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Abstract.

The impact of multiple stresses due to human activities on the biosphere makes the environ-
mental science a challenging field of study. This is a vital step towards sustainable management in
ecology. It is particularly important to consider the coastal salt marsh estuarine system because it is
one amongst the most biologically productive areas in the world and is used by human beings for a
variety of purposes. The areas under discussion are now experiencing changes in nutrient loading,
species composition and sea level raise which are 5-10 fold higher in comparison to that which was
measured over the last century. This is undoubtedly affecting the productivity and sustainability of
coastal regions. Here, the mathematical model of a detritus-based ecosystem with stage-structure
and selective harvesting which is mainly found in Sunderban Mangrove area in India is considered.
At the positive stationary state, the local and global stability due to discrete time delay and stochas-
tic perturbation is analyzed. The exploitation of the prey is controlled by a regulatory agency by
imposing a tax per unit biomass of the detritus and the optimal harvesting policy is achieved by us-
ing Pontryagin’s maximum principle. It is very interesting that the time delay has a great role in the
real ecology by inducing a stable equilibrium into an unstable one. Finally numerical simulations
are carried out to compare the analytical results.
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1 Introduction

Despite the urgency of the problems in a real ecosystem, the ecology cannot predict the response
of the salt marshes to nutrient enrichment and biotic impoverishment. The theory which describes
the relative importance of nutrients (bottom-up) or species composition (top-down) on ecosystem
function has never been tested in detritus-based aquatic systems earlier. The salt marshes exemplify
detritus-based aquatic ecosystems in which the food-web base is on the consumption of non-living
organic matter (detritus). In addition, detritus is important in creating the physical structure of
the system by the formation of peat. The combined effects of nutrient enrichment and biotic im-
poverishment will have its impact on ecosystem function and sustainability, because of nonlinear
feed-backs among components of the ecosystem. The term mangrove refers to an ecological system
which dominates the world’s tropical and subtropical coasts. It is a fact that energy and nutrients
are stored in leaves of mangroves. Mangroves are of interest to biologists and scientists, because
of their diversity and productivity; and furthermore, they are great source of goodness prove to be
beneficial to humans. In addition, they are exploited for timber that is widely used for construction
and as firewood. Their use ranges from the casual collection of fallen wood to the large-scale in-
dustrial charcoal production. The latter form usually coincides with the use of intensive mangrove
plantations, such as the ones in Sundarban, India. The foliage, at times is grazed or harvested for
feeding domestic animals.

The perspective of energy flow in ecological systems, comprise of four general types of het-
erotrophs. Herbivores are called primary consumers because they eat only plants. Carnivores are
called secondary consumers because the eat herbivores. There is also a group of tertiary consumers
called omnivores because they eat both herbivores and carnivores. The other type of consumer that
is critical to energy flow in the ecosystems comprise of organisms that feed on dead plants and
animals. These are called detritivores which has the main role in this paper.

Some of the most significant changes which are visible involve in global warming, sea level
rise, widespread nutrient enrichment and evolution of species. Anthropogenic nitrogen fixation has
recently exceeded the natural biotic fixation and will continue to increase for a predictable future
[49]. The dynamics of species through overfishing, extinction and exotic species introduction have
large, but partially understood effects on the ecosystems of forests, lakes, streams, and estuaries
[3, 53, 18, 22, 17]. Understanding and predicting how multiple stresses affect the sustainability
of ecosystems is one of the most crucial challenges in environmental biology and the first step
towards management. Mangroves are critical, not only for sustaining biodiversity, but also for their
direct and indirect benefits to human activities. Mangroves have long functioned as a storehouse
of materials providing food, medicines, shelter and tools. Fish, crabs, shellfish, prawns and edible
snakes and worms are found there. The fruit of certain species including the nypa palm can be eaten
after preparation along with the nectar of some of the flowers. The best honey is considered to be
that produced from mangroves, particularly the river mangrove Aegiceras corniculatum.

Modelling is an essential tool used throughout to test our predictions and to scale-up the con-
sequences of changes in nutrients and trophic structure to encompass larger spatial and longer
temporal-scales. The modelling objectives are essential to develop a fine scale model that incor-
porates a dynamic ecological processes for creek watersheds and use this as a basis to predict land-



DETRITUS-BASED STAGE-STRUCTURED MODEL 79

scape responses to a varying nutrient and trophic structure regimes. An important challenge is to
determine the amount of detail, including the resolution of physical space and biotic interactions,
necessary to model landscape responses [14, 45, 28]. Although it seems intuitive that more a model
incorporates, the processes and mechanisms known to occur in the real world situation; the close
it should come to predict the ecosystems impact in particular perturbation. Often, more complex,
data-intensive models are less stable and more difficult to test [37]. An additional difficulty is that
many management questions require for landscape answers, but most of the measurements of the
biotic process are by necessity at smaller scales. Energy and nutrients are assimilated and stored in
the leaves of mangrove trees. Being a detritus-based ecosystem, leaf litter from these trees provides
a base for adjacent aquatic and terrestrial food webs. Because most of the energy and nutrients are
stored in biomass rather than being free in the water or substrate where the species diversity of these
swamps is directly dependent on the primary productivity by mangrove plants.

The productivity of mangrove ecosystems also supports fisheries through the export of carbon.
Few fish species are permanent residents in mangroves, but numerous marine species uses the man-
groves as nursery grounds. Mangrove swamps also provide feeding grounds for juvenile and sub
adult reef fishes. As a result, mangrove-assimilated energy and nutrients are exported to surround-
ing coral reefs. It is known that an estimated 75 percent of the fish which is caught commercially
spend some time in the mangroves or it is dependent on a food chain which can be traced back to
these coastal forests. Fisheries are not the only benefactors of mangrove services for the shrimp
trawling industry is also deeply dependent on the nursery function of the mangroves.

The sustainability of coastal ecosystems in the face of widespread environmental change is
current issue of pressing concern throughout the world [17]. Coastal ecosystems are a dynamic
interface between terrestrial and oceanic systems and happen to be the most productive ecosystems
in real world. Coastal systems probably serve more human beings compared to other ecosystem
[17]. They have always been valued for their rich bounty of fish and shellfish. Coastal areas are also
the sites of the nation’s and the world’s most intense commercial activity and population growth
worldwide which may approximately amount to 75 percent of human population who live in coastal
regions [50]. The coastal environment is continually changing because of the natural variability
of environmental drivers because of their sensitivity to small changes in the sea level which is a
part of the question in the nonlinear phenomena. In the recent times, changes are observed in the
environment have been accelerated towards nutrient enrichment, species composition and sea level
due to man-made alterations at a place that is outside the bounds of natural variability.

Nutrient enrichment is a challenging current premier issue for coastal researchers and managers
for the last three decades [8]. Our goal is to understand the eutrophication which has been devel-
oped through observation of estuaries that are undergoing cultural nutrient enrichment, particularly
nitrogen [8, 30]. The consequences of enhanced nitrogen delivery in estuaries follow the classic
response of ecosystems to stress (e.g., altered primary producers, altered nutrient cycles and loss of
secondary producer species and production) [15, 21, 42, 35]. Although most researchers treat the
nutrient enrichment as a stand-alone stress; recent studies suggest that the responses at estuaries to
enrichment may depend on species composition [8, 10, 32, 46]. At the same time, biotic impov-
erishment is reducing the abundance of species or the loss of species due to man-made distraction
[32, 44, 9]. Most of the changes in species composition affect estuaries directly through food web
interactions such as predation or competition [15] or indirectly by altering the rates or pathways of
nutrient cycle [12, 48].

Unfortunately, existing ecological theory is unable to predict the responses of coastal salt marsh
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ecosystem to the combined effect of nutrient enrichment and biotic impoverishment as it is a highly
nonlinear phenomena. The theory describes the relative importance of nutrients (bottom-up) or
species composition (top-down) on ecosystem function which has never been tested in detritus-
based aquatic systems, which raises a challenging issue in this paper. The bottom-up idea origi-
nated from the observation that nutrient availability sets a general quantity of primary productivity,
whereas other studies have already shown that species composition, particularly of top consumers,
has a marked cascading effect on ecosystems [36, 31, 13, 38]. Most examples of trophic cascades
are in closed aquatic ecosystems with fairly simple direct algal grazing food webs [47, 51]. The
rarity of trophic cascades in terrestrial systems has been attributed to the importance of detrital food
webs, where omnivory is common [39, 40]. In detritus-based systems [52] where the food web is
basically based on the consumption of dead organic material (detritus) by omnivorous species and
detritus-based aquatic ecosystems, like salt marshes, bogs, swamps, have been considered bottom-
up or physically controlled ecosystems. This assumption, however, has not been tested earlier. Our
study give a documentation of the trophic cascades in theoretically unlikely systems such as tropical
forests and open ocean [38] indicating the need for direct testing of controls in different ecosystems.

Harvesting plays a major role on the dynamic evolution of a population and also depends on the
nature of the applied harvesting strategy where in the long run stationary density of the population
is significantly smaller than the long run of a stationary density of a population in the absence of
harvesting [4]. In this detritus-based model of a mangrove ecological system, the level of harvesting
effort expands or contracts according as the net economic revenue to the owner of the system that
is positive or negative. Any model which includes this interaction between the net economic rev-
enue and the harvesting effort is called the dynamic reaction model. Recently, seasonal harvesting,
taxation, lease of property rights etc. are usually considered as governing instruments for the regu-
lation of exploitation of biological resources which have become a major problem. Out of all such
regulating options, taxation plays a major role and is superior because of its economic flexibility. It
worthwhile to mention that there are other researchers [5, 29, 6, 41, 24, 16] who studied elaborately
about the harvesting problems with taxation as a control instrument.

The recent developments in bio-economics such as the prey-predator models play a major role
in the nonlinear world. Researchers [7, 25, 11, 33] have earlier discussed the prey-predator system
with harvesting, but they have not considered the stage-structure of the species with delays and sto-
chastic perturbation. Some of the stage-structure models are considered [26, 27, 43] without delays
and stochastic version. It is also difficult to analyze the stability of this type of mathematical model
in population biology by incorporating time delay and stochasticity. Researchers [54, 19, 55] have
studied about the dynamics of stage-structured prey-predator model with discrete delays only. The
prey-predator model with stage-structure for prey is analyzed [55] and it obtains the necessary con-
dition for the system stability. Authors [19] have discussed about a stage-structured prey-predator
model with a systematic computational study. In the present paper, we have studied the detritus-
based stage-structured stochastic delayed model in mangrove ecosystem where the harvesting of
prey species is considered. We categorized this paper under formulation of the model, equilib-
rium analysis, stability analysis with and without time delay, stability with stochastic perturbation,
optimal harvesting, numerical simulation and concluding remarks.
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2 The mathematical model

We consider the detritus based model ecosystem. The model equations for this ecological system
are constructed by the following system of non linear differential equations.

dx

dt
= K − αx − βxy + d3z − qEx, (2.1)

dy

dt
= y(−d1 + c1x − c2z), (2.2)

dz

dt
= −d2z + c3y(t− τ)z(t− τ), (2.3)

dE

dt
= λ [(p− σ)qx − γ]E, (2.4)

where x(t) represents density of biomass of the plant litter of the mangroves plants after decompo-
sition (detritus) at time t, y(t) represents biomass of micro organisms (detritivorus) at time t, z(t)
represents biomass density of predators of detritivorus at time t, E = E(t) represents harvesting
effort at any time t , K is constant input of the detritus, q is the catch ability co-efficient, α is
washed out rate of the detritus, β is the conversion factor, c1 is the conversion rate of detritus to
detritivores, c2 is the maximum uptake rate of detritivores, c3 is the specific growth rate of predators
detritivores, d1 is the death rate of micro-organisms (detritivores), d2 is the death rate predators
of detritivores, d3 is the detritus recycle rate after the death of predators of detritivorus, λ is the
stiffness parameter used to measure the harvest effort, p is the fixed price per unit of prey species,
γ is the fixed cost of harvesting per unit of effort, σ is the tax per unit biomass of the prey.

3 Equilibrium analysis

The steady states of the model (2.1)–(2.4) are given by: (i) G0(0, 0, 0, 0), (ii) G1(x̄, ȳ, 0, 0), (iii)
G2(x

φ, yφ, zφ, 0), (iv) G3(x
∗, y∗, z∗, E∗).

Case (i): G0(0, 0, 0, 0) : This steady state always exists.
Case (ii): G1(x̄, ȳ, 0, 0): If x̄ and ȳ are the positive solutions of dx

dt = 0 and dy
dt = 0, then we get

x̄ =
d1
c1

; ȳ =
c1K

βd1
− α

β
. (3.1)

For ȳ to be positive, we must have
c1K

βd1
>

α

β
. (3.2)

Case (iii): G2(x
φ, yφ, zφ, 0): If xφ , yφ and zφ are the positive solutions of dx

dt = 0 ; dy
dt =

0 ; dz
dt = 0, then

yφ =
d2
c3

; zφ =
Kc1c3 − αc3d1 − βd1d2
αc2c3 + βd2c2 − d3c1c3

;xφ =
c3 (Kc2 − d1d3)

αc2c3 + βd2c2 − d3c1c3
.

For zφ, xφ to be positive, we must have

K c2 > d1 d3 ; c2(α c3 + β d2 ) > d3c1c3. (3.3)
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Case (iv): G3(x
∗, y∗, z∗, E∗): If x∗, y∗ ,z∗ , E∗ are the positive solutions of dx

dt = 0 ; dy
dt =

0 ; dz
dt = 0; dE

dt = 0, then

x∗ =
γ

(p− σ)q
; y∗ =

d2
c3

; z∗ =
1

c2

[
c1γ

(p− σ)q
− d1

]
;

E∗ =
1

qx∗

[
K − x∗

(
α+

βd2
c3

)
+ d3z

∗
]
.

For z∗, E∗ are to be positive, we must have

c1 γ > d1 ; p > σ ; K + d3 z > x (α+ β y). (3.4)

From the expression of x∗, y∗, z∗ and E∗, we can easily verify that the equilibrium point
(x∗, y∗, z∗, E∗) exists provided that the tax σ lie in the range σmin ≤ σ ≤ σmax , where
σmin = p− c1γ

d1q
; σmax = p− γ(c1c3d3−αc2c3−βc2d2)

(d1d3−kc2)qc3 and the parameters must satisfy the following

condition: p > c1γ
d1q

> γ(c1c3d3−αc2c3−βc2d2)
(d1d3−kc2)qc3 .

4 Stability analysis without time delay

In the absence of discrete time delay, we now investigate the stability of the model around the
interior equilibrium. In the absence of delay, the model (2.1)–(2.4) is reduced to the following
form:

dx

dt
= K − αx − βxy + d3z − qEx, (4.1)

dy

dt
= y(−d1 + c1x − c2z), (4.2)

dz

dt
= −d2z + c3yz, (4.3)

dE

dt
= λ [(p− σ)qx − γ]E. (4.4)

The Jacobian matrix of the model (4.1)–(4.4) is
−α− βy − qE −βx d3 −qx

c1y −d1 + c1x− c2z −c2y 0
0 c3z −d2 + c3y 0

λE(p− σ)q 0 0 λ[(p− σ)qx− γ]

 . (4.5)

At the interior equilibrium point, we have

−α − qE = − K
x

+ βy − d3z

x
; −d1 = − c1x + c2z; −d2 = −c3y ; (p− σ)q =

γ

x
. (4.6)

At the interior equilibrium point, (4.5) becomes
− K

x −
d3z
x −βx d3 −qx

c1y 0 −c2y 0
0 c3z 0 0
λγE
x 0 0 0

 . (4.7)
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The characteristic equation of (4.7) of the system (4.1)–(4.4) is given by∣∣∣∣∣∣∣∣
− K

x −
d3z
x − µ −βx d3 −qx

c1y −µ −c2y 0
0 c3z −µ 0
λγE
x 0 0 −µ

∣∣∣∣∣∣∣∣ = 0. (4.8)

This implies that

µ4 + µ3
(
K

x
+
d3z

x

)
+ µ2 (λγEq + c2c3yz + βc1xy)

+µ

(
Kc2c3yz

x
+
c2c3d3yz

2

x
− c1c3d3yz

)
+ λγEqc2c3yz = 0. (4.9)

Equation (4.9) is in the form of

µ4 +Aµ3 +Bµ2 + Cµ+D = 0, (4.10)

where A = K
x + d3z

x , B = λγEq + c2c3yz + βc1xy; C = Kc2c3yz
x + c2c3d3yz2

x − c1c3d3yz;
D = λγEqc2c3yz.

By Routh-Hurwitz criteria, the model (4.1)–(4.4) is locally stable around the interior equilibrium
point, if the following conditions hold: A > 0; AB − C > 0; C(AB − C) > A2D. Here

A =
K

x
+
d3z

x
> 0, (4.11)

AB − C =
K λγ E q

x
+ K β c1y +

λ γ E q d3z

x
+ β c1d3y z + c1c3d3y z > 0, (4.12)

C(AB − C) − A2D = K2β c1c2c3y2z
x + Kβ c1c2c3y2z2

x + Kβ c1c2c3y2z2

x +
K c1c2c23 d3y

2z2

x +
β c1c2c3 d23y

2z3

x +
c1c2c23 d

2
3y

2z3

x − K λγ E qc1c3 d3yz
x − Kβ c21c3d3y

2z − λ γ E qc1c3d23yz
2

x −
β c21c3d

2
3y

2z2 − c21c
2
3d

2
3y

2z2 > 0

if z >
c1
c2
x and y >

λγ E qd3
Kβ c2

. (4.13)

To find the condition for global stability at G3(x
∗, y∗, z∗, E∗), we construct the following Lya-

punov function:

V (x, y, z, E) =
[
(x− x∗)− x∗ ln

x

x∗

]
+ l1

[
(y − y∗)− y∗ ln

y

y∗

]

+ l2

[
(z − z∗)− z∗ ln

z

z∗

]
+ l3

[
(E − E∗)− E∗ ln

E

E∗

]
. (4.14)

Then

dV

dt
=

(
x− x∗

x

)
dx

dt
+ l1

(
y − y∗

y

)
dy

dt
+ l2

(
z − z∗

z

)
dz

dt
+ l3

(
E − E∗

E

)
dE

dt
.
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Figure 1: Time series evolution of the populations of the model system (2.1)–(2.4) without time
delay

Using the model equations we have

dV

dt
= (x− x∗)

[
K

x
− α − βy +

d3z

x
− qE

]
+ l1(y − y∗) [−d1 + c1x − c2z]

+ l2(z − z∗) [−d2 + c3y] + l3 (E − E∗) [λ (p− σ)qx − λγ ] ;

dV

dt
= (x−x∗)

[(
K

x
+
d3z

x

)
−
(
K

x∗
+
d3z
∗

x∗

)]
+ l1(y−y∗) [ (c1x − c2z)− (c1x

∗ − c2z
∗)]

+ l2(z − z∗) [ c3y − c3y∗] + l3 (E − E∗) [(λ pqx− λσqx) − (λ pqx∗ − λσqx∗) ] ;

dV

dt
= (x− x∗)

[
K

(
1

x
− 1

x∗

)
+ d3

(
z

x
− z∗

x∗

)]
+ l1(y − y∗) [c1 (x− x∗ )− c2 (z − z∗)]

+ l2(z − z∗) [ c3 (y − y∗)] + l3 (E − E∗) [λ pq (x− x∗ ) − λσq (x− x∗ ) ] ;

dV

dt
= (x− x∗)

[
K

(
x∗ − x
xx∗

)
+ d3

(
zx∗ − z∗x

xx∗

)]
+ l1 [c1 (x− x∗ ) (y − y∗)− c2(y − y∗) (z − z∗)]

+ l2 [ c3 (y − y∗) (z − z∗)] + l3 (x− x∗ ) (E − E∗) [λ pq − λσq] (4.15)

By choosing l1 = 1
c2

; l2 = 1
c3

; l3 = 1
(λ pq−λσq) , we have

dV

dt
= − K(x− x∗ )

xx∗

2

+
d3
xx∗

(x− x∗ )(zx∗ − z∗x)
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+
c1
c2

(x− x∗ )(y − y∗ ) + (x− x∗ ) (E − E∗ ) ;

dV

dt
= −K(x− x∗)

xx∗

2

− d3z
∗

xx∗
(x− x∗)2 +

d3
x

(x− x∗)(z − z∗) +
c1
c2

(x− x∗)(y − y∗)

+ (x− x∗ ) (E − E∗ );

dV

dt
≤ − K(x− x∗ )

xx∗

2

− d3z
∗

xx∗
(x− x∗)2 +

d3
x

[
(x− x∗)2

2
+

(z − z∗)2

2

]
+
c1
c2

[
(x− x∗)2

2
+

(y − y∗ )2

2

]
+

(x− x∗)2

2
+

(E − E∗)2

2
. (4.16)

Thus the model (4.1)–(4.4) with τ = 0 is globally asymptotically stable.

5 Optimal harvesting policy

In this section we derive an optimal harvesting policy to maximize the total discounted net revenue
from the harvesting biomass using the tax σ as a control parameter. The net economic revenue is
given by
π(x, y, z, E, σ, t) = (Net revenue of harvesting agency)− (Net economic revenue to the regulatory
agency), that is,

π(x, y, z, E, σ, t) = (p− σ)qEx− γE + σqEx = (pqx− γ)E. (5.1)

Our objective is to maximize the present value function

J =

∞∫
0

e− δ t[pqx− γ]E(t) dt (5.2)

where δ is the instantaneous annual rate of discount and the optimization problem is subjected to
the model (4.1)–(4.4).
The control variable σ ( t )is subjected to the constraints σmin ≤ σ ≤ σmax .
Using Pontryagin’s maximal principle (1964), the associated Hamiltonian
H(x(t), y(t), z(t), E(t), σ(t), t) is given by
H = e− δ t[pqx− γ]E + λ1[K − αx− βxy + d3z − qEx] + λ2[−yd1 + yc1x− yc2z]

+λ3[−d2z + c3yz] + λ4[λpqxE − λσqxE − λ γE], (5.3)

where λi(t) (i = 1, 2, 3, 4) are adjoint variables.
The condition for a singular control to be optimal is

∂H

∂σ
= 0 ⇒ λ4λqxE = 0 ⇒ λ4(t) = 0. (5.4)

The adjoint equations are

dλ1
dt

= −∂H
∂x

;
dλ2
dt

= −∂H
∂y

;
dλ3
dt

= −∂H
∂z

;
dλ4
dt

= −∂H
∂E

. (5.5)

dλ1
dt

= −
[
e− δ tpqE + λ1(−α− βy − qE) + λ2(yc1) + λ4(λpqE − λσqE)

]
;
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dλ2
dt

= − [λ1(−βx) + λ2(−d1 + c1x− c2z) + λ3(c3z)] ;

dλ3
dt

= − [λ1d3 + λ2(−c2y) + λ3(−d2 + c3y)] ;

dλ4
dt

= −
[
e− δ t(pqx− γ) + λ1(−qx) + λ4(λpqx − λσqx− λ γ)

]
. (5.6)

When we evaluate these equations at the interior equilibrium point, we get

dλ1
dt

= −e− δ tpqE − λ1(−
K

x
− d3z

x
)− λ2c1y − λ4(λpqE − λσqE), (5.7)

dλ2
dt

= λ1βx − λ3c3z, (5.8)

dλ3
dt

= −λ1d3 + λ2c2y, (5.9)

dλ4
dt

= −e− δ t(pqx− γ) + λ1qx. (5.10)

From (5.10), we get 0 = −e− δ t(pqx− γ) + λ1qx, since λ4(t) = 0.

This implies that

λ1 = e− δ t
(
p− γ

qx

)
. (5.11)

Therefore, dλ1
dt = −δe− δ t

(
p− γ

qx

)
.

From (5.7), we get, −δe− δ t
(
p− γ

qx

)
= −e− δ tpqE − e− δ t

(
p− γ

qx

)
(− K

x −
d3z
x )− λ2c1y.

This implies that
λ2 = Ae− δ t , (5.12)

where A = 1
yc1

[(
p− γ

qx

)(
K
x + d3z

x + δ
)
− pqE

]
. Therefore, dλ2

dt = −δAe− δ t.

From (5.8), we get, −δAe− δ t = βxe− δ t
(
p− γ

qx

)
− λ3c3z. This implies that

λ3 = Be− δ t , (5.13)

where B = 1
c3z

[
βx
(
p− γ

qx

)
+ δA

]
. Therefore, dλ3

dt = −δBe− δ t.

From (5.9), we get −δBe− δ t = −
[
d3e
− δ t

(
p− γ

qx

)
+Ae− δ t(−c2y)

]
. This implies that(

p− γ

qx

)
=
Ac2y + δB

d3
. (5.14)

This provides the equation of singular path and gives the optimal equilibrium levels of the
populations x∗ = xδ , y

∗ = yδ , z
∗ = zδ . Then the optimal equilibrium of harvesting effort and

tax can be obtained as

Eδ =
1

qxδ

[
K − xδ

(
α+

βd2
c3

)
+ d3zδ

]
,
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σδ = p− γ

qxδ
. (5.15)

From (5.4), (5.11), (5.12) and (5.13), we observe that λi(t)eδ t (i = 1, 2, 3, 4) do not vary with
time at the optimal equilibrium. Hence they remain bounded as t→∞. From (5.11), λ 1(t) qx

∗ =
e−δ t(pqx∗ − c) = e−δ t ∂π∂E , which imply that the total users cost of harvest per unit effort is equal
to the discounted values of the future price at the interior equilibrium point.

6 Stability analysis with time delay

We now discuss the stability of the model (2.1)–(2.4) in the presence of delay. The Jacobian of the
model system (2.1)–(2.4) is∣∣∣∣∣∣∣∣

−α− βy − qE −βx d3 −qx
c1y −d1 + c1x− c2z −c2y 0
0 c3ze

−µ τ −d2 + c3ye
−µ τ 0

λE(p− σ)q 0 0 λ[(p− σ)qx− γ]

∣∣∣∣∣∣∣∣ . (6.1)

The characteristic equation of the model system (2.1)–(2.4) at the interior equilibrium is∣∣∣∣∣∣∣∣
−K

x −
d3z
x − µ −βx d3 −qx

c1y −µ −c2y 0
0 c3ze

−µ τ −c3y + c3ye
−µ τ − µ 0

λγE
x 0 0 −µ

∣∣∣∣∣∣∣∣ = 0, (6.2)

or,

µ4 + µ3
(
c3y + K

x + d3z
x

)
+ µ2

(
Kc3y
x + c3d3yz

x + λγEq + βc1xy
)

+ µ
(
λγEqc3y + βc1c3xy

2
)

+e−µτ


µ3(−c3y) + µ2

(
−Kc3y

x − c3d3yz
x + c2c3yz

)
+µ
(
−λγEqc3y + Kc2c3yz

x + c2c3d3yz2

x − βc1c3xy2 − c1c3d3yz
)

+λγEqc2c3yz

 = 0.

(6.3)
(6.3) is in the form of

X(µ) + e−µ τY (µ) = 0, (6.4)

where X(µ) = µ4 + x1µ
3 + x2µ

2 + x3µ, Y (µ) = y1µ
3 + y2µ

2 + y3µ+ y4,

x1 = c3y + K
x + d3z

x , x2 = Kc3y
x + c3d3yz

x + λγEq + βc1xy, x3 = λγEqc3y + βc1c3xy
2,

y1 = −c3y, y2 = −Kc3y
x − c3d3yz

x + c2c3yz,

y3 = −λγEqc3y + Kc2c3yz
x + c2c3d3yz2

x − βc1c3xy2 − c1c3d3yz, y4 = λγEqc2c3yz.

Let µ = iω be a root of (6.1), where ω is a real number. Putting µ = iω in (6.1), we get

ω4 − iω3x1 − ω2x2 + iωx3 + (cosωτ − i sinωτ)(−iω3y1 − ω2y2 + iωy3 + y4) = 0. (6.5)

Separating the real and imaginary parts, we get

ω4 − ω2x2 = (ω2y2 − y4) cosωτ + (ω3y1 − ωy3) sinωτ, (6.6)
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ω3x1 − ωx3 = (ω2y2 − y4) sinωτ − (ω3y1 − ωy3) cosωτ. (6.7)

Squaring and adding (6.5) and (6.6), we get(
ω4 − ω2x2

)2
+
(
ω3x1 − ωx3

)2
= (ω2y2 − y4)2 + (ω3y1 − ωy3)2,

or,

ω8+ω6(−2x2+x21−y21)+ω4(x22−2x1x3−y22 +2y1y3)+ω2
(
x23 + 2y2y4 − y23

)
−y24 = 0. (6.8)

Equation (6.8) is in the form of

ω8 +B1ω
6 +B2ω

4 +B3ω
2 +B4 = 0, (6.9)

where B1 = −2x2 + x21− y21 , B2 = x22− 2x1x3− y22 + 2y1y3, B3 = x23 + 2y2y4− y23 , B4 = −y24 .

By Descartes’ rule, if (i) B1 > 0, B2 > 0 and B3 > 0; or, (ii) B1 > 0, B2 > 0 and B3 < 0; or,
(iii) B1 > 0, B2 < 0, and B3 < 0, then (6.9) has a unique positive root, ω0 (say), and then has a
pair of imaginary roots ±i ω 0. Eliminating sinωτ from (6.2) and (6.3), we get

cosωτ =

(
ω4 − ω2x2

) (
ω2y2 − y4

)
−
(
ω3y1 − ωy3

) (
ω3x1 − ωx3

)
(ω3y1 − ωy3)2 + (ω2y2 − y4)2

. (6.10)

Then τk corresponding to ω = ω 0 is given by

τ k =
1

ω 0
cos− 1

[(
ω 4

0 − ω 2
0x2
) (
ω 2

0y2 − y4
)
−
(
ω 3

0y1 − ω 0y3
) (
ω 3

0x1 − ω 0x3
)(

ω 3
0y1 − ω 0y3

)2
+
(
ω 2

0y2 − y4
)2

]

+
2kπ

ω 0
, k = 0, 1, 2, 3, ... (6.11)

By Butler’s lemma, we conclude that the model (2.1)–(2.4) is stable around the interior equilibrium
for τ < τ0 as k = 0.

Now differentiating the characteristic equation (6.1) with respect to τ , we get

X ′(µ)
dµ

dτ
+ e−µ τY ′(µ)

dµ

dτ
+ Y (µ)e−µ τ

(
−µ− τ dµ

dτ

)
= 0. (6.12)

Or, (
dµ

dτ

)− 1

=
X ′(µ)

−µX(µ)
+
Y ′(µ)

µY (µ)
− τ

µ

=
4µ3 + 3x1µ

2 + 2x2µ+ x3
−µ(µ4 + x1µ3 + x2µ2 + x3µ)

+
3y1µ

2 + 2y2µ+ y3
µ(y1µ3 + y2µ2 + y3µ+ y4)

− τ

µ

=
4µ4 + 3x1µ

3 + 2x2µ
2 + x3µ

−µ2(µ4 + x1µ3 + x2µ2 + x3µ)
+

3y1µ
3 + 2y2µ

2 + y3µ

µ2(y1µ3 + y2µ2 + y3µ+ y4)
− τ

µ

=
3µ4 + 2x1µ

3 + x2µ
2

−µ2(µ4 + x1µ3 + x2µ2 + x3µ)
+

2y1µ
3 + y2µ

2 − y4
µ2(y1µ3 + y2µ2 + y3µ+ y4)

− τ

µ
. (6.13)

Thus [(
dµ

dτ

)− 1
]
µ= iω 0

=
(3ω 4

0 − x2ω 2
0)− 2ix1ω

3
0

ω 2
0

[
(ω 4

0 − ω 2
0x2)− i(ω 3

0x1 − ω 0x3)
]
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Figure 2: Stable population densities of the delay model system (2.1)–(2.4) with τ = 0.1

+
(ω 2

0y2 + y4) + 2iy1ω
3
0

ω 2
0

[
−(ω 2

0y2 − y4)− i(ω 3
0y1 − ω 0y3)

] − τ

iω 0
(6.14)

Re

[(
dµ

dτ

)− 1
]
µ= iω 0

=
1

ω 2
0

[
(3ω 4

0 − x2ω 2
0)(ω

4
0 − ω 2

0x2) + 2x1ω
3
0(ω

3
0x1 − ω 0x3)

(ω 4
0 − ω 2

0x2)
2 + (ω 3

0x1 − ω 0x3)2

+
(y4 + ω 2

0y2)(y4 − ω 2
0y2) + 2y1ω

3
0(ω 0y3 − ω 3

0y1)

(y4 − ω 2
0y2)

2 + (ω 3
0y1 − ω 0y3)2

] (6.15)

=
1

ω2
0 ξ

2

[
3ω8

0 + 2(x21 − 2x2 − y21)ω6
0 + (x22 − 2x1x3 + 2y1y3 − y22)ω4

0 + y24
]

(6.16)

=
1

ω2
0 ξ

2

[
2ω8

0 + (x21 − 2x2 − y21)ω6
0 − (x3 − y23 − 2x2x4 + 2y2y4)ω

2
0 − 2(−y24)

]
, (6.17)

(using (6.9)) where

ξ2 = (ω 4
0 − ω 2

0x2)
2 + (ω 3

0x1 − ω 0x3)
2 = (y4 − ω 2

0y2)
2 + (ω 3

0y1 − ω 0y3)
2.

Now on the basis of existence of positive root of (6.9), Sign of Re

[(
dµ
dτ

)− 1
]

is positive if

x21 − 2x2 − y21 > 0, , i.e., if

K2

x2
+
d23z

2

x2
+

2Kd3z

x2
− 2λγEq − 2βc1xy > 0 (6.18)

when evaluated at the interior equilibrium point G3. Therefore,

sign

(
d

dτ
( Reµ )

)
= sign

{
Re

(
dµ

dτ

)−1}
.
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Figure 3: Periodic oscillation of the of populations of the model system (2.1)–(2.4) with τ = 0.3419

Thus, the transversality condition holds and Hopf - bifurcation occurs at τ = τ0.

In this present paper, we assume the presence of randomly fluctuating driving forces on the
deterministic growth of the prey, predator-1 and predator-2 populations at time t, so that the system
(2.1)–(2.4) results in the stochastic delay system with additive noise.

7 The stochastic delayed model

The main assumption that leads us to extend the deterministic model (2.1)–(2.4) to a stochastic
counterpart is that it is reasonable to conceive the open sea as a noisy environment. There are many
number of ways in which the environmental noise may be incorporated in the system (2.1)–(2.4).
Note that environmental noise should be distinguished from a demographic or internal noise, for
which the variation over time is due. External noise may arise either form random fluctuations of
one or more model-parameters around some known mean values or from stochastic fluctuations of
the population densities around some constant values. In this section, we compute the population
intensities of fluctuations (variances) around the positive equilibrium G3 due to noise, according
to the method introduced by [34, 20, 1]. Such a method was also successfully applied in [23, 2].
Now we assume the presence of randomly fluctuating driving forces on the deterministic growth of
the prey, predator-1 and predator-2 populations at time t, so that the system (2.1)–(2.4) results in a
stochastic delay system with additive noise.

dx

dt
= K − αx − βxy + d3z − qEx+ η1ξ1(t), (7.1)

dy

dt
= y(−d1 + c1x − c2z) + η2ξ2(t), (7.2)



DETRITUS-BASED STAGE-STRUCTURED MODEL 91

dz

dt
= −d2z + c3y(t− τ)z(t− τ) + η3ξ3(t), (7.3)

dE

dt
= λ [(p− σ)qx − γ]E + η4ξ4(t), (7.4)

where x(t) represents density of biomass of the plant litter of the mangroves plants after decompo-
sition (detritus) at time t, y(t) represents biomass of micro organisms (detritivorus) at time t, z(t)
represents biomass density of predators of detritivorus at time t, E = E(t) represents harvesting
effort at any time t and ξ (t) = [ξ1(t), ξ2(t), ξ3(t), ξ4(t)] is a 4D Gaussian white noise process
satisfying

E [ξi (t)] = 0; i = 1, 2, 3, 4, (7.5)

E
[
ξi (t) ξj

(
t′
)]

= δij δ
(
t− t′

)
; i, j = 1, 2, 3, 4 (7.6)

where δij is the Kronecker symbol δ is the Dirac-delta function. Let

x(t) = u1(t) + S∗ ; y(t) = u2(t) + P ∗ ; z(t) = u3(t) + T ∗ ;E(t) = u4(t) + U∗ ; (7.7)

dx

dt
=
du1(t)

dt
;
dy

dt
=
du2(t)

dt
;
dz

dt
=
du3(t)

dt
;
dE

dt
=
du4(t)

dt
; (7.8)

Using (7.7) and (7.8), equation (7.1) becomes

du1(t)
dt = K − αu1(t)− αS∗ − βu1(t)u2(t)− βu1(t)P ∗ − βu2(t)S∗ − βS∗P ∗

+d3u3(t) + d3T
∗ − qu1(t)u4(t)− qu4(t)S∗ − qu1(t)U∗ − qS∗U∗ + η1ξ1(t)

(7.9)

The linear part of (7.9) is

du1(t)

dt
= −βu2(t)S∗ − qu4(t)S∗ + η1ξ1(t). (7.10)

Using (7.7) and (7.8), equation (7.2) becomes

du2(t)
dt = −d1u2(t)− d1P ∗ + c1u1(t)u2(t) + c1u1(t)P

∗ + c1u2(t)S
∗

+c1S
∗P ∗ − c2u2(t)u3(t)− c2u3(t)P ∗ − c2u2(t)T ∗ − c2P ∗T ∗ + η2ξ2(t)

(7.11)

The linear part of (7.11) is

du2(t)

dt
= c1u1(t)P

∗ − c2u3(t)P ∗ + η2ξ2(t). (7.12)

Using (7.7) and (7.8), equation (7.3) becomes

du3(t)
dt = −d2u3(t)− d2T ∗ + c3u2(t− τ)u3(t− τ) + c3u2(t− τ)T ∗

+c3u3(t− τ)P ∗ + c3P
∗T ∗ + η3ξ3(t)

(7.13)

The linear part of (7.13) is

du3(t)

dt
= c3u2(t− τ)T ∗ + η3ξ3(t). (7.14)

Using (7.7) and (7.8), equation (7.4) becomes

du4(t)
dt = λ(p− σ)qu1(t)u4(t) + λ(p− σ)qu4(t)S

∗ − λγu4(t)
+λ(p− σ)qu1(t)U

∗ + λ(p− σ)qS∗U∗ − λγU∗ + +η4ξ4(t)
. (7.15)
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The linear part of (7.15) is

du4(t)

dt
= λ(p− σ)qu1(t)U

∗ + η4ξ4(t). (7.16)

Taking the Fourier transform on both sides of (7.10), (7.12), (7.14) and (7.16), we get

iωũ1(ω) = −βS∗ũ2(ω)− qS∗ũ4(ω) + η1ξ̃1(ω)

(or) η1ξ̃1(ω) = iωũ1(ω) + βS∗ũ2(ω) + qS∗ũ4(ω) (7.17)

iωũ2(ω) = c1P
∗ũ1(ω)− c2P ∗ũ3(ω) + η2ξ̃2(ω)

(or) η2ξ̃2(ω) = −c1P ∗ũ1(ω) + iωũ2(ω) + c2P
∗ũ3(ω) (7.18)

iωũ3(ω) = c3T
∗e−iωτ ũ2(ω) + η3ξ̃3(ω)

(or) η3ξ̃3(ω) = −c3T ∗e−iωτ ũ2(ω) + iωũ3(ω) (7.19)

iωũ4(ω) = λ(p− σ)qũ1(ω)U∗ + η4ξ̃4(ω)

(or) η4ξ̃4(ω) = −λ(p− σ)qũ1(ω)U∗ + iωũ4(ω). (7.20)

The matrix form of (7.17), (7.18), (7.19) and (7.20) is

M (ω) ũ (ω) = ξ̃ (ω) (7.21)

where

M (ω) =


A11(ω) A12(ω) A13(ω) A14(ω)
A21(ω) A22(ω) A23(ω) A24(ω)
A31(ω) A32(ω) A33(ω) A34(ω)
A41(ω) A42(ω) A43(ω) A44(ω)

 ;

ũ (ω) =


ũ1(ω)
ũ2(ω)
ũ3(ω)
ũ4(ω)

 ; ξ̃ (ω) =


η1ξ̃1 (ω)

η2ξ̃2 (ω)

η3ξ̃3 (ω)

η4ξ̃4 (ω)

 ;

A11(ω) = iω; A12(ω) = βS∗; A13(ω) = 0; A14(ω) = qS∗;
A21(ω) = −c1P ∗; A22(ω) = iω; A23(ω) = c2P

∗; A24(ω) = 0;
A31(ω) = 0; A32(ω) = −c3T ∗e−iωτ ; A33(ω) = iω; A34(ω) = 0;
A41(ω) = −λ(p− σ)qU∗;A42(ω) = 0;A43(ω) = 0;A44(ω) = iω.

(7.22)

Equation (7.21) can also be written as ũ (ω) = [M (ω)]−1 ξ̃ (ω). Let [M (ω)]−1 = K(ω), then

ũ (ω) = K(ω)ξ̃ (ω) , (7.23)

where

K(ω) =
AdjM (ω)

|M (ω)|
. (7.24)

If the function Y (t) has a zero mean value, then the fluctuation intensity (variance) of it’s com-
ponents in the frequency interval [ω, ω + dω] is , where SY (ω) is spectral density of Y and is defined
as

SY (ω) = lim
T̃→∞

∣∣∣Ỹ (ω)
∣∣∣2

T̃
. (7.25)
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If Y has a zero mean value, the inverse transform of SY (ω)is the auto covariance function

CY (τ) =
1

2π

∞∫
−∞

SY (ω)eiωτdω. (7.26)

The corresponding variance of fluctuations in Y (t) is given by

σ2Y = CY (0) =
1

2π

∞∫
−∞

SY (ω)dω (7.27)

and the auto correlation function is the normalized auto covariance

PY (τ) =
CY (τ)

CY (0)
. (7.28)

For a Gaussian white noise process, it is

Sξiξj (ω) = lim
T̂→+∞

E[ξ̃i(ω)ξ̃j(ω)]
T̂

= lim
T̂→+∞

1
T̂

T̂
2∫
− T̂

2

T̂
2∫
− T̂

2

E
[
ξ̃i (t) ξ̃j (t′)

]
e−iω(t−t

′)dt dt′

= δij .

(7.29)

From (7.23), we have

ũi (ω) =
4∑
j=1

Kij (ω) ξ̃j (ω) , i = 1, 2, 3, 4. (7.30)

From (7.25) we have

Sui (ω) =

4∑
j=1

ηj |Kij (ω)|2 , i = 1, 2, 3, 4. (7.31)

Hence by (7.27) and (7.31), the intensities of fluctuations in the variables ui , i = 1, 2, 3, 4, are
given by

σ2ui =
1

2π

4∑
j=1

∞∫
−∞

ηj |Kij(ω)|2 dω; i = 1, 2, 3, 4 (7.32)

and by (7.24), we obtain

σ2u1 = 1
2π

{
∞∫
−∞

η1

∣∣∣Adj(1)|M(ω)|

∣∣∣2 dω+
∞∫
−∞

η2

∣∣∣Adj(2)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η3

∣∣∣Adj(3)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η4

∣∣∣Adj(4)|M(ω)|

∣∣∣2 dω} ,
σ2u2 = 1

2π

{
∞∫
−∞

η1

∣∣∣Adj(5)|M(ω)|

∣∣∣2 dω+
∞∫
−∞

η2

∣∣∣Adj(6)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η3

∣∣∣Adj(7)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η4

∣∣∣Adj(8)|M(ω)|

∣∣∣2 dω} ,
σ2u3 = 1

2π

{
∞∫
−∞

η1

∣∣∣Adj(9)|M(ω)|

∣∣∣2 dω+
∞∫
−∞

η2

∣∣∣Adj(10)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η3

∣∣∣Adj(11)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η4

∣∣∣Adj(12)|M(ω)|

∣∣∣2 dω} ,
σ2u4 = 1

2π

{
∞∫
−∞

η1

∣∣∣Adj(13)|M(ω)|

∣∣∣2 dω+
∞∫
−∞

η2

∣∣∣Adj(14)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η3

∣∣∣Adj(15)|M(ω)|

∣∣∣2 dω +
∞∫
−∞

η4

∣∣∣Adj(16)|M(ω)|

∣∣∣2 dω} ,
(7.33)



94 Das, Sabarmathi, Srinivas, Gazi, Kumar, J. Nonl. Evol. Equ. Appl. 2014 (2015) 77–100

where |M(ω)| = R(ω) + iI(ω),

R (ω) = ω4 − ω2λ(p− σ)q2S∗U∗ − ω2c2c3P
∗T ∗ cosωτ + λ(p− σ)q2c2c3S

∗P ∗T ∗U∗ cosωτ,
(7.34)

I (ω) = −λ(p− σ)q2c2c3S
∗P ∗T ∗U∗ sinωτ + ω2c2c3P

∗T ∗ sinωτ. (7.35)

The adjoints are given by

|Adj(k)|2 = X2
k + Y 2

k , k = 1, 2, 3, ..., 16 ;

where

X1 = ωc2c3P
∗T ∗ sinωτ ; Y1 = −ω3 + ωc2c3P

∗T ∗ cosωτ ;
X2 = −ω2c1P

∗; Y2 = 0 ;
X3 = ωc1c3P

∗T ∗ sinωτ ; Y3 = ωc1c3P
∗T ∗ cosωτ ;

X4 = −ω2λ(p−σ)qU∗+λ(p−σ)qc2c3P
∗T ∗U∗ cosωτ ; Y4 = −λ(p−σ)qc2c3P

∗T ∗U∗ sinωτ ;
X5 = ω2βS∗ ;Y5 = 0;X6 = 0 ;Y6 = −ω3;
X7 = −ω2c3T

∗ cosωτ ;Y7 = ω2c3T
∗ sinωτ ;

X8 = 0;Y8 = −ωλ(p− σ)qβS∗U∗;
X9 = 0 ;Y9 = ωβc2S

∗P ∗ ;
X10 = ω2c2P ∗ −λ(p− σ)q2c2S

∗P ∗U∗ ;Y10 = 0 ;
X11 = 0;Y11 = −ω3 + ωβc1S

∗P ∗ + ωλ(p− σ)q2S∗U∗;
X12 = λ(p− σ)qβc2S

∗P ∗U∗ ;Y12 = 0 ;
X13 = ω2qS∗ − qc2c3S∗P ∗T ∗ cosωτ ;Y13 = qc2c3S

∗P ∗T ∗ sinωτ ;
X14 = 0;Y14 = −ωqc1S∗P ∗ ;
X15 = −qc1c3S∗P ∗T ∗ cosωτ ;Y15 = qc1c3S

∗P ∗T ∗ sinωτ ;
X16 = ωc2c3P

∗T ∗ sinωτ ;Y16 = −ω3 + ωc2c3P
∗T ∗ cosωτ + ωc1βS

∗P ∗.

Thus (7.33) becomes

σ2u1 = 1
2π

{
∞∫
−∞

1
R2(ω)+I2(ω)

[
η1
(
X2

1 + Y 2
1

)
+ η2

(
X2

2 + Y 2
2

)
+ η3

(
X2

3 + Y 2
3

)
+ η4

(
X2

4 + Y 2
4

)]
dω

}
,

σ2u2 = 1
2π

{
∞∫
−∞

1
R2(ω)+I2(ω)

[
η1
(
X2

5 + Y 2
5

)
+ η2

(
X2

6 + Y 2
6

)
+ η3

(
X2

7 + Y 2
7

)
+ η4

(
X2

8 + Y 2
8

)]
dω

}
,

σ2u3 = 1
2π

{
∞∫
−∞

1
R2(ω)+I2(ω)

[
η1
(
X2

9 + Y 2
9

)
+ η2

(
X2

10 + Y 2
10

)
+ η3

(
X2

11 + Y 2
11

)
+ η4

(
X2

12 + Y 2
12

)]
dω

}
,

σ2u4 = 1
2π

{
∞∫
−∞

1
R2(ω)+I2(ω)

[
η1
(
X2

13 + Y 2
13

)
+ η2

(
X2

14 + Y 2
14

)
+ η3

(
X2

15 + Y 2
15

)
+ η4

(
X2

16 + Y 2
16

)]
dω

}
.

If we are interested in the dynamics of system (7.1)–(7.4) with η1 = η2 = η3 = 0, then the
population variances are:

σ2u1 = η4
2π

∞∫
−∞

(X2
4+Y

2
4 )

R2(ω)+I2(ω)
dω , σ2u2 = η4

2π

∞∫
−∞

(X2
8+Y

2
8 )

R2(ω)+I2(ω)
dω ,

σ2u3 = η4
2π

∞∫
−∞

(X2
12+Y

2
12)

R2(ω)+I2(ω)
dω , σ2u4 = η4

2π

∞∫
−∞

(X2
16+Y

2
16)

R2(ω)+I2(ω)
dω .

If η1 = η2 = η4 = 0, then the variances are

σ2u1 = η3
2π

∞∫
−∞

(X2
3+Y

2
3 )

R2(ω)+I2(ω)
dω , σ2u2 = η3

2π

∞∫
−∞

(X2
7+Y

2
7 )

R2(ω)+I2(ω)
dω ,

σ2u3 = η3
2π

∞∫
−∞

(X2
11+Y

2
11)

R2(ω)+I2(ω)
dω , σ2u4 = η3

2π

∞∫
−∞

(X2
15+Y

2
15)

R2(ω)+I2(ω)
dω .
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If η1 = η3 = η4 = 0, then the variances are

σ2u1 = η2
2π

∞∫
−∞

(X2
2+Y

2
2 )

R2(ω)+I2(ω)
dω , σ2u2 = η2

2π

∞∫
−∞

(X2
6+Y

2
6 )

R2(ω)+I2(ω)
dω ,

σ2u3 = η2
2π

∞∫
−∞

(X2
10+Y

2
10)

R2(ω)+I2(ω)
dω , σ2u4 = η2

2π

∞∫
−∞

(X2
14+Y

2
14)

R2(ω)+I2(ω)
dω .

If η2 = η3 = η4 = 0, then

σ2u1 = η1
2π

∞∫
−∞

(X2
1+Y

2
1 )

R2(ω)+I2(ω)
dω , σ2u2 = η1

2π

∞∫
−∞

(X2
5+Y

2
5 )

R2(ω)+I2(ω)
dω ,

σ2u2 = η1
2π

∞∫
−∞

(X2
9+Y

2
9 )

R2(ω)+I2(ω)
dω , σ2u4 = η1

2π

∞∫
−∞

(X2
13+Y

2
13)

R2(ω)+I2(ω)
dω .

The four expressions in (7.33) can be evaluated numerically which gives the variances of the popu-
lations.
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Figure 4: Stable oscillations of stochastic model system (7.1)–(7.4) with small intensity of the noise

8 Conclusion

The importance of sustainable development has gained focus in the recent times and idea seems
to resonate with so many people. Without immediate and effective action, our universal planet
will face unyielding pressure on the environment. This is the high time when action is needed
and it will be guided through a scientific understanding of the ecosystems function. Ecological
modelling supports the sustainable development paradigm where economy, society and environment
are integrated positively reinforcing each other. This paper has investigated ecological balance on
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Figure 5: Stable oscillations of stochastic model system (7.1)–(7.4) with small intensity of the noise
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Figure 6: Stable oscillations of stochastic model system (7.1)–(7.4) with high intensity of noise

sensitive parameters which mitigate and adapt to changes. It also professes ideas on how to preserve
and protect ecosystems and their services in the real world situation.

In our paper we have observed the local and global behaviours of the control parameters in
detritus-based aquatic ecosystem in Sunderban Delta in India. In the mangrove ecosystem we have
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experienced that the top-down control function for a detritus-based mathematical model is relatively
less likely to control the bacterial food supply. Also the interactive effects of nutrient enrichment
and changes in species on the functioning of coastal salt marsh ecosystems have a great role to shape
the dynamical behaviour of our system. This analysis will contribute to the resolution of a pervasive
problem in environmental science including the resolution of physical space with biotic processes
which has a major role in complex nonlinear systems.

Mathematical modelling is an important integration tool that is used here to test the understand-
ing at many levels, such as the magnitude changes in the growth rate of individuals due to the
increased food supply in a detritus-based ecosystem population. Moreover, in the detritus-based
mangrove ecosystem the nutrient enrichments affects the rates of marsh decomposition and the salt
marsh landscape. Marine estuaries with large areas of salt marsh are a common feature along the
entire Sunderban mangrove area which is the main topic in our paper. Mangroves are rich in mi-
crobes especially during the process of leaf decomposition. Detritus processing with the breaking
down of organic matter into smaller particles is an essential operation in aquatic systems because
it provides resources to filter feeders and accelerates nutrient release by microorganisms. Detrital
food web dynamics are influenced by both consumption (top-down) and production (bottom-up)
effects. We analyzed the effects of predators and detritivores on the abundance of microorganisms
in Sunderban ecosystem delta zone in India. Our study shows that the role of processing detritivores
is so complex and can enhance both bottom-up and top-down effects. Specifically, omnivory can
complicate simple top-down and bottom-up predictions. Although they accelerate decomposition
by microorganisms and thereby can increase resource availability. The processing of detritivores
can also be considered important consumers in detrital food webs.
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