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Abstract. This paper deals with a control problem of a Cauchy System for an hyperbolic operator.
The associate system here which is distributed and singular has in general no solution, and when a
solution does exist it is unstable. So instead of considering the control v and the state z separately,
we consider the pair control-state (v, z); it suffices then to make sure that the set of admissible pairs
(v, z) is non-empty. We establish the existence and the uniqueness of the optimal pair and then we
characterize it by using the penalization method.
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1 Statement of the problem

Let Ω be an open set with boundary ∂Ω = Γ = Γ0∪Γ1 of class C∞, where the boundaries Γ0, Γ1 are
non-empty and Γ0∩Γ1 = ∅. For T > 0 we set Q = Ω×]0, T [, Σ1 = Γ1×]0, T [, Σ0 = Γ0×]0, T [
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and we consider the state z of a system subject to the control v = (v0, v1), related by

z′′ −∆z = 0 in Q
z = v0 on Σ0

∂z

∂ν
= v1 on Σ0

z(0) = 0 in Ω
∂z

∂t
(0) = 0 in Ω

(1.1)

where z′′ =
∂2z

∂t2
. Let U0

ad and U1
ad be two non-empty closed convex subsets of L2(Σ0). We set

A =
{

(v0, v1, z) ∈ U0
ad × U1

ad × L2(Q) such that (1.1) holds
}

(1.2)

and we assume that

A 6= ∅. (1.3)

A triplet (v0, v1, z) will be called admissible if it belongs in A.

For (v = (v0, v1), z) ∈ A, we consider the cost function

J(v, z) =
1

2
|z − zd|2L2(Q) +

N0

2
|v0|2L2(Σ0) +

N1

2
|v1|2L2(Σ0) (1.4)

with N0, N1 > 0 and zd ∈ L2(Q).
We are then interest in the problem:

inf
(v,z)∈A

J(v, z). (1.5)

Remark 1.1 The boundary conditions (1.1)2 and the initials conditions (1.1)3 do have a meaning.
Indeed since z ∈ L2(Q) = L2(0, T ;L2(Ω)) we have z” ∈ H−2(0, T ;L2(Ω)). As z” − ∆z ∈
L2(Q), we deduce that ∆z ∈ H−2(0, T ;L2(Ω)). Thus z(t) ∈ L2(Ω) and ∆z(t) ∈ L2(Ω). Con-

sequently the traces z|Σ(t) and
∂z

∂ν |Σ
(t) exist and belong respectively to H−

1
2 (Γ) and H−

3
2 (Γ)

(see [7, p. 79]). On the other hand, since z ∈ L2(Q) , we have that ∆z ∈ L2(0, T ;H−2(Ω)).
Therefore z” ∈ L2(0, T ;H−2(Ω)) and we deduce that z′ ∈ L2(0, T ;H−1(Ω)) and (z(0), z(T )) ∈

[H−1(Ω)]2 and
(
∂z

∂t
(0),

∂z

∂t
(T )

)
∈
[
H−2(Ω)

]2 (see [11, Theorem 9.2]).

Here are now some examples in which the set Uad × L2(Q) of admissible pairs (v, z) is non-
empty.

Example 1.2 Let us assume that
Uad = L2(Σ0)× U1

ad,
U1
ad is a closed convex set of L2(Σ0)
containing at least one function v1 ∈ L2(Σ0).

(1.6)
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We construct the solution ζ of 

Mζ = 0 in Q
∂ζ

∂ν
= 0 on Σ1

∂ζ

∂ν
= v1 on Σ0

ζ(0) = 0 in Ω

∂ζ

∂t
(0) = 0 in Ω

(1.7)

where from now on M is given by

M =
∂2

∂t2
−∆. (1.8)

Since v1 ∈ L2(Σ0), System (1.7) has a unique ζ ∈ L2(0, T,H1(Ω)) (see [7, p. 347]). therefore
ζ|Σ ∈ L2(0, T,H1/2(Ω))). In particular ζ|Σ0

∈ L2(Σ0). Hence the pair(
(ζ|Σ0

, v1), ζ
)

is then admissible, consequently the set of admissible pairs is non-empty.

Example 1.3 Let us assume


Uad = U0

ad × L2(Σ0),
U0
ad is a closed convex set of L2(Σ0)

containing at least one function v0 ∈ H1(0, T ;H
3
2 (Γ0)) ∩H2

0 (0, T ;H0(Γ0)).

(1.9)

We construct ζ solution of 

Mζ = 0 in Q
ζ = v0 on Σ0

ζ = 0 on Σ1

ζ(0) = 0 in Ω
∂ζ

∂t
(0) = 0 in Ω

(1.10)

Since v0 ∈ H1(0, T ;H
3
2 (Γ0))∩H2

0 (0, T ;H0(Γ0)), we can find (see [12, Theorem 3.1, p. 112])
a function w ∈ H2,2(Q) such that

w|Σ = v0 χΓ0 , w(x, 0) =
∂w

∂t
(x, 0) = 0 in Ω.

Consequently, then ζ ∈ H2;1(Q)) (see [12, Theorem 3.2, p. 113]). Therefore ∂ζ
∂ν |Σ ∈ L

2(Σ)). In

particular ∂ζ
∂ν |Σ0

∈ L2(Σ0). Hence the pair((
v0,

∂ζ

∂ν
|Σ0

)
, ζ

)
is admissible.
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Let us come back now to the general problem (1.5) with Uad a non-empty closed convex set. It is
well known that the problem (1.5) has a unique solution, the optimal pair (u, y) which we are going
to characterize.
If (u, y) is the optimal pair the first order Euler-Lagrange conditions give

∀ (v, z) ∈ Uad, (y − zd, z − y)L2(Q) +N0(u0, v0 − u0)L2(Σ0) +N1(u1, v1 − u1)L2(Σ0) ≥ 0.

We can notice, in this inequality, that the variations of v and z are coupled, then it is important or
at least interesting to obtain an optimality system (O.S) in which v and z are not coupled. It is the
subject of this paper, precisely we have the following results.

Theorem 1.4 Assume that (1.3) holds. Let Uad = L2(Σ0) × U1
ad. Then the optimal pair (u, y) is

characterized by the triplet (u, y, p) ∈ U1
ad × L2(Q) × L2(0, T ;H1(Ω)) which is a solution of the

Singular Optimality System (S.O.S.)



My = 0 in Q
y = u0 on Σ0,

∂y

∂ν
= u1 on Σ0,

y(0) = 0 in Ω,

∂y

∂t
(0) = 0 in Ω,

(1.11)



Mp = zd − y in Q
p = 0 on Σ1,

∂p

∂ν
= 0 on Σ1,

p(T ) = 0 in Ω,

∂p

∂t
(T ) = 0 in Ω,

(1.12)

∂p

∂ν
= N0u0 on Σ0 (1.13)

and
∀ v1 ∈ U1

ad, (−p+N1u1, v1 − u1)L2(Σ0) ≥ 0. (1.14)

Theorem 1.5 Assume that (1.3) holds. Let Uad = U0
ad × L2(Σ0). Then the optimal pair (u, y) is

characterized by the triplet (u, y, p) ∈ U1
ad × L2(Q)× L2(Q) which is a solution of the S.O.S.

My = 0 in Q
y = u0 on Σ0,

∂y

∂ν
= u1 on Σ0,

y(0) = 0 in Ω,
∂y

∂t
(0) = 0 in Ω,

(1.15)
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Mp = zd − y in Q
p = 0 on Σ1,

∂p

∂ν
= 0 on Σ1,

p(T ) = 0 in Ω,
∂p

∂t
(T ) = 0 in Ω,

(1.16)

p = N1u1 on Σ0 (1.17)

and
(p,Mz)L2(Q) + (y − zd, z − y)L2(Q) +

+N0(u0, v0 − u0)L2(Σ0) +N1(u1, v1 − u1)L2(Σ0) ≥ 0, ∀(v, z) ∈ A, (1.18)

where A is given by (1.2).

Many applications such as the control of enzymatic reactions (cf J. P. Kernevez [5], and the bibliog-
raphy of this work), the control of the transmission of electrical energy, the control of the form of
plasmas, motivate the study of such a problem.
This problem has already been studied in the elliptic case by different authors such for example J.
L. Lions [6], O. Nakoulima [14], G. Mophou and O. Nakoulima [13]; M. Barry, O. Nakoulima and
G.B. Ndiaye in [15] studied the parabolic case.
The rest of this paper is devoted to the proof of these results.
In section 2 we study the approached problem; section 3 is devoted to the Strong Singular Optimality
System. Finally, we give in section 4 the weak Singular Optimality System.

2 Study of the approached problem

Set

K =



v = (v0, v1) ∈ U0
ad × U1

ad,

z, Mz ∈ L2(Q),

z = v0,
∂z

∂ν
= v1 on Σ0

z(0) = 0,
∂z

∂t
(0) = 0 in Ω.

(2.1)

ThenA ⊂ K and consequently, K 6= ∅. Let ε > 0. For any (v, z) ∈ K, we can define the functional
:

Jε(v, z) = J(v, z) +
1

2ε
|Mz|2L2(Q). (2.2)

The optimal control problem is then to find (uε = (u0ε, u1ε), yε) such that

J(uε, yε) = inf
(v,z)∈K

Jε(v, z). (2.3)

Proposition 2.1 Assume that (1.3) holds. Then for any ε > 0, there exists a unique pair (uε, yε)
solution to problem (2.3).
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Proof. Since (u = (u0, u1), y) ∈ A is the solution of (1.4), (u, y) ∈ K and Jε(v, z) ≥ 0
for all (v, z) ∈ K, we can define the real number

dε = inf{Jε(v, z), (v, z) ∈ K}.

Let (vn = (vn0 , v
n
1 ), zn) ∈ K be a minimizing sequence such that

dε ≤ Jε(vn, zn) < dε +
1

n
< dε + 1. (2.4)

In particular,

0 ≤ dε ≤ Jε(u, y) = N0 |u0|2L2(Σ0) + |u1|2L2(Σ0) + |y − zd|2L(Q)
. (2.5)

Therefore, from the form of Jε, we get

|Mzn|L2(Q) ≤ C
√
ε, (2.6a)

|vn0 |L2(Σ0) ≤ C, (2.6b)

|vn1 |L2(Σ0) ≤ C, (2.6c)

|zn|L2(Q) ≤ C, (2.6d)

where C = N0 |u0|2L2(Σ0) + |u1|2L2(Σ0) + |y − zd|2L(Q)
+ 1 > 0.

Consequently, there exists yε, β ∈ L2(Q), uε = (u0ε, u1ε ∈ L2(Σ0) × L2(Σ0) and a subse-
quence extracted from (vn = (vn0 , v

n
1 ), zn) (still denoted (vn = (vn0 , v

n
1 ), zn)) such that

Mzn ⇀ β weakly in L2(Q), (2.7a)

vn0 ⇀ u0ε weakly in L2(Σ0) (2.7b)

vn1 ⇀ u1ε weakly in L2(Σ0) (2.7c)

zn ⇀ yε weakly in L2(Q). (2.7d)

Since (vn0 , v
n
1 ) ∈ U0

ad × U1
ad which is closed subspace of L2(Σ)× L2(Σ), we deduce that

u = (u0ε, u1ε) ∈ U0
ad × U1

ad.. (2.8)

Using (2.7d), we have
zn ⇀ yε weakly in D′(Q)

and consequently
Mzn ⇀Myε weakly in D′(Q). (2.9)

Therefore combining (2.7a) and (2.9) we get

Myε = β

we can then write
Mzn ⇀Myε weakly in L2(Q). (2.10)

Since yε ∈ L2(Q), we have
∂2yε
∂t2

∈ L2((0, T ;H−2(Ω)). Thus, using the same arguments as

in Remark1.1 we have that traces
(
yε|Σ,

∂yε
∂ν |Σ

)
, (yε(0), yε(T )) and

(
∂yε
∂t

(0),
∂yε
∂t

(T )

)
ex-

ist and belong respectively to
(
H−2(0, T ;H−

1
2 (Γ)), H−2(0, T ;H−

3
2 (Γ))

)
, [H−1(Ω)]2 and to

[H−2(Ω)]2.
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Now multiplying Myn by ϕ ∈ C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ =

∂ϕ

∂ν
=

0 on Σ1 and integrating by parts over Q, we have

(Mzn, ϕ)L2(Q) = (zn,Mϕ)L2(Q) − (ϕ, vn1 )L2(Σ0) +

(
vn0 ,

∂ϕ

∂ν

)
L2(Σ0)

because (vn0 , v
n
1 , z

n) ∈ K.

Passing to the limit in this latter identity when n→ +∞, while using (2.7b), (2.7c), (2.7d) and
(2.10), we obtain

(Myε, ϕ)L2(Q) = (yε,Mϕ)L2(Q) − (ϕ, u1ε)L2(Σ0) +

(
u0ε,

∂ϕ

∂ν

)
L2(Σ0)

which after an integration by parts gives

(Myε, ϕ)L2(Q) =

〈
ϕ(0),

∂yε
∂t

(0)

〉
H2

0 (Ω),H−2(Ω)

−
〈
∂ϕ

∂t
(0), yε(0)

〉
H1

0 (Ω),H−1(Ω)

+

〈
ϕ,
∂yε
∂ν

〉
H2

0 (0,T ;H3/2(Γ0)),H−2(0,T ;H−3/2(Γ0))

−
〈
∂ϕ

∂ν
, yε

〉
H2

0 (0,T ;H1/2(Γ0)),H−2(0,T ;H−1/2(Γ0))

+(Myε, ϕ)L2(Q) − (ϕ, u1ε)L2(Σ0) +
(
u0ε,

∂ϕ
∂ν

)
L2(Σ0)

∀ϕ ∈ C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ =

∂ϕ

∂ν
= 0 on Σ1.

After simplification, this latter can be rewritten as

0 =

〈
ϕ(0),

∂yε
∂t

(0)

〉
H2

0 (Ω),H−2(Ω)

−
〈
∂ϕ

∂t
(0), yε(0)

〉
H1

0 (Ω),H−1(Ω)

+

〈
ϕ,
∂yε
∂ν
− u1ε

〉
H2

0 (0,T ;H3/2(Γ0)),H−2(0,T ;H−3/2(Γ0))

−
〈
∂ϕ

∂ν
, yε − u0ε

〉
H2

0 (0,T ;H1/2(Γ0)),H−2(0,T ;H−1/2(Γ0))

∀ϕ ∈ C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ =

∂ϕ

∂ν
= 0 on Σ1.

(2.11)

Taking in (2.11),

ϕ(0) = 0 in Ω, ϕ = 0 on Σ0 and
∂ϕ

∂ν
= 0 on Σ

this yields 〈
∂ϕ

∂t
(0), yε(0)

〉
H1

0 (Ω),H−1(Ω)

= 0

and
yε(0) = 0 in Ω. (2.12)
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Using the same technique we also obtain

∂yε
∂t

(0) = 0 in Ω, yε = u0ε on Σ0,
∂yε
∂ν

= u1ε on Σ0. (2.13)

From (2.10), (2.12) and (2.13), we obtain that the pair (uε, yε) ∈ K .

Finally, by combining (2.10), (2.7b), (2.7c), (2.7d) and the weak lower semi-continuity of Jε,
we obtain

Jε(uε, yε) ≤ lim inf
n→∞

Jε(v
n, zn) = dε.

In other words, (uε, yε) is the optimal control. Its uniqueness results from the strict convexity of Jε.
�

Proposition 2.2 Assume that (1.3) holds. Then (uε, yε) ∈ Uad × L2(Q) is an optimal solution of
problem (2.3) if and only if there exists pε ∈ L2(Q) such that the triplet (uε, yε, pε) is solution to
the following optimality System 

Myε = εpε in Q
yε(x, 0) = 0 in Ω
∂yε
∂t

(0) = 0 in Ω

yε = u0ε on Σ0,
∂yε
∂ν

= u1ε on Σ0,

(2.14)



Mpε = zd − yε in Q
pε(x, T ) = 0 in Ω
∂pε
∂t

(T ) = 0 in Ω

pε = 0 on Σ1

∂pε
∂ν

= 0 on Σ1

(2.15)

∀(v, z) ∈ K, (pε,M(z − yε))L2(Q) − (Mpε, z − yε)L2(Q) +

+N0(u0ε, v0 − u0ε)L2(Σ0) +N1(u1ε, v1 − u1ε)L2(Σ0) ≥ 0.
(2.16)

Proof. We write the first order Euler-Lagrange condition which characterizes the optimal control
(uε, yε):

∀(v, z) ∈ K, d

dλ
Jε(uε + λ(v − uε), yε + λ(z − yε))|λ=0 ≥ 0.

After a short calculation we obtain

∀(v, z) ∈ K, (yε − zd, z − yε)L2(Q) +N0(u0ε, v0 − u0ε)L2(Σ0) +

N1(u1ε, v1 − u1ε)L2(Σ0) +
1

ε
(Myε,M(z − yε))L2(Q) ≥ 0.

(2.17)

We set

pε =
1

ε
Myε. (2.18)
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Then pε ∈ L2(Q) and (2.17) becomes

∀(v, z) ∈ K, (pε,M(z − yε))L2(Q) + (yε − zd, z − yε)L2(Q) +

+N0(u0ε, v0 − u0ε)L2(Σ0) + +N1(u1ε, v1 − u1ε)L2(Σ0) ≥ 0.
(2.19)

Taking now in (2.19) z = yε ± ϕ, ϕ ∈ D(Q) and v = uε, we have

∀ ϕ ∈ D(Q), (pε,Mϕ)L2(Q) + (yε − zd, ϕ)L2(Q) = 0,

which after an integration by parts over Q gives

∀ ϕ ∈ D(Q), (Mpε + yε − zd, ϕ)L2(Q) = 0,

consequently
Mpε = zd − yε in Q. (2.20)

Using the same arguments as in Remark1.1 we have that traces pε|Σ,
∂pε
∂ν |Σ

exist and belong

respectively to H−2(0, T ;H−
1
2 (Γ)) and H−2(0, T ;H−

3
2 (Γ)). We can also define (pε(0), pε(T )) ∈

[H−1(Ω)]2 and
(
∂pε
∂t

(0),
∂pε
∂t

(T )

)
∈ [H−2]2(Ω).

Choosing now in (2.19) z = yε ± ϕ, ϕ ∈ C∞(Q) and (v0, v1) = (u0ε, u1ε), we obtain

(pε,Mϕ)L2(Q) + (yε − zd, ϕ)L2(Q) = 0,

for all ϕ in C∞(Q) such that ϕ = ∂ϕ
∂ν = 0 on Σ0,

which after an integration by parts yields

(yε − zd, ϕ)L2(Q) + (Mpε, ϕ)L2(Q) +
〈
∂pε
∂ν , ϕ

〉
H−2(0,T ;H−3/2(Γ1)),H2

0 (0,T ;H3/2(Γ1))

−
〈
pε,

∂ϕ
∂ν

〉
H−2(0,T ;H−1/2(Γ1)),H2

0 (0,T ;H1/2(Γ1))

+

〈
ϕ(T ),

∂pε
∂t

(T )

〉
H2

0 (Ω),H−2(Ω)

−
〈
ϕ(0),

∂pε
∂t

(0)

〉
H2

0 (Ω),H−2(Ω)

−
〈
∂ϕ

∂t
(T ), pε(T )

〉
H1

0 (Ω),H−1(Ω)

+

〈
∂ϕ

∂t
(0), pε(0)

〉
H1

0 (Ω),H−1(Ω)

= 0,

for all ϕ in C∞(Q) such that ϕ = ∂ϕ
∂ν = 0 on Σ0.

Using (2.20) in this latter identity, we deduce that

+
〈
∂pε
∂ν , ϕ

〉
H−2(0,T ;H−3/2(Γ1)),H2

0 (0,T ;H3/2(Γ1))

−
〈
pε,

∂ϕ
∂ν

〉
H−2(0,T ;H−1/2(Γ1)),H2

0 (0,T ;H1/2(Γ1))

+

〈
ϕ(T ),

∂pε
∂t

(T )

〉
H2

0 (Ω),H−2(Ω)

−
〈
ϕ(0),

∂pε
∂t

(0)

〉
H2

0 (Ω),H−2(Ω)

−
〈
∂ϕ

∂t
(T ), pε(T )

〉
H1

0 (Ω),H−1(Ω)

+

〈
∂ϕ

∂t
(0), pε(0)

〉
H1

0 (Ω),H−1(Ω)

= 0,

for all ϕ in C∞(Q) such that ϕ = ∂ϕ
∂ν = 0 on Σ0.

(2.21)
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Choose successively in (2.21), ϕ such that ϕ(T ) = 0 in Ω, ϕ = 0,
∂ϕ

∂ν
= 0 on Σ1; ϕ =

0,
∂ϕ

∂ν
= 0 on Σ and

∂ϕ

∂ν
= 0 on Σ1 we then successively deduce that

pε(x, T ) = 0 in Ω, (2.22)

∂pε
∂t

(x, T ) = 0 in Ω. (2.23)

∂pε
∂ν

= 0 on Σ1 (2.24)

and finally
pε = 0 on Σ1. (2.25)

So, (2.20), (2.24), (2.22), (2.23) and (2.25) gives (2.15). From (2.18), (2.12) and (2.13), we obtain
(2.14). Replacing zd − yε by Mpε in (2.19), we get (2.16). �

Let us prove that the solution (uε, yε) of the penalized problem converges to our optimal pair.

Proposition 2.3 Let (uε, yε) be the solution to (2.3). We then have for ε→ 0

uε → u strongly L2(Σ0)× L2(Σ0), (2.26)

yε → y strongly L2(Q), (2.27)

Jε → J. (2.28)

where (u, y) is the optimal pair and J the functional defined by (1.4) .

Proof. We proceed in three steps.

Step 1. We prove the weak convergence of (uε, yε) towards (û = (û0, û1), ŷ) ∈ U0
ad × U1

ad ×
L2(Q).

Since (u, y) is solution of (1.5), we have

Jε(uε, yε) = inf Jε(v, z) ≤ Jε(u, y) = J(u, y). (2.29)

From the structure of Jε we deduce that

|yε|2L2(Q) ≤ C, (2.30)

|uε|2L2(Σ0)×L2(Σ0) ≤ C, (2.31)

|Myε|L2(Q) ≤ C
√
ε (2.32)

where the C ′s are various constants independent of ε. Hence it follows from (2.32) and (2.18) that

|pε|L2(Q) ≤ C. (2.33)

So, we can therefore pick out from ((uε), (yε)) a sequence again denoted ((uε), (yε)) , such that

uε ⇀ û = (û0, û1) weakly in L2(Σ0)× L2(Σ0), (2.34)
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yε ⇀ŷ weakly in L2(Q), (2.35a)

Myε →0 strongly in L2(Q). (2.35b)

Since uε ∈ U0
ad × U1

ad which is closed subspace of L2(Σ0)× L2(Σ0), we deduce that

û = (û0, û1) ∈ U0
ad × U1

ad. (2.36)

From (2.35a), we have
yε ⇀ ŷ weakly in D′(Q).

Consequently
Myε ⇀Mŷ weakly in D′(Q). (2.37)

Therefore combining (2.35b) and (2.37) we get

Mŷ = 0. (2.38)

Since ŷ ∈ L2(Q), we have
∂2ŷ

∂t2
∈ L2((0, T ;H−2(Ω)). Thus, using the same arguments as in

Remark1.1 we have that traces
(
ŷ|Σ,

∂ŷ

∂ν |Σ

)
, (ŷ(0), ŷ(T )) and

(
∂ŷ

∂t
(0),

∂ŷ

∂t
(T )

)
exist and belong

respectively to
(
H−2(0, T ;H−

1
2 (Γ)), H−2(0, T ;H−

3
2 (Γ))

)
, [H−1(Ω)]2 and to [H−2(Ω)]2.

Now multiplying (2.14)1 by ϕ in C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ = ∂ϕ

∂ν =

0 on Σ1 and integrating by parts after taking the integral on Q, we have

(yε,Mϕ)L2(Q) − (ϕ, u1ε)L2(Σ0) +

(
u0ε,

∂ϕ

∂ν

)
L2(Σ0)

=
√
ε (pε, ϕ)L2(Q) .

Passing to the limit in this latter identity when ε→ 0 while using (2.34) and (2.35a), we obtain

(ŷ,Mϕ)L2(Q) − (ϕ, û1)L2(Σ0) +
(
û0,

∂ϕ
∂ν

)
L2(Σ0)

= 0,

for any ϕ in C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ =

∂ϕ

∂ν
= 0 on Σ1,

which after an integration by parts gives

0 = − (ϕ, û1)L2(Σ0) +

(
û0,

∂ϕ

∂ν

)
L2(Σ0)

−
〈
ϕ(0),

∂ŷ

∂t
(0)

〉
H2

0 (Ω),H−2(Ω)

+

〈
∂ϕ

∂t
(0), ŷ(0)

〉
H1

0 (Ω),H−1(Ω)

−
〈
ϕ,
∂ŷ

∂ν

〉
H2

0 (0,T ;H3/2(Γ0)),H−2(0,T ;H−3/2(Γ0))

+

〈
∂ϕ

∂ν
, ŷ

〉
H2

0 (0,T ;H1/2(Γ0)),H−2(0,T ;H−1/2(Γ0))

,

for any ϕ in C∞(Q) such that ϕ(T ) =
∂ϕ

∂t
(T ) = 0 in Ω, ϕ =

∂ϕ

∂ν
= 0 on Σ1.
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Take successively in this latter equality, ϕ(0) = 0 in Ω, ϕ = ∂ϕ
∂ν = 0 on Σ0;ϕ = ∂ϕ

∂ν =

0 on Σ0 and ∂ϕ
∂ν = 0 on Σ0; we successively get

ŷ(0) = 0 in Ω, (2.39a)
∂ŷ

∂t
(0) = 0 in Ω, (2.39b)

ŷ =û0 on Σ0, (2.39c)
∂ŷ

∂ν
=û1 on Σ0. (2.39d)

From (2.38) and (2.39), we obtain that the pair (û, ŷ) ∈ A ⊂ K.

Step 2. We prove that (û, ŷ) = (u, y), where (u, y) is solution of (1.5).

Since (û, ŷ) ∈ A, we have
J(u, y) ≤ J((û, ŷ). (2.40)

On the other hand, we have

J(uε, yε) ≤ Jε(uε, yε) ≤ Jε(u, y) = J(u, y).

Thus, using (2.35a)and (2.34), we obtain

J(û, ŷ) ≤ lim inf Jε(uε, yε) ≤ J(u, y) (2.41)

which combining with (2.40) gives
J(û, ŷ) = J(u, y).

Consequently,
(û, ŷ) = (u, y). (2.42)

Therefore, it follows from (2.41) that

J(u, y) ≤ lim
ε→0

Jε(uε, yε) ≤ J(u, y).

That is (2.28), i.e.: Jε → J .

Step 3. We prove the strong convergence.

As (2.28) can be rewritten as

lim
ε→0

(
|yε − zd|2L2(Q) +N0 |uoε|2L2(Σ0) +N1 |u1ε|2L2(Σ0)

)
= |y − zd|2L2(Q) +N0 |u0|2L2(Σ0) +N1 |u1|2L2(Σ0) ,

(2.43)

by using (2.34), (2.35a) and (2.42), we have
|y − zd|2L2(Q) ≤ lim inf

ε→0
|yε − zd|2L2(Q)

|u0|2L2(Σ0) ≤ lim inf
ε→0

|uoε|2L2(Σ0)

|u1|2L2(Σ0) ≤ lim inf
ε→0

|u1ε|2L2(Σ0)
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which, applied to (2.43), gives
|y − zd|2L2(Q) = lim

ε→0
|yε − zd|2L2(Q)

|u0|2L2(Σ0) = lim
ε→0
|uoε|2L2(Σ0)

|u1|2L2(Σ0) = lim
ε→0
|u1ε|2L2(Σ0) .

(2.44)

Similarly, since

N0 |u0 − u0ε|2L2(Σ0) +N1 |u1 − u1ε|2L2(Σ0) = N0 |u0ε|2L2(Γ0) +N1 |u1ε|2L2(Σ0)

+N0 |u0|2L2(Σ0) +N1 |u1|2L2(Σ0)

− 2 〈N0 u0 ε, u0〉L2(Σ0)

+ 2 〈N1 u1 ε, u1〉L2(Σ0) ,

(2.45)

passing (2.45) to the limit when ε→ 0 while using (2.34), (2.42) (2.44)2 and (2.44)3, we get

lim
ε→0

(
N0 |u0 − u0 ε|2L2(Σ0) +N1 |u1 − u1 ε|2L2(Σ0)

)
= 0

which implies (2.26).

It suffices to prove that yε → y strongly in L2(Q) to complete the proof of Proposition 2.3.

As we can write

|yε − y|2L2(Q) = |yε − zd|2L2(Q) + 2 〈yε − zd, zd − y〉L2(Q) + |zd − y|2L2(Q) , (2.46)

passing (2.46) to the limit while using, (2.44)1, (2.35a) and (2.42), we obtain

lim
ε→0
|yε − y|L2(Q) = 0.

That is (2.27). �

Now we can set up the Singular Optimality System for our optimal pair under some conditions.

3 Strong Singular Optimality System

In this section, we prove Theorem 1.4.

From (2.38), (2.39) and (2.42), we have (1.11).

In view of (2.33), we have that there exists p ∈ L2(Q) such that pε ⇀ p in L2(Q). Therefore
using (2.27) and the fact that pε is solution to (2.15), we can prove by proceeding as for yε in pages
47 and 48 that p satisfies (1.12).

Now, let us take in (2.16) z = yε ± ξ with ξ ∈ C∞(Q) such that
∂ξ

∂ν
= 0 on Σ0. Then

ξ|Σ0
= v0 − u0ε,

∂ξ

∂ν
|Σ0 = v1 − u1ε = 0 and ξ(0) =

∂ξ

∂t
(0) = 0 in Ω. (3.1)
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Therefore, (2.16) becomes

(pε,Mξ)L2(Q) − (Mpε, ξ)L2(Q) +N0(u0ε, ξ)L2(Σ0) = 0,

for all ξ in C∞(Q)such that (3.1) holds.

Integrating by parts the first term of this relation while using on the one hand the fact that pε is
solution of (2.15), with the traces given in pp. 45, and on the other hand the fact that ξ verifies (3.1),
we obtain

0 =

〈
∂pε
∂ν

+N0u0ε, ξ

〉
H−2(0,T ;H−3/2(Γ0)),H2

0 (0,T ;H3/2(Γ0))
(3.2)

from which we deduce that
∂pε
∂ν

= −N0u0ε on Σ0. (3.3)

Thus we have on the one hand

∂pε
∂ν

⇀
∂p

∂ν
= −N0u0 weakly in L2(Σ0) (3.4)

since (2.26) holds, and on the other hand that pε is such that

Mpε = zd − yε in Q
∂pε
∂ν

= −N0u0ε on Σ0

∂pε
∂ν

= 0 on Σ1.

∂pε
∂t

(T ) = 0 in Ω

pε(x, T ) = 0 in Ω

Therefore, in view of (2.30) and (2.31), we have that there existsC > 0 such that |pε|L2(0,T ;H1(Ω)) ≤
C (see [7, p. 347] ). This implies that by the continuity of the trace that

|pε|L2(Σ0) ≤ C. (3.5)

Hence, we have that
pε ⇀ p weakly in L2(Σ0). (3.6)

Now integrating by parts the first term in (2.16), while using on one hand the fact that pε is solution
of (2.15), and on the other hand the fact that z − yε verifies

z − yε|Σ0
= v0 − u0ε,

∂z − yε
∂ν

|Σ0 = v1 − u1ε and z − yε(0) =
∂z − yε
∂t

(0) = 0 in Ω,

we obtain

∀(v, z) ∈ K,
(
∂pε
∂ν

, v0 − u0ε

)
L2(Σ0)

− (pε, v1 − u1ε)L2(Σ0)

+N0(u0ε, z − yε)L2(Σ0) +N1(u1ε, z − yε)L2(Σ0) ≥ 0,

which combined with (3.2) gives

∀v1 ∈ U1
ad, (−pε +N1u1ε, v1 − u1ε)L2(Σ0) ≥ 0. (3.7)

Now let us pass to the limit in (3.7) while using (2.26) and (3.6), we then deduce (1.14). The
proof of Theorem 1.4 is then complete.
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4 Weak Singular Optimality System

In this section we are going to prove Theorem 1.5.

We have already proved in Theorem 1.4 that (1.15) and (1.16) hold.

Now, let us take in (2.16) z = yε ± ξ with ξ ∈ C∞(Q) with v0 = u0ε. Then ξ is such that

ξ|Σ0
= 0,

∂ξ

∂ν
|Σ0 = v1 − u1ε and ξ(0) =

∂ξ

∂t
(0) = 0 in Ω. (4.1)

Therefore, (2.16) becomes

(pε,Mξ)L2(Q) − (Mpε, ξ)L2(Q) +N1(u1ε, ξ)L2(Σ0) = 0,

for all ξ in C∞(Q) such that (4.1) holds.

Integrating by parts the first term of this relation while using on the one hand the fact that pε is
solution of (2.15), with the traces given in p. 45, and on the other hand the fact that ξ verifies (3.1),
we obtain

0 = 〈pε −N1u1ε, ξ〉H−2(0,T ;H−1/2(Γ0)),H2
0 (0,T ;H1/2(Γ0)) (4.2)

from which we deduce that
pε = N1u1ε on Σ0. (4.3)

Thus, we have
pε ⇀ p = −N1u1 weakly in L2(Σ0) (4.4)

since (2.26) holds. Now, from (2.33), we have that there exists p ∈ L2(Q) such that

pε ⇀ p weakly in L2(Q). (4.5)

Finally, passing to the limit in (2.16) while using (2.35b), (2.37), (2.38), (2.26), (2.27) and (4.5) we
obtain (1.18). This completes the proof of Theorem 1.5.
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