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Abstract. In this present work, we study the existence of a mild solution of a history valued neutral
delay differential equation of fractional order with a nonlocal condition in a Banach space X . The
existence results can be obtained by using a differentiable resolvent operator and fixed point theorems.
An example is also considered to show the effectiveness of the obtained theory.

Keywords: Fractional calculus, Caputo derivative, Nonlocal condition, Resolvent operator, Neutral
fractional differential equation.

2010 Mathematics Subject Classification: 34K37, 34K30, 35R11, 47N20.

1 Introduction

In recent few decades, researchers have developed great interest in fractional calculus. The fractional
order differential equations have played very important role in physics, engineering and many other
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fields of science, like fractal theory, diffusion in porous media and fractional biological neurons.
The tool of fractional calculus has been available and applicable to deal with traffic flow, nonlinear
oscillation of earthquake, real system characterized by power laws, anomalous diffusion process and
many other areas. For more details on fractional calculus, we refer to [1, 2, 3, 4].

The Cauchy problem for several delay problems in a Banach space has received much attention
during the past twenty years. The nonlocal condition is more realistic than the classical initial
condition in dealing with many physical problems. Concerning the developments in the study of
nonlocal problems we refer to [5, 6, 11, 12, 13, 22] and references given therein. We can found few
papers in literature for the solvability of the fractional order neutral delay differential equations with
nonlocal conditions.

For the initial study of the existence and uniqueness of mild solutions of the fractional order
differential equations by virtue of resolvent operator, we refer to [7, 14, 15, 18, 19, 20, 21] and
references given therein. For more details of resolvent operators, we refer to [8, 9, 10, 14, 16, 17].

In this work, we consider the following history valued neutral fractional order differential
equation

cDq
t [u(t) + g(t, u(t), ut)] = Au(t) + f(t, u(t), ut), 0 < t ≤ T <∞, (1.1)

u(t) = φ(t) + h(u)(t), t ∈ [−τ, 0], (1.2)

where cDq
t is the Caputo fractional derivative of order q, q ∈ (0, 1), A : D(A) ⊂ X → X is a closed

linear operator with dense domain D(A) in a Banach space X and an infinitesimal generator of a re-
solvent operator {S(t)}t≥0 of linear operators defined onX . For u ∈ C([0, T ];X), ut : [−τ, 0]→ X
is defined as ut(θ) = u(t+θ) for θ ∈ [−τ, 0]. The functions f, g : [0, T ]×X×C([−τ, 0];X)→ X ,
and h : C([−τ, 0];X)→ C([−τ, 0];X) are appropriate functions and φ : [−τ, 0]→ X is a given
continuous function.

The organization of the article is as follows: In Section 2, we provide some basic definitions,
lemmas and theorems as preliminaries as these are useful for proving our results. In Section 3, the
first existence result for the mild solution to (1.1)–(1.2) is obtained by using a differentiable resolvent
operator and the Banach fixed point theorem, and the second existence result of the mild solution for
the considered nonlocal problem is established with the help of Krasnoselskii’s fixed point theorem.
An example is also considered at the end of the article.

2 Preliminaries

In this section, we give some definitions, theorems and propositions of fractional calculus and
resolvent operators. Let X be a Banach space and I = [0, T ], where 0 < T < ∞ and J = (a, b),
where −∞ < a ≤ b ≤ +∞, 1 ≤ p <∞. Let

• C(I;X) be the Banach space of continuous functions u(t) from I to X equipped with the
norm ‖u‖C = supt∈[0,T ]‖u(t)‖X .

• Cm(I;X) be the Banach space of functions u : [0, T ] → X , which are m-times continuous
differentiable function from [0, T ] to X equipped with the norm

‖u‖Cm = sup
t∈[0,T ]

m∑
k=0

‖uk(t)‖X .
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• Lp(J ;X) be the space of all Bochner-measurable functions u : J → X such that ‖u(t)‖pX is
integrable. Lp(J ;X) is a Banach space with the norm

‖u‖Lp(J ;X) =

(∫
J
‖u(s)‖pX ds

)1/p

.

For a function u ∈ C([−τ, T ];X), we define the function h̃ ∈ C
(
C([−τ, 0];X),

C([−τ, 0]; [D(A)])
)

such that

(h̃u)t =

{
(hu)(t), t ∈ [−τ, 0]

(hu)(0), t ∈ [0, T ],
(2.1)

and φ̃ ∈ C([−τ, 0];X) defined as

φ̃(t) =

{
φ(t), t ∈ [−τ, 0]

φ(0), t ∈ [0, T ].
(2.2)

Definition 2.1 The Riemann–Liouville fractional integral of u with order q ∈ R+ is given by

Jqt u(t) =
1

Γ(q)

∫ t

0
(t− s)q−1u(s) ds,

where u ∈ L1((0, T );X).

Definition 2.2 The Riemann–Liouville fractional derivative of u of order q ∈ R+ is given by

Dq
tu(t) = Dm

t J
m−q
t u(t),

where Dm
t = dm

dtm , u ∈ L1((0, T );X), Jm−qt u ∈Wm,1((0, T );X).

Definition 2.3 The Caputo fractional derivative of u of order q ∈ R+ is given by

cDq
tu(t) = Dq

t

(
u(t)−

m−1∑
k=0

tk

k!
uk(0)

)
,

where u ∈ L1((0, T );X) ∩ Cm−1((0, T );X).

We also have

Jqt (cDq
tu(t)) = u(t)−

m−1∑
k=0

tk

k!
uk(0).

Definition 2.4 ([10, Chapter 1]) Let q > 0. A family {S(t)}t≥0 of bounded linear operators
on a Banach space X is called a resolvent operator for the integral equation u(t) = x +

1
Γ(q)

∫ t
0

Au(s)
(t−s)1−q ds, t ≥ 0, x ∈ X , if the following conditions are satisfied:

(a) S(t) is strongly continuous on R+ and S(0) = I;
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(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;

(c) S(t)x is a solution of

u(t) = x+
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds, (2.3)

for all x ∈ D(A), t ≥ 0.

Definition 2.5 ([10, Chapter 1]) A resolvent operator {S(t)}t≥0 for (2.3) is called differentiable
if S(·)x ∈ W 1, 1

loc (R+, X) for all x ∈ D(A) and there exists ϕA ∈ L1
loc(R+) such that ‖S′(t)x‖ ≤

ϕA(t)‖x‖[D(A)] for all x ∈ D(A).

Definition 2.6 ([10, Chapter 2]) A resolvent operator {S(t)}t ≥ 0 for (2.3) is called analytic if the
operator function S(·) : (0,∞)→ L(X) admits an analytic extension to a sector Σ0, θ0 = {λ ∈ C :
|arg(λ)| < θ0} for some 0 < θ0 ≤ π

2 .

Definition 2.7 A function u ∈ C([−τ, T ];X) is said to be a mild solution of the history valued
neutral problem (1.1)–(1.2) if u(t) = φ(t) + h(u)(t) for t ∈ [−τ, 0],

∫ t
0

u(s)
(t−s)1−q ds ∈ D(A) for

t ∈ [0, T ] and

u(t) = φ(0) + h(u)(0) + g(0, (φ+ h(u))(0), φ+ h(u))− g(t, u(t), ut)

+
A

Γ(q)

∫ t

0

u(s)

(t− s)1−q ds+
1

Γ(q)

∫ t

0

f(s, u(s), us)

(t− s)1−q ds.
(2.4)

The above equation (2.4) can also be written as the integral equation

u(t) = k(t) +
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds, (2.5)

where

k(t) = φ(0) + h(u)(0) + g(0, (φ+ h(u))(0), φ+ h(u))− g(t, u(t), ut)

+
1

Γ(q)

∫ t

0

f(s, u(s), us)

(t− s)1−q ds, for t ∈ [0, T ],

is a continuous function due to continuity of f and g on [0, T ].

The next results assemble different properties of the mild solution of (2.5).

Lemma 2.1 ([10]) Assume S(t) is the resolvent operator for (2.5). Then

(i) if u ∈ C([0, T ];X) is a mild solution of (2.5), then S ∗ k is continuously differentiable on
[0, T ] and

u(t) =
d

dt

∫ t

0
S(t− s)k(s) ds, ∀ t ∈ [0, T ],
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(ii) if {S(t)}t≥0 is analytic, k ∈ Cα([0, T ];X) for some α ∈ (0, 1) and k(0) = 0, then the
function given by

u(t) = S(t)k(t) +

∫ t

0
S′(t− s)[k(s)− k(t)] ds, ∀ t ∈ [0, T ],

is a mild solution of (2.5) and u ∈ Cα([0, T ];X).

(iii) if {S(t)}t≥0 is analytic and k ∈ Cα([0, T ];X), then the function defined by

u(t) = S(t)(k(t)− k(0)) +

∫ t

0
S′(t− s)[k(s)− k(t)] ds+ S(t)k(0), ∀ t ∈ [0, T ],

is a mild solution of (2.5);

(iv) if {S(t)}t≥0 is differentiable and k ∈ C([0, T ]; [D(A)]), then the function u : [0, T ] → X
given by

u(t) =

∫ t

0
S′(t− s)k(s) ds+ k(t), t ∈ [0, T ],

is a mild solution of (2.5).

3 Existence of mild solution

In this section, we discuss the existence of a mild solution for the problem (1.1)–(1.2). Throughout
the work, we assume that f, g : [0, T ]×X ×C([−τ, 0];X)→ [D(A)] are continuous functions and
the resolvent operator {S(t)}t≥0 is a differentiable operator.

By considering Lemma 2.1 (iv), we have

u(t) =


φ(t) + h(u)(t), t ∈ [−τ, 0],

Gu(t) + Fu(t) +

∫ t

0
S′(t− s)[Gu(s) + Fu(s)] ds, t ∈ [0, T ],

(3.1)

where

Gu(t) = φ(0) + h(u)(0) + g(0, (φ+ h(u))(0), φ+ h(u))− g(t, u(t), ut), (3.2)

Fu(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s, u(s), us) ds. (3.3)

Since A is the infinitesimal generator of the differentiable resolvent operator {S(t)}t≥0 and there
exists a function ϕA in L1

loc([0,∞),R+) such that ‖S′(t)x‖ ≤ ϕA‖x‖[D(A)], for all t > 0. Without
loss of generality, we assume that ‖S(t)‖ ≤M , for t ∈ [0, T ].

Here we list the following assumptions:

(A1) The function f : [0, T ] ×X × C([−τ, 0];X) → [D(A)] is a Lipschitz continuous function
such that

‖f(t, x1, y1)− f(t, x2, y2)‖[D(A)] ≤ Lf
(
‖x1 − x2‖+ ‖y1 − y2‖[−τ,0]

)
for all xi ∈ X , yi ∈ C([−τ, 0];X) (i = 1, 2) and t ∈ [0, T ] and Lf is a positive constant and
B = supt∈[0,T ] ‖f(t, 0, 0)‖.
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(A2) The function g : [0, T ]×X × C([−τ, 0];X)→ [D(A)] is a continuous function such that

‖g(t, x, y)‖[D(A)] ≤ c1

(
‖x‖+ ‖y‖[−τ,0]

)
+ c2,

‖g(t, x1, y1)− g(t, x2, y2)‖[D(A)] ≤ Lg
(
‖x1 − x2‖+ ‖y1 − y2‖[−τ,0]

)
for all t ∈ [0, T ] and x, x1, x2 ∈ X , y, y1, y2 ∈ C([−τ, 0];X) and c1, c2 and Lg are positive
constants.

(A3) The function h : C([−τ, 0];X)→ C([−τ, 0]; [D(A)]) is a Lipschitz continuous function, i.e.,
there exists a positive constant Lh such that

‖h(x)− h(y)‖[D(A)] ≤ Lh(‖x− y‖),

and let h be also uniformly bounded, i.e., there is a positive constant N such that

‖h(x)‖[D(A)] ≤ N

for all x, y ∈ C([−τ, 0];X).

From the equations (3.2)–(3.3) and assumptions (A1)–(A3), it is clear that G, F ∈ C([0, T ]; [D(A)])
in (3.1). Our first result for the existence of a solution of the nonlocal problem (1.1)–(1.2) is based
on the Banach fixed point theorem.

Theorem 3.1 Let f, g ∈ C([0, T ] × X × C([−τ, 0];X); [D(A)]) and φ ∈ C([−τ, 0]; [D(A)]).
Suppose that the assumptions (A1)–(A3) are satisfied and

LB = (Lh + 2LhLg + 2Lg)× (1 + ‖ϕA‖L1) +

[
2Lf

T q

Γ(1 + q)
(1 + ||ϕA||L1)

]
< 1. (3.4)

Then the problem (1.1)–(1.2) has a unique mild solution on [−τ, T ].

Proof. By Lemma 2.1 (iv), we have that the mild solution u : [−τ, T ] → X of problem (1.1) is
given by the integral equation (3.1). Define a map Q : C([−τ, T ], X)→ C([−τ, T ], X) such that

Qu(t) =


φ(t) + h(u)t, t ∈ [−τ, 0],

Gu(t) + Fu(t) +

∫ t

0
S′(t− s)[G(u)(s) + F (u)(s)] ds, t ∈ [0, T ].

Now, we prove that Q has a fixed point which is a unique mild solution of the equation (1.1).

Let u, v ∈ C([−τ, T ], X). For t ∈ [−τ, 0] , we have

‖Qu(t)−Qv(t)‖ ≤ ‖hu(t)− v(t)‖[D(A)]

≤ Lh‖u(t)− v(t)‖,
(3.5)

and for t ∈ [0, T ], we get

‖Qu(t)−Qv(t)‖
≤ ‖Gu(t)−Gv(t)‖+ ‖Fu(t)− Fv(t)‖

+

∫ t

0
‖S′(t− s)[Gu(s)−Gv(s) + Fu(s)− Fv(s)]‖ds
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≤ ‖h(u)(0)− h(v)(0)‖[D(A)] + ‖g(0, (φ+ h(u))(0), φ+ h(u))

− g(0, (φ+ h(v))(0), φ+ h(v)‖[D(A)] + ‖g(t, u(t), ut)− g(t, v(t), vt)‖[D(A)]

+

∫ t

0
ϕA(t− s)

[
‖h(u)(0)− h(v)(0)‖[D(A)]

+ ‖g(0, (φ+ hu)(0), φ+ h(u))− g(0, (φ+ h(v))(0), φ+ h(v))‖[D(A)]

+ ‖g(s, u(s), us)− g(s, v(s), vs)‖[D(A)]

]
ds

+
1

Γ(q)

∫ t

0
(t− s)q−1

[
‖f(s, u(s), us)− f(s, v(s), vs)‖[D(A)]

]
ds

+

∫ t

0
ϕA(t− s)

[
1

Γ(q)

∫ s

0
(s− ξ)q−1‖f(ξ, u(ξ), uξ)− f(ξ, v(ξ), vξ)‖D(A) dξ

]
ds

≤ Lh‖u− v‖+ Lg
(
Lh‖u− v‖+ Lh‖u− v‖[−τ,t]

)
+ Lg

(
‖u(t)− v(t)‖+ ‖ut − vt‖[−τ,0]

)
+

∫ t

0
ϕA(t− s)

[
Lh‖u− v‖+ Lg

(
Lh‖u(s)− v(s)‖

+ Lh‖us − vs‖[−τ,0]

)
+ Lg

(
‖u(s)− v(s)‖+ ‖us − vs‖[−τ,0]

)]
ds

+
1

Γ(q)

∫ t

0
(t− s)q−1Lf

(
‖u(s)− v(s)‖+ ‖us − vs‖[−τ,0]

)
ds

+
1

Γ(q)

∫ t

0
ϕA(t− s)

[∫ s

0
(s− ξ)q−1Lf

(
‖u(ξ)− v(ξ)‖+ ‖uξ − vξ‖[−τ,0]

)
dξ

]
ds.

Since ‖ut‖[−τ,0] = supθ∈[−τ,0] ‖ut(θ)‖ and supt∈[0,T ] ‖ut‖[−τ,0] ≤ supt∈[−τ,T ] ‖u(t)‖. Therefore,
we get

‖Qu(t)−Qv(t)‖
≤
[
(Lh + 2LhLg + 2Lg) + (Lh + 2LhLg + 2Lg)‖ϕA‖L1

]
× ‖ u− v‖[−τ,T ]

+

[
2Lf

T q

Γ(1 + q)
+ 2Lf

T q

Γ(1 + q)
‖ϕA‖L1

]
‖u− v‖[−τ,T ], ∀ t ∈ [0, T ],

= LB‖u− v‖[−τ,T ],

where LB = (Lh + 2LhLg + 2Lg) × (1 + ‖ϕA‖L1) + [2Lf
T q

Γ(1+q)(1 + ||ϕA||L1)]. Taking the
supremum over [−τ, T ], we get

‖Q(u)−Q(v)‖[−τ,T ] ≤ LB||u− v||[−τ,T ].

Since LB < 1. Therefore, it implies that ‖Q(u)−Q(v)‖ < ||u− v||[−τ,T ], i.e., Q is a contraction
mapping on C([−r, T ];X) and there exists a unique fixed point of the map Q which is just a unique
mild solution for the system (1.1)–(1.2) by Banach fixed point theorem. �

Our second existence result is based on the Krasnoselskii’s fixed point theorem.

Lemma 3.2 Let X be a Banach space and B be a non-empty closed bounded and convex subset of
X . Let Q1 and Q2 be two operators such that

(1) Q1x+Q2y ∈ B, for every pair x, y ∈ B;



20 Alka Chadha and Dwijendra N. Pandey, J. Nonl. Evol. Equ. Appl. 2014 (2014) 13–28

(2) Q1 is a contraction mapping;

(3) Q2 is completely continuous.

Then, there exists a fixed point of map Q = Q1 +Q2.

Theorem 3.3 Let φ ∈ C([−τ, 0]; [D(A)]), h ∈ C(C([−τ, 0];X), C([−τ, 0]; [D(A))]), g ∈
C([0, T ]×X × C([−τ, 0];X); [D(A)]) and f ∈ C([0, T ]×X × C([−τ, 0];X); [D(A)]) be com-
pletely continuous such that f , g, h satisfy the hypotheses (A1)–(A3), respectively. If(

2c1 + 2Lf
T q

qΓ(q)

)
× (1 + ‖ϕA‖L1) < 1 (3.6)

and
L = (Lh + 2LhLg + 2Lg)(1 + ‖ϕA‖L1) < 1, (3.7)

then there exists a mild solution of (1.1)–(1.2) on [−τ, T ].

Proof. To prove the result we convert the problem of the existence of a solution of (1.1)–(1.2) into a
fixed point problem.

Consider the map Q : C([−τ, T ];X)→ C([−τ, T ];X) defined by

Qu(t) =


φ(t) + (hu)(t), t ∈ [−τ, 0],

Gu(t) + Fu(t) +

∫ t

0
S′(t− s)[G(u)(s) + F (u)(s)] ds, t ∈ [0, T ].

(3.8)

Further, define

Bk(C([−τ, T ];X)) =
{
u ∈ C([−τ, T ];X); ‖u(t)‖ ≤ k, ∀ t ∈ [−τ, T ]

}
= Bk,

which is a closed and convex ball with center at the origin and radius k. Now, we introduce the
decomposition of the map Q into Q1 and Q2 on Bk(C([−τ, T ];X)) given by

Q1u(t) =


φ(t) + h(u)t, t ∈ [−τ, 0],

Gu(t) +

∫ t

0
S′(t− s)[G(u)(s)] ds, t ∈ [0, T ],

Q2u(t) =


0, t ∈ [−τ, 0],

Fu(t) +

∫ t

0
S′(t− s)[F (u)(s)] ds, t ∈ [0, T ].

Since F and G are both continuous. By the assumptions (A1)–(A3) we have that for any u ∈
C([0, T ];X),∥∥∥∥∫ t

0
S′(t− s)[Gu(s) + Fu(s)] ds

∥∥∥∥
≤
∫ t

0
‖S′(t− s)[Gu(s) + Fu(s)]‖ ds



EXISTENCE OF A SOLUTION FOR A FRACTIONAL DIFFERENTIAL EQUATION 21

≤
∫ t

0
ϕA(t− s)‖Gu(s)‖[D(A)] ds

+

∫ t

0
ϕA(t− s)

[
1

Γ(q)

∫ s

0

‖f(ξ, u(ξ), uξ)‖[D(A)]

(s− ξ)1−q dξ

]
ds

≤

(
sup

s∈[−τ,T ]
‖Gu(s)‖[D(A)] + sup

s∈[−τ,T ]
‖f(s, u(s), us)‖[D(A)]

T q

Γ(q + 1)

)
× ‖ϕA‖L1 ,

it follows that the function s 7→ S′(t− s)[Gu(s) + Fu(s)] is integrable on (0, t) for all t ∈ [0, T ].
Therefore mapping Q is well-defined with the values in C([−τ, T ];X).

It is easily observed that a fixed point of the map Q is a mild solution of the problem (1.1)–(1.2).
We give the proof in several steps.

Step 1. Next, we prove that Q(Bk) ⊂ Bk. Suppose, on the contrary that for each k ∈ N there exists
uk ∈ Bk and some tk ∈ [−τ, T ] such that k < ‖Quk(tk)‖. If tk ∈ [−τ, 0], then we get

k < ‖Quk(tk)‖ ≤ ‖φ(tk)‖[D(A)] + ‖h(uk)(tk)‖[D(A)]

≤ ‖φ‖[−τ,0] +N,
(3.9)

and if tk ∈ [0, T ], we get

k < ‖Q(uk)(tk)‖ ≤ ‖Q1(uk)(tk)‖+ ‖Q2(uk)(tk)‖. (3.10)

Now,

‖Q1(uk)(tk)‖

≤ ‖Guk(tk)‖+

∫ tk

0
‖S′(tk − s)Guk(s)‖ ds

≤ ‖Guk(tk)‖+

∫ tk

0
ϕA(tk − s)‖Guk(s)‖[D(A)] ds

≤ ‖φ(0)‖+ ‖h(uk)(0)‖+ ‖g(0, (φ+ h(uk))(0), φ+ h(uk))‖

+ ‖g(tk, uk(tk), uktk)‖+

∫ tk

0
ϕA(tk − s)

[
‖φ(0)‖+ ‖h(uk)(0)‖[D(A)]

+ ‖g(0, (φ+ h(uk))(0), φ+ h(uk))‖[D(A)] + ‖g(s, uk(s), uks)‖[D(A)]

]
ds

≤ ‖φ(0)‖+N + [2c1(‖φ‖[−τ,0] +N) + c2] + [2c1k + c2]

+

∫ tk

0
ϕA(tk − s)

[
‖φ(0)‖+N + [2c1(‖φ‖[−τ,0] +N) + c2] + [2c1k + c2]

]
ds

≤
(
‖φ(0)‖+N + [2c1(‖φ‖[−τ,0] +N) + c2] + [2c1k + c2]

)
× (1 + ‖ϕA‖L1)

(3.11)

and

‖Q2u
k(tk)‖ ≤ ‖Fuk(tk)‖+

∫ tk

0
‖S′(tk − s)Fuk(s)‖ ds. (3.12)
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Since we have

∥∥∥∥ 1

Γ(q)

∫ tk

0
(tk − s)q−1f(s, uk(s), uks) ds

∥∥∥∥
≤ 1

Γ(q)

∫ tk

0

(‖f(s, uk(s), uks)− f(s, 0, 0)‖+ ‖f(s, 0, 0)‖)
(tk − s)1−q ds

≤ 1

Γ(q)

∫ tk

0
(tk − s)q−1

[
Lf (‖uk(s)‖+ ‖uks‖[−τ,0]) +B

]
ds

≤ (2Lfk +B)
T q

Γ(q + 1)
,

(3.13)

therefore from (3.12) and (3.13), we get

‖Q2u
k(tk)‖ ≤ (2Lfk +B)

T q

Γ(q + 1)
(1 + ‖ϕA‖L1). (3.14)

Then equations (3.10), (3.11) and (3.14) imply that

k < ‖Quk(tk)‖ ≤
{
‖φ(0)‖+N + [2c1(‖φ‖[−τ,0] +N) + c2] + [2c1k + c2]

+ (2Lfk +B)
T q

Γ(q + 1)

}
× (1 + ‖ϕA‖L1) = Lk (say).

(3.15)

From the inequality (3.9) and (3.15), we get

k < max{‖φ‖[−τ,0] +N,Lk}. (3.16)

We divide both sides of the equation (3.16) by k and taking limit k →∞, we obtain

(
2c1 + 2Lf

T q

Γ(q + 1)

)
× (1 + ‖ϕA‖L1) ≥ 1,

which contradicts (3.6). Therefore, we have that there exists a positive integer k ∈ N such that
Q(Bk) ⊂ Bk.

To prove the result that Q has a fixed point, firstly we show that Q1 is a contraction and secondly
that Q2 is completely continuous.

Step 2. Q1 is a contraction. For u, v ∈ Bk, we have

‖Q1u(t)−Q1v(t)‖ ≤ ‖h(u)(t)− h(v)(t)‖
≤ Lh‖u(t)− v(t)‖, if t ∈ [−τ, 0],

(3.17)
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and

‖Q1u(t)−Q1v(t)‖
≤ ‖h(u)(0)− h(v)(0)‖+ ‖g(0, (φ+ hu)0, φ+ h(u))

− g(0, (φ+ hv)0, φ+ h(v))‖+ ‖g(t, u(t), ut)− g(t, v(t), vt)‖

+

∫ t

0

∥∥S′(t− s)[h(u)(0)− h(v)(0) + g(0, (φ+ hu)(0), φ+ h(u))

− g(0, (φ+ h(v))(0), φ+ h(v)) + g(s, u(s), us)− g(s, v(s), vs)
]∥∥ds

≤ (Lh + 2LhLg + 2Lg)‖u− v‖[−τ,T ]

+

∫ t

0
ϕA(t− s)

[
‖h(u)(0)− h(v)(0)‖[D(A)]

+ ‖g(0, (φ+ hu)(0), φ+ h(u))− g(0, (φ+ h(v))0, φ+ h(v))‖[D(A)]

+ ‖g(s, u(s), us)− g(s, v(s), vs)‖[D(A)]

]
ds

≤ (Lh + 2LhLg + 2Lg)(1 + ‖ϕA‖L1)× ‖u− v‖[−τ,T ], ∀ t ∈ [0, T ],

= L‖u− v‖[−τ,T ], if t ∈ [0, T ],

(3.18)

where L = (Lh + 2LhLg + 2Lg)(1 + ‖ϕA‖L1) < 1. Taking supremum over [−τ, T ] and
from (3.17) and (3.18), we get

‖Q1u−Q1v‖[−τ,T ] ≤ L‖u− v‖[−τ,T ],

whence it follows that Q1 is a contraction on Bk.

Step 3. Q2 is completely continuous in X . Since the function

s 7→
∫ t

0
S′(t− s)

∫ s

0
(s− ξ)q−1f(ξ, u(ξ), uξ) dξ ds

is integrable on [0, T ] from the assumption (A1). Now we show that Q2 is uniformly bounded. For
t ∈ [0, T ], we have

‖Q2u(t)‖ ≤ ‖Fu(t)‖+

∫ t

0
‖S′(t− s)Fu(s)‖ds

≤ (2Lfk +B)
T q

Γ(q + 1)
(1 + ‖ϕA‖L1),

and for t ∈ [−τ, 0], we have Q2u(t) = 0. It implies that Q2 is uniformly bounded on [−τ, T ].

Now, let {un} be a sequence in Bk such that un → u in Bk. By the continuity of f , we have

f(s, un(s), (un)s)→ f(s, u(s), us), as n→∞.

For each t ∈ [0, T ], we have

‖Q2un(t)−Q2u(t)‖

≤ ‖Fun(t)− Fu(t)‖+

∫ t

0
‖S′(t− s)[Fun(s)− Fu(s)]‖ ds

≤ 1

Γ(q)

∫ t

0

‖f(s, un(s), (un)s)− f(s, u(s), us)‖
(t− s)1−q ds

+

∫ t

0
ϕA(t− s) 1

Γ(q)

[∫ s

0

‖f(ξ, un(ξ), (un)ξ)− f(ξ, u(ξ), uξ)‖[D(A)]

(s− ξ)1−q dξ

]
ds,
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which tends to zero when n→∞ and for t ∈ [−τ, 0], we have Q2u(t) = 0. Thus, Q2 is continuous
on [−τ, T ].

Next, we show that the set {Q2u(t) : u ∈ Bk} is relatively compact in X for all t ∈ [−τ, T ]. For
t ∈ [−τ, 0], the set {Q2u(t) : u ∈ Bk} is compact. For t ∈ [0, T ], let ε be a real number satisfying
0 < ε < t. For u ∈ Bk, define the operator Qε2 by

Qε2u(t) =
1

Γ(q)

∫ t−ε

0

f(s, u(s), us)

(t− s)1−q ds+

∫ t−ε

0
S′(t− s) 1

Γ(q)

∫ s

0

f(ξ, u(ξ), uξ)

(s− ξ)1−q dξ ds.

By the assumption (A1), f is completely continuous, the set Xε = {Qε2u(t); u ∈ Bk} is precompact
in X , for every ε > 0, ε ∈ (0, t). Moreover, for every u ∈ Bk, we have

‖Q2u(t)−Qε2u(t)‖ ≤ 1

Γ(q)

∫ t

t−ε

‖f(s, u(s), us)‖
(t− s)1−q ds

+

∫ t

t−ε

∥∥∥∥S′(t− s) 1

Γ(q)

∫ s

0

f(ξ, u(ξ), uξ)

(s− ξ)1−q dξ

∥∥∥∥ds.

It shows that precompact sets Xε are arbitrary close to the set {Q2u(t) : u ∈ Bk}. Hence, the set
{Q2u(t) : u ∈ Bk} is precompact in X .

Step 4. Next, we show that Q2(Bk) is equicontinuous. For t ∈ [−τ, 0], we have Q2u(t) = 0 and for
t ∈ [0, T ] and 0 < t < t+ h ≤ T , h > 0, we get that

‖Q2u(t+ h)−Q2u(t)‖

≤ 1

Γ(q)

∥∥∥∥∫ t+h

0

f(s, u(s), us)

(t+ h− s)1−q ds−
∫ t

0

f(s, u(s), us)

(t− s)1−q ds

∥∥∥∥
+

1

Γ(q)

∥∥∥∥∫ t+h

0
S′(t+ h− s)Fu(s) ds−

∫ t

0
S′(t− s)Fu(s) ds

∥∥∥∥
≤ 1

Γ(q)

∫ t

0

[
1

(t+ h− s)1−q −
1

(t− s)1−q

]
‖f(s, u(s), us)‖ds

+
1

Γ(q)

∫ t+h

t

1

(t+ h− s)1−q ‖f(s, u(s), us)‖ ds

+

∫ h

0

∥∥∥∥S′(t+ h− s) 1

Γ(q)

∫ s

0

f(ξ, u(ξ), uξ)

(s− ξ)1−q dξ

∥∥∥∥ds

+

∫ t

0
ϕA(t− s) 1

Γ(q)

{∥∥∥∥∫ s+h

0

f(ξ, u(ξ), uξ)

(s+ h− ξ)1−q dξ

−
∫ s

0

f(ξ, u(ξ), uξ)

(s− ξ)1−q dξ

∥∥∥∥
[D(A)]

}
ds,

which tends to zero as h→ 0, and therefore the set {Q2(u) : u ∈ Bk} is equicontinuous. Thus, we
proved that Q2(Bk) is relatively compact for t ∈ [−τ, T ]. Thus, Q2 is completely continuous by
Arzelà–Ascoil theorem. Hence, by the Kranoselskii fixed point theorem, there exists a fixed point
u ∈ Bk such that Qu(t) = (Q1 +Q2)u(t) = u(t) which is a mild solution of the problem (1.1) with
nonlocal conditions (1.2). �
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4 Application

Let X = L2(0, 1), 0 < α < 1 and τ > 0. Now consider the following fractional order partial
differential equation of the form

dα

dtα

(
w(t, x) +

[
f1(t, x) +

∫ 1

0
h1

(
w(t, x), ∂xw(t, x)

)
dx

+

∫ 0

−τ
k1(−θ)h2

(
w(t+ θ, x), ∂xw(t+ θ, x)

)
dθ

])
− ∂2

xw(t, x)

= f2(t, x) +

∫ 1

0
h3

(
w(t, x), ∂xw(t, x)

)
dx

+

∫ 0

−τ
k2(−θ)h4

(
w(t+ θ, x), ∂xw(t+ θ, x)

)
dθ, x ∈ (0, 1), t > 0,

w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,
w(t, x) = χ(t, x) + h(w(t, x))(t, x), t ∈ [−τ, 0], x ∈ (0, 1),

(4.1)

where h1, h2, h3, h4, f1 and f2 are real-valued smooth functions, k1 and k2 are square integrable
functions and χ is a continuous function on [−τ, 0] and h : C([−τ, 0];X) → C([−τ, 0];X) is
Lipschitz continuous function.

Further we define an operator A as

Au = u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H2(0, 1)};

here, the operatorA is the infinitesimal generator of an analytic semi-group S(t). Now, equation (4.1)
can be reformulated as

dα

dtα
[u(t) + g(t, u(t), ut)] = Au(t) + f(t, u(t), ut), t ∈ [0, T ],

u(t) = χ(t) + h(u)(t), t ∈ [−τ, 0],
(4.2)

where u(t)(x) = w(t, x), ut(θ)(x) = w(t+ θ, x), t ∈ [0, T ], θ ∈ [−τ, 0], x ∈ (0, 1) and u(t)(x) =
χ(t, x) + h(u)(t)(x), t ∈ [−τ, 0], x ∈ (0, 1).

To represent the system (4.1)–(4.2) in the abstract form (1.1)–(1.2), we define the function
g : [0, T ]×X × C([−τ, 0];X)→ [D(A)] as

g(t, ψ, ϑ)(x) = f1(t, x)

+

∫ 1

0
h1

(
ψ(x), ψ

′
(x)
)

dx+

∫ 0

−τ
k1(−θ)h2

(
ϑ(θ)(x), ∂xϑ(θ)(x)

)
dθ,

where f1 : [0, T ]× (0, 1)→ R is a function such that

(a1) f1(0, ·) ∈ L2(0, 1),

(a2) |f1(t, x)− f1(s, x)| ≤ k3(x)|t− s|θ, ∀ t, s ∈ [0, T ], a.e. x ∈ (0, 1),

where k3 ∈ L2(0, 1) and h1, h2 are Lipschitz continuous non-decreasing functions such that

‖h1(x1, y1)− h1(x2, y2)‖ ≤ L1

[
‖x1 − y1‖+ ‖x2 − y2‖

]
,
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‖h2(x1, y1)− h2(x2, y2)‖ ≤ L2

[
‖x1 − y1‖[−τ,0] + ‖x2 − y2‖[−τ,0]

]
,

and ‖h1(0, 0)‖ = H1, ‖h2(0, 0)‖ = H2. Therefore g satisfies the following conditions

‖g(t, u1, v1)− g(t, u2, v2)‖ ≤ Lg
[
‖u1 − u2‖+ ‖v1 − v2‖[−τ,0]

]
,

‖ g(t, u, v)‖ ≤ F1 + 2L1(‖x‖) +H1 + 2L2‖k‖L1(‖v‖[−τ,0]) +H2,
(G)

where Lg = max{2L1, 2L2‖k1‖L1}. It implies that g satisfy the assumption (A2).

Similarly, we can define the function f : [0, T ]×X × C([−τ, 0];X)→ [D(A)] such that

f(t, ψ, ϑ)(x) = f2(t, x) +

∫ 1

0
h3

(
ψ(x), ψ

′
(x)
)

dx

+

∫ 0

−τ
k2(−θ)h4

(
ϑ(θ)(x), ∂xϑ(θ)(x)

)
dθ,

and f2 : [0, T ]× (0, 1)→ R satisfies the following conditions

(b1) |f2(t, x)− f2(s, x)| ≤ k4(x)|t− s|θ1 , ∀ t, s ∈ [0, T ], a.e. x ∈ (0, 1),

(b2) f2(0, ·) ∈ L2(0, 1),

where k4 ∈ L2(0, 1) and h3, h4 are Lipschitz continuous non-decreasing functions such that

‖h3(x1, y1)− h3(x2, y2)‖ ≤ L3

[
‖x1 − y1‖+ ‖x2 − y2‖

]
,

‖h4(x1, y1)− h5(x2, y2)‖ ≤ L4

[
‖x1 − y1‖[−τ,0] + ‖x2 − y2‖[−τ,0]

]
.

Thus f satisfies the assumption (A1), i.e.,

‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ Lf
[
‖u1 − u2‖+ ‖v1 − v2‖[−τ,0]

]
, (F)

where Lf = max{2L3, 2L4‖k2‖L1} and B1 = ‖f(t, 0, 0)‖.

Also h : C([−τ, 0];X)→ C([−τ, 0]; [D(A)]) satisfies the following condition

‖h(u)− h(v)‖ ≤ Lh‖u− v‖, ‖h(u)‖ ≤ N1. (H)

Therefore, all the assumptions of Theorem 3.1 and Theorem 3.3 hold which guarantees the existence
of a solution of the equation (4.2).

Theorem 4.1 Suppose inequalities (G), (F) and (H) hold and A generates resolvent operator
{S(t)}t≥0 which is differentiable. If[

Lh + 2(1 + Lh)(Lg) + 2Lf
T q

Γ(q + 1)

]
(1 + ‖ϕA‖L1) < 1,

then the problem (4.2) has a unique solution.

Theorem 4.2 Let (G), (F) and (H) hold. If[
2Lg + 2Lf

T q

Γ(q + 1)

]
< 1

and
[Lh + 2(1 + Lh)Lg + 2Lg](1 + ‖ϕ‖L1) < 1,

where Lg = max{2L1, 2L2‖k1‖L1}, Lf = max{2L3, 2L4‖k2‖L1}, then the problem (4.2) has a
mild solution.
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