
+

αnp

α− 1

(
k1 + (α− 1)k3 + k4

)
.

This ends the proof of Theorem 3.2. �

Remark 3.3 A global estimate follows by letting ρ → ∞ for all t > 0. For instance, if we set
p = 2α = q and allow ρ to go to infinity, we have the estimate

|∇u|2

u2
− αut

u
− αR ≤ α2n

2t
+ C ′′, (3.12)

where C ′′ is an absolute constant depending on n, τ, α and the upper bounds of |Rc|, |∇R|, |∆R|,
|h|, |∇h|.

As an application of the global gradient estimate derived in Theorem 3.2, we obtain the following
result for the corresponding Harnack estimates. Here M is complete without (or with empty)
boundary. We choose to follow the traditional approach of integrating Harnack quantity along
a geodesic path connecting two points and exponentiating the result. Given x1, x2 ∈ M and
t1, t2 ∈ [0, T ] satisfying t1 < t2

Θ(x1, t1;x2, t2) = inf
γ

∫ t2

t1

(∣∣∣ d

dt
γ(t)

∣∣∣2 +
4

A
h

)
dt,

where the infimum is taken over all the smooth paths γ : [t1, t2]→ M connecting x1 and x2. The
norm |.| depends on t. We now present a lemma whose aim is to give an insight into how the approach
goes (see [3] and [15]).
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Lemma 3.4 Let (M, g(t)) be a complete solution to the Ricci flow. Let u : M × [0, T ] → R be a
smooth positive solution to the heat equation (1.1) and let h be a C2-function on M × [0, T ]. Define
f = − log u and assume that

−∂f
∂t
≤ 1

A

(B
t

+ C − |∇f |2
)

+ h, (x, t) ∈M × [0, T ]

for some A,B,C > 0. Then, the inequality

u(x1, t1) ≤ u(x2, t2)

(
t2
t1

)B
A

exp

(
A

4
Θ(x1, t1;x2, t2) +

C

A
(t2 − t1)

)
(3.13)

holds for all (x1, t1) and (x2, t2) such that t1 < t2.

Proof. Obtain the time differential of a function f depending on the path γ as follows (t ∈ [t1, t2]),

d

dt
f(γ(t), t) = ∇f(γ(t), t)

d

dt
γ(t)− ∂

∂s
f(γ(t), s)

∣∣∣
s=t

≤
∣∣∇f ∣∣∣∣∣∣ d

dt
γ(t)

∣∣∣∣+
1

A

(
B

t
+ C − |∇f |2

)
+ h

≤ A

4

∣∣∣∣ d

dt
γ(t)

∣∣∣∣2 +
B

At
+
C

A
+ h.

The last inequality was obtained by the application of completing the square method in form of a
quadratic inequality satisfying ax2 − bx ≥ − b2

4a , (a, b > 0). Then, integrating over the path from t1
to t2, we have

f(x2, t2)− f(x1, t1) =

∫ t2

t1

d

dt
f(γ(t), t) dt

≤ A

4

∫ t2

t1

∣∣∣∣ d

dt
γ(t)

∣∣∣∣2 dt+
B

A
log t

∣∣∣t2
t1

+
C

A
(t2 − t1) +

∫ t2

t1

hdt.

The required estimate (3.13) follows immediately after exponentiation.2 �

Theorem 3.5 Let (M, g(t)), t ∈ [0, T ] be a complete solution to the geometric flow (3.1). Suppose
there exist some non-negative constants k1, k2, k3, and k4 such that Rij(g) ≥ −k1g, −k2g ≤
h ≤ k3g and |∇h| ≤ k4 for all t ∈ [0, T ]. Suppose u(x, t) is any positive solution to the heat
equation (3.2), where R = R(x, t) is a C2-function with |∇R| ≤ β and |∆R| ≤ ξ. Then for any
points (x1, t1) and (x2, t2) in M × [0, T ] such that 0 < t1 < t2 ≤ T , and for any α > 1 such that
1
p + 1

q = 1
α , the following estimate

u(x1, t1)

u(x2, t2)
≤
(
t2
t1

)np
4

exp

{∫ 1

0

(
α|γ̇(s)|2 + 4(t2 − t1)2R

4(t2 − t1)

)
ds

+
(t2 − t1)
2(α− 1)

A(k1, k2, k3, k4, α, β, ξ)

} (3.14)

2As observed by the referee the inequality (3.13) is obtained by finding the maximum of a quadratic expression in
|∇f |2.
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holds for all (x, t) ∈M × (0, T ], where

A(k1, k2, k3, k4, α, β, ξ) = 2αnp(k1 + (α− 1)k3 + k4) + β(k1 + (α− 1)k3 + k4)
1
2 /np

+ (α− 1)(k2 + k3 + 2
√
k4)
√
pq + 2(α− 1)

√
npξ

the infimum is taken over all the smooth paths γ : [t1, t2]→M connecting x1 and x2.

Proof. After letting ρ→∞, we have from the estimate (3.7) that

−ft ≤
1

α

{
αnp

4t
+

α

α− 1
A− |∇u|

2

u2

}
+R.

The desired estimate follows by applying Lemma 3.4 (see also [1, Theorem 4.2] and [15, Section
4.2]). �

We conclude this section with very useful estimates found by Hamilton [9]. He was inspired by the
results of Li and Yau [12], hence the estimates are popularly referred to as Li–Yau–Hamilton (LYH)
estimates. We state the result for bounded solutions on a closed (i.e., compact without boundary)
manifold.

Theorem 3.6 (LYH gradient estimates). Let (M, g(t)), t ∈ [0, T ] be a closed Riemannian manifold
evolving by the geometric flow (3.1) in some time interval [0, T ]. Let there exist non-negative
constants k1 and k2 such that Rij ≥ −k1gij , −k1gij ≤ hij ≤ k1gij , |∇R|2 ≤ k2 and R ≥ −k2.
Suppose u is a positive solution to the heat-type equation (3.2) with u ≤ A <∞. Then

t
|∇u|2

u2
≤
(
1 + (4k1 + δ)t

)(
k2 + log

(
A

u

))
+ Tk2 (3.15)

for some constant δ > 0.

Proof. Let f = log u so that |∇f |2 = |∇ log u|2 = |∇u|2
u2

and
(
∂
∂t −∆

)
f = |∇f |2 −R. Define a

heat type operator

L :=

(
∂

∂t
−∆− 2∇f · ∇

)
.

The idea of the proof is to apply the heat-type operator L on

t
|∇u|2

u2
−
(
1 + (4k1 + δ)t

)
log

(
A

u

)
and then use the weak maximum principle. On compact manifolds the weak maximum principle
for parabolic equations asserts that pointwise bounds are preserved ([5, Chapter 4] provides a good
survey on this subject). Recall from Lemma 2.1 and the Bochner–Weitzenböck identity (2.2) that

∂

∂t
|∇f |2 = −2hijfifj + 2fifti and ∆|∇f |2 = 2|fij |2 + 2fjfjji + 2Rijfifj .

Hence (
∂

∂t
−∆

)
|∇f |2 = −2|fij |2 − 2(Rij + hij)fifj + 2

〈
∇f,∇|∇f |2

〉
− 2
〈
∇f,∇R

〉
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and (
∂

∂t
−∆

)(
t|∇f |2

)
= |∇f |2 − 2t|fij |2 − 2t(Rij + hij)fifj

+ 2t
〈
∇f,∇|∇f |2

〉
− 2t

〈
∇f,∇R

〉
≤ (1 + 4k1t)|∇f |2 + 2t

〈
∇f,∇|∇f |2

〉
− 2t

〈
∇f,∇R

〉
.

With the above calculation we obtain

L
(
t|∇f |2

)
≤ (1 + 4k1t)|∇f |2 − 2t〈∇f,∇R〉.

Observe that for any δ > 0

−2t|∇f ||∇R| ≤ δt|∇f |2 + δ−1t|∇R|2.

Then

L
(
t|∇f |2

)
≤
(
1 + (4k1 + δ)t

)
|∇f |2 + δ−1tk2

≤
(
1 + (4k1 + δ)t

)
|∇f |2 + Tk2,

(3.16)

since δ > 0 and t ≤ T . Now

L
(
1 + (4k1 + δ)t

)
log

(
A

u

)
= (4k1 + δ) log

(
A

u

)
+
(
1 + (4k1 + δ)t

)
L log

(
A

u

)

= (4k1 + δ) log

(
A

u

)
+
(
1 + (4k1 + δ)t

)( ∂

∂t
−∆

)
log

(
A

u

)

− 2
(
1 + (4k1 + δ)t

)〈
∇f,∇ log

(
A

u

)〉
.

Computing (
∂

∂t
−∆

)
log

(
A

u

)
=

(
∂

∂t
−∆

)
logA−

(
∂

∂t
−∆

)
log u

= −|∇f |2 +R

≥ 2

〈
∇f,∇ log

(
A

u

)〉
+ |∇f |2 − k2.

Then

L
(
1 + (4k1 + δ)t

)
log

(
A

u

)
≥
(
1 + (4k1 + δ)t

)
|∇f |2 −

(
1 + (4k1 + δ)t

)
k2. (3.17)

Combining the expressions in (3.16)–(3.17) we obtain

L
(
t|∇f |2 −

(
1 + (4k1 + δ)t

)
log

(
A

u

))
≤
(
T +

(
1 + (4k1 + δ)t

))
k2 =: C4.

Note that at t = 0,

− log

(
A

u

)
≤ 0.
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Then by the weak maximum principle we have

t|∇f |2 −
(
1 + (4k1 + δ)t

)
log

(
A

u

)
≤ C4

for all t ≥ 0, where C4 depends on t, T, k1, k2 and δ. This is precisely

t
|∇u|2

u2
≤
(
1 + (4k1 + δ)t

)
log

(
A

u

)
+
(
1 + (4k1 + δ)t+ T

)
k2,

which completes the proof. �

The above result can be extended to the case of complete non-compact manifold, although, a
little more effort will be required. The idea here is to use ε-regularization method by supposing
that the solution u ≥ ε, replacing u by uε = u+ ε for a sufficiently small ε > 0 and letting ε go to
zero after the analysis for uε is completed. An application of this result shows we can bound the
maximum of a positive by its integral (see [9]). Furthermore, the estimate yields sharp lower and
upper bounds for the fundamental solution, see [4].

Acknowledgements

The author thanks the anonymous referee for his/her valuable comments that helped to improve the
original presentation. His research is supported by Federal Government of Nigeria TETFund and
University of Sussex, UK.

References

[1] A. Abolarinwa, Gradient estimates for heat-type equations on manifolds evolving by the Ricci
flow, International Journal of Pure and Applied Mathematics 93, no. 3 (2014), pp. 463–489.
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