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Abstract. In this paper, we investigate some existence and Ulam’s type stability concepts of fixed
point inclusions for a class of partial discontinuous fractional order differential equations with im-
pulses in Banach algebras.

Keywords: Partial fractional differential equation, left-sided mixed Riemann–Liouville integral,
Caputo fractional-order derivative, fixed point equation, Banach algebra, impulse,
Ulam–Hyers stability.

2010 Mathematics Subject Classification: 26A33, 34G20, 34A40, 45N05, 47H10.

∗e-mail address: abbasmsaid@yahoo.fr
†e-mail address: benchohra@yahoo.com

c© 2014 Journal of Nonlinear Evolution Equations and Applications, JNEEA.com



2 Saı̈d Abbas and Mouffak Benchohra , J. Nonl. Evol. Equ. Appl. 2014 (2014) 1–12

1 Introduction

The fractional calculus represents a powerful tool in applied mathematics to study a myriad of
problems from different fields of science and engineering, with many break-through results found
in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, statisti-
cal mechanics, astrophysics, cosmology and bioengineering [9, 19, 23]. There has been a signif-
icant development in ordinary and partial fractional differential equations in recent years; see the
monographs of Abbas et al. [4], Kilbas et al. [15], Miller and Ross [16], the papers of Abbas et
al. [1, 2, 3, 5, 6], Vityuk and Golushkov [25], and the references therein.

The stability of functional equations was originally raised by Ulam in 1940 in a talk given at
Wisconsin University (for more details see [24]). The first answer to Ulam’s question was given
by Hyers in 1941 in the case of Banach spaces in [10]. Thereafter, this type of stability is called
the Ulam–Hyers stability. In 1978, Rassias [20] provided a remarkable generalization of the Ulam–
Hyers stability of mappings by considering variables. The concept of stability for a functional equa-
tion arises when we replace the functional equation by an inequality which acts as a perturbation of
the equation. Thus, the stability question of functional equations is how do the solutions of the in-
equality differ from those of the given functional equation? Considerable attention has been given to
the study of the Ulam–Hyers and Ulam–Hyers–Rassias stability of all kinds of functional equations;
one can see the monographs of [11, 12]. Bota-Boriceanu and Petrusel [7], Petru et al. [17, 18], and
Rus [21, 22] discussed the Ulam–Hyers stability for operatorial equations and inclusions. Castro
and Ramos [8], and Jung [14] considered the Hyers–Ulam–Rassias stability for a class of Volterra
integral equations. Ulam stability for fractional differential equations with Caputo derivative are
proposed by Wang et al. [26, 27]. Some stability results for fractional integral equation are obtained
by Wei et al. [28]. More details from historical point of view, and recent developments of such
stabilities are reported in [13, 21, 28].

In this article, we discuss the Ulam–Hyers–Rassias stability for the following fractional partial
impulsive discontinuous differential equations of the form

cDr
θk

(
u(x, y)

f(x, y, u(x, y))

)
= g(x, y, u(x, y)); (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)); y ∈ [0, b], k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b],

(1.1)

where a, b > 0, J0 = [0, x1]× [0, b], Jk := (xk, xk+1]× [0, b]; k = 1, . . . ,m, θk = (xk, 0); k =
0, . . . ,m, 0 = x0 < x1 < · · · < xm < xm+1 = a, cDr

θk
is the fractional Caputo derivative

of order r = (r1, r2) ∈ (0, 1] × (0, 1], f : J × R → R∗, g : J × R → R are given continuous
functions, J = [0, a] × [0, b], R∗ = R\{0}, Ik : R → R; k = 1, . . . ,m are given functions
satisfying suitable conditions and ϕ : [0, a] → R, ψ : [0, b] → R are given absolutely continuous
functions with ϕ(0) = ψ(0). Here u(x+

k , y) and u(x−k , y) denote the right and left limits of u(x, y)
at x = xk, respectively.

2 Preliminaries

Denote L1(J) the space of Lebesgue-integrable functions u : J → R with the norm

‖u‖L1 =

∫ a

0

∫ b

0
|u(x, y)| dy dx.
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As usual, by AC(J) we denote the space of absolutely continuous functions from J into R, and
C := C(J) is the Banach space of all continuous functions from J into R with the norm ‖.‖∞
defined by

‖u‖∞ = sup
(x,y)∈J

|u(x, y)|.

In all what follows consider the Banach space

PC :=

{
u : J → R :

u ∈ C(Jk) for k = 0, 1, . . . ,m, and there exist u(x−k , y) and u(x+
k , y),

k = 1, . . . ,m, with u(x−k , y) = u(xk, y) for each y ∈ [0, b]

}
with the norm

‖u‖PC = sup
(x,y)∈J

|u(x, y)|.

Define a multiplication “ · ” by

(u · v)(x, y) = u(x, y)v(x, y) for each (x, y) ∈ J.

Then PC is a Banach algebra with the above norm and multiplication.

Definition 2.1 A function γ : J × R→ R is said to be Carathéodory if

(i) the function (x, y) 7→ γ(x, y, u) is measurable for each u ∈ R;

(ii) the function u 7→ γ(x, y, u) is continuous for almost each (x, y) ∈ J .

Now, we introduce notations and definitions concerning partial fractional calculus theory.

Definition 2.2 ([25]) Let θ = (0, 0), r1, r2 ∈ (0,∞) and r = (r1, r2). For f ∈ L1(J), the
expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t) dtds,

is called the left-sided mixed Riemann–Liouville integral of order r, where Γ(.) is the (Euler’s)
Gamma function defined by Γ(ξ) =

∫∞
0 tξ−1e−t dt for ξ > 0.

In particular,

(Iθθf)(x, y) = f(x, y), (Iσθ f)(x, y) =

∫ x

0

∫ y

0
f(s, t) dt ds for almost all (x, y) ∈ J,

where σ = (1, 1).

For instance, Irθf exists for all r1, r2 ∈ (0,∞), when f ∈ L1(J). Note also that when u ∈ C,
then (Irθf) ∈ C. Moreover

(Irθf)(x, 0) = (Irθf)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.3 Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 for almost all (x, y) ∈ J.
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By 1− r we mean (1− r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y the mixed second
order partial derivative.

Definition 2.4 ([25]) Let r ∈ (0, 1]×(0, 1] and f ∈ L1(J). The Caputo fractional-order derivative
of order r of f is defined by the expression

cDr
θf(x, y) = (I1−r

θ D2
xyf)(x, y) =

1

Γ(1− r1)Γ(1− r2)

∫ x

0

∫ y

0

D2
stf(s, t)

(x− s)r1(y − t)r2
dtds.

The case σ = (1, 1) is included and we have

(cDσ
θ f)(x, y) = (D2

xyf)(x, y) for almost all (x, y) ∈ J.

Example 2.5 Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

cDr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 for almost all (x, y) ∈ J.

Let a1 ∈ [0, a], z = (a1, 0), Jz = (a1, a]× [0, b], r1, r2 > 0 and r = (r1, r2). For u ∈ L1(Jz),
the expression

(Irzu)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+1

∫ y

0
(x− s)r1−1(y − t)r2−1u(s, t) dt ds,

is called the left-sided mixed Riemann–Liouville integral of order r of u.

Definition 2.6 ([25]) For u ∈ L1(Jz), where D2
xyu is Lebesque integrable on [xk, xk+1] × [0, b],

k = 0, . . . ,m, the Caputo fractional order derivative of order r of u is defined by the expression

(cDr
zf)(x, y) = (I1−r

z D2
xyf)(x, y).

Let

µk(x, y) =
u(x, 0)

f(x, 0, u(x, 0))
+

u(x+
k , y)

f(x+
k , y, u(x+

k , y))
−

u(x+
k , 0)

f(x+
k , 0, u(x+

k , 0))
; k = 0, . . . ,m.

For the existence of solutions for the problem (1.1) we need the following lemmas.

Lemma 2.7 ([1]) A function u ∈ AC(Jk), k = 0, . . . ,m, is said to be a solution of the differential
equation

cDr
θk

(
u(x, y)

f(x, y, u(x, y))

)
= g(x, y, u(x, y)), (x, y) ∈ Jk, (2.1)

if and only if u(x, y) satisfies

u(x, y) = f(x, y, u(x, y))
(
µk(x, y) + (Irθkg)(x, y, u(x, y))

)
, (x, y) ∈ Jk. (2.2)

Let µ := µ0.
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Lemma 2.8 ([1]) A function u is a solution of the fractional integral equations

u(x, y) = f(x, y, u(x, y))

[
µ(x, y)

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1g(s, t, u(s, t)) dtds

]
, if (x, y) ∈ J0;

u(x, y) = f(x, y, u(x, y))

[
µ(x, y)

+

k∑
i=1

(
Ii(u(x−i , y))

f(x+
i , y, u(x+

i , y))
−

Ii(u(x−i , 0))

f(x+
i , 0, u(x+

i , 0))

)

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1g(s, t, u(s, t)) dtds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dt ds

]
, if (x, y) ∈ Jk, k = 1, . . . ,m,

if and only if u is a solution of the problem (1.1).

Remark 2.9 By Lemma 2.8, solutions of the problem (1.1) are solutions of the fixed point equation
u = N(u) where N : PC → PC is the operator defined by

(Nu)(x, y) = f(x, y, u(x, y))

[
µ(x, y)

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dtds

]
, if (x, y) ∈ J0;

(Nu)(x, y) = f(x, y, u(x, y))

[
µ(x, y)

+

k∑
i=1

(
Ii(u(x−i , y))

f(x+
i , y, u(x+

i , y))
−

Ii(u(x−i , 0))

f(x+
i , 0, u(x+

i , 0))

)

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1g(s, t, u(s, t)) dt ds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dt ds

]
, if (x, y) ∈ Jk, k = 1, . . . ,m.

Let us give the definition of Ulam–Hyers stability of a fixed point equation due to Rus.

Definition 2.10 ([22]) Let (X, d) be a metric space and A : X → X be an operator. The fixed
point equation x = A(x) is said to be Ulam–Hyers stable if there exists a real number cA > 0 such
that: for each real number ε > 0 and each solution y∗ of the inequality d(y,A(y)) ≤ ε, there exists
a solution x∗ of the equation x = A(x) such that

d(y∗, x∗) ≤ εcA .
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From the above definition, we shall give four types of Ulam stability of the fixed point equation
u = N(u). Let ε be a positive real number and let Φ: J → [0,∞) be a continuous function.

Definition 2.11 The fixed point equation u = N(u) is said to be Ulam–Hyers stable if there exists
a real number cN > 0 such that for each ε > 0 and for each solution u ∈ PC of the inequality
|u(x, y) − (Nu)(x, y)| ≤ ε, (x, y) ∈ J , there exists a solution v ∈ PC of the equation u = N(u)
with

|u(x, y)− v(x, y)| ≤ εcN , (x, y) ∈ J.

Definition 2.12 The fixed point equation u = N(u) is said to be generalized Ulam–Hyers stable if
there exists ΘN ∈ C([0,∞), [0,∞)), ΘN (0) = 0 such that for each ε > 0 and for each solution
u ∈ PC of the inequality |u(x, y)− (Nu)(x, y)| ≤ ε, (x, y) ∈ J , there exists a solution v ∈ PC of
the equation u = N(u) with

|u(x, y)− v(x, y)| ≤ ΘN (ε), (x, y) ∈ J.

Definition 2.13 The fixed point equation u = N(u) is said to be Ulam–Hyers–Rassias stable with
respect to Φ if there exists a real number cN,Φ > 0 such that for each ε > 0 and for each solution
u ∈ PC of the inequality |u(x, y) − (Nu)(x, y)| ≤ εΦ(x, y), (x, y) ∈ J , there exists a solution
v ∈ PC of the equation u = N(u) with

|u(x, y)− v(x, y)| ≤ εcN,ΦΦ(x, y), (x, y) ∈ J.

Definition 2.14 The fixed point equation u = N(u) is said to be generalized Ulam–Hyers–Rassias
stable with respect to Φ if there exists a real number cN,Φ > 0 such that for each solution u ∈ PC
of the inequality |u(x, y) − (Nu)(x, y)| ≤ Φ(x, y), (x, y) ∈ J , there exists a solution v ∈ PC of
the equation u = N(u) with

|u(x, y)− v(x, y)| ≤ cN,ΦΦ(x, y), (x, y) ∈ J.

Remark 2.15 It is clear that

(i) Definition 2.11⇒ Definition 2.12;

(ii) Definition 2.13⇒ Definition 2.14;

(iii) Definition 2.13 for Φ(x, y) = 1 ⇒ Definition 2.11.

3 Ulam–Hyers–Rassias Stability Result

In this section, we present the main result for the Ulam stability of the problem (1.1).

Definition 3.1 A function w ∈ PC such that its mixed derivative D2
xy exists and is integrable on

Jk, k = 0, . . . ,m, is said to be a solution of the problem (1.1) if
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(i) the function (x, y) 7→ w(x, y)

f(x, y, w(x, y))
is absolutely continuous, and

(ii) w satisfies cDr
θk

( w(x,y)
f(x,y,w(x,y))

)
= g(x, y, w(x, y)) on Jk and the conditions

{
w(x+

k , y) = w(x−k , y) + Ik(w(x−k , y)); y ∈ [0, b], k = 1, . . . ,m,

w(x, 0) = ϕ(x); x ∈ [0, a], w(0, y) = ψ(y); y ∈ [0, b],

are satisfied.

Let us start by giving conditions for the Ulam–Hyers stability of problem (1.1).

Theorem 3.2 Assume that the following hypotheses hold:

(H1) there exists a strictly positive function α ∈ C such that

|f(x, y, u)− f(x, y, u)| ≤ α(x, y)|u− u| for all (x, y) ∈ J and u, u ∈ R;

(H2) the function g is Carathéodory, and there exists h ∈ L∞(J,R+) such that

|g(x, y, u)| ≤ h(x, y); a.e. (x, y) ∈ J , for all u ∈ R;

(H3) there exists a positive function β ∈ C such that

∣∣∣ Ik(u)

f(x, y, u)

∣∣∣ ≤ β(x, y) for all (x, y) ∈ J and u ∈ R.

If

L := ‖α‖∞
[
‖µ‖∞ + 2m‖β‖∞ +

2ar1br2‖h‖L∞
Γ(1 + r1)Γ(1 + r2)

]
< 1, (3.1)

then the problem (1.1) has at least one solution on J . Moreover, if the following hypothesis:

(H4) there exists λΦ > 0 such that, for each (x, y) ∈ J and u ∈ R we have

|f(x, y, u)| ≤ λΦΦ(x, y),

holds, then the fixed point equation u = N(u) is generalized Ulam–Hyers–Rassias stable.

Proof. Let N be the operator defined in Remark 2.9. From [1, Theorem 4.1], we have that the
problem (1.1) has at least one solution on J . Now, we prove the generalized Ulam–Hyers–Rassias
stability of the operator N . Let u ∈ PC be a solution of the inequality |u−N(u)| ≤ Φ(x, y) on J ,



8 Saı̈d Abbas and Mouffak Benchohra , J. Nonl. Evol. Equ. Appl. 2014 (2014) 1–12

and let v be a solution of the fixed point equation u = N(u). Then we have

v(x, y) = f(x, y, v(x, y))

[
µ(x, y)

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, v(s, t)) dtds

]
, if (x, y) ∈ J0;

v(x, y) = f(x, y, v(x, y))

[
µ(x, y)

+
k∑
i=1

(
Ii(v(x−i , y))

f(x+
i , y, v(x+

i , y))
−

Ii(v(x−i , 0))

f(x+
i , 0, v(x+

i , 0))

)

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1g(s, t, v(s, t)) dt ds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, v(s, t)) dtds

]
, if (x, y) ∈ Jk, k = 1, . . . ,m.

Then, for each (x, y) ∈ J, it follows that

|u(x, y)− v(x, y)| = |u(x, y)− (Nv)(x, y)|
≤ |u(x, y)− (Nu)(x, y)|+ |(Nu)(x, y)− (Nv)(x, y)|
≤ Φ(x, y) + |(Nu)(x, y)− (Nv)(x, y)|.

Thus, for each (x, y) ∈ J0, we have

|u(x, y)− v(x, y)| ≤ Φ(x, y) + |f(x, y, u(x, y))− f(x, y, v(x, y))|

×
∣∣∣∣µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dt ds

∣∣∣∣
+ |f(x, y, v(x, y))|

×
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
|g(s, t, u(s, t))− g(s, t, v(s, t))| dt ds

≤ Φ(x, y) + ‖α‖∞|u(x, y)− v(x, y)|

×
[
‖µ‖∞ +

ar1br2‖h‖L∞
Γ(1 + r1)Γ(1 + r2)

]
+

2ar1br2‖h‖L∞
Γ(1 + r1)Γ(1 + r2)

λΦΦ(x, y)

≤ Φ(x, y) + L|u(x, y)− v(x, y)|+ 2L

‖α‖∞
λΦΦ(x, y),

and for each (x, y) ∈ Jk, k = 1, . . . ,m, we get

|u(x, y)− v(x, y)| ≤ Φ(x, y) + |f(x, y, u(x, y))− f(x, y, v(x, y))|

×

∣∣∣∣∣µ(x, y) +

k∑
i=1

(
Ii(u(x−i , y))

f(x+
i , y, u(x+

i , y))
−

Ii(u(x−i , 0))

f(x+
i , 0, u(x+

i , 0))

)
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+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1g(s, t, u(s, t)) dt ds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dt ds

∣∣∣∣
+ |f(x, y, v(x, y))|

×

[
k∑
i=1

∣∣∣∣ Ii(u(x−i , y))

f(x+
i , y, u(x+

i , y))
−

Ii(v(x−i , y))

f(x+
i , y, v(x+

i , y))

∣∣∣∣
+

k∑
i=1

∣∣∣∣ Ii(u(x−i , 0))

f(x+
i , 0, u(x+

i , 0))
−

Ii(v(x−i , 0))

f(x+
i , 0, v(x+

i , 0))

∣∣∣∣
+

1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1

× |g(s, t, u(s, t))− g(s, t, v(s, t))|dt ds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
|g(s, t, u(s, t))− g(s, t, v(s, t))|dt ds

]

≤ Φ(x, y) + L|u(x, y)− v(x, y)|+ 2L

‖α‖∞
λΦΦ(x, y).

Hence, by (3.1) for each (x, y) ∈ Jk, k = 0, . . . ,m, we get

|u(x, y)− v(x, y)| ≤ 1

1− L

(
1 +

2LλΦ

‖α‖∞

)
Φ(x, y)

=: cN,ΦΦ(x, y).

Consequently, the fixed point equation u = N(u) is generalized Ulam–Hyers–Rassias stable. �

4 More existence and Ulam stability results

Now we present (without proof) some existence and Ulam stability results to the following problem
cDr

θk

(
u(x, y)

f(x, y, u(x, y))

)
= g(x, y, u(x, y)); (x, y) ∈ J := [0, a]× [0, b],

u(x, 0) = ϕ(x); x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b],

(4.1)

where a, b > 0, θ = (0, 0), cDr
θ is the Caputo’s fractional derivative of order r = (r1, r2) ∈ (0, 1]×

(0, 1], f : J × R → R∗, g : J × R → R are given continuous function, and ϕ ∈ AC([0, a]),ψ ∈
AC([0, b]) with ϕ(0) = ψ(0).

Remark 4.1 Solutions of the problem (4.1) are solutions of the fixed point equation u = N(u)
where N : C → C is the operator defined by

(Nu)(x, y) = f(x, y, u(x, y))

[
µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t, u(s, t)) dt ds

]
.
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Theorem 4.2 Assume that hypotheses (H1) and (H2) hold. If

‖α‖∞
[
‖µ‖∞ +

ar1br2‖h‖L∞
Γ(1 + r1)Γ(1 + r2)

]
< 1, (4.2)

then the problem (4.1) has at least one solution on J . Moreover, if the hypothesis (H4) holds, then
the fixed point equation u = N(u) is generalized Ulam–Hyers–Rassias stable.

5 An Example

As an application of our results we consider the following problem:
cDr

θk

(
u(x, y)

f(x, y, u(x, y))

)
= g(x, y, u(x, y)); (x, y) ∈ [0, 1]× [0, 1], x 6= 1

2 , k = 0, 1,

u
(

1
2

+
, y
)

= u
(

1
2

−
, y
)

+ I1

(
u
(

1
2

−
, y
))

; y ∈ [0, 1],

u(x, 0) = ϕ(x), u(0, y) = ψ(y); x, y ∈ [0, 1],

(5.1)

where θ1 = (1
2 , 0), f, g : [0, 1]× [0, 1]× R→ R, I1 : R→ R, ϕ, ψ : [0, 1]→ R,

f(x, y, u) =
1

ex+y+10(1 + |u|)
, g(x, y, u) =

1

ex+y+8(1 + u2)
,

and

I1(u) =
(8 + e−10)2

512e10(1 + |u|)2
,

ϕ(x) =

{
x2

2 e
−10, if x ∈ [0, 1

2 ],

x2e−10, if x ∈ (1
2 , 1],

and
ψ(y) = ye−10 for all y ∈ [0, 1].

We can see that the solutions of the problem (5.1) are solutions of the fixed point equation u = A(u)
where A : PC([0, 1]× [0, 1],R)→ PC([0, 1]× [0, 1],R) is the operator defined by

(Au)(x, y) = f(x, y, u(x, y))[µ(x, y) + Irθg(x, y, u(x, y))], if (x, y) ∈ J0 := [0, 1
2 ]× [0, 1],

(Au)(x, y) = f(x, y, u(x, y))
[
µ(x, y)+

+
(I1(u(1

2

−
, y))

f(1
2

+
, y, u(1

2

+
, y))

−
I1(u(1

2

−
, 0)))

f(1
2

+
, 0, u(1

2

+
, 0))

+ Irθg(1
2 , y, u(1

2 , y)) + Irθ1g(x, y, u(x, y))
]
, if (x, y) ∈ J1 := (1

2 , 1]× [0, 1].

The function f is continuous and satisfies (H1) with α(x, y) =
1

ex+y+10
. Then ‖α‖∞ =

1

e10
. Also,

the function g satisfies (H2) with h(x, y) =
1

ex+y+8
, and so ‖h‖L∞ =

1

e8
. The condition (H3)
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holds with β(x, y) =
81ex+y

512
. This gives ‖β‖∞ =

81e2

512
. A simple computation gives ‖µ‖∞ < 4e.

The condition (3.1) holds with a = b = 1, m = 1. Indeed, Γ(1 + ri) >
1
2 ; i = 1, 2. A simple

computation shows that

L = ‖α‖∞
[
‖µ‖∞ + 2m‖β‖∞ +

2ar1br2‖h‖L∞
Γ(1 + r1)Γ(1 + r2)

]
<

1

e10

[
4e+

81e2

256
+

8

e8

]
< 1.

Finally, we can see that the hypothesis (H4) is satisfied with Φ(x, y) =
1

ex+y+8
and λΦ = 1.

Consequently, Theorem 3.2 implies that the problem (5.1) has a solution defined on [0, 1] × [0, 1],
and the fixed point equation u = A(u) is generalized Ulam–Hyers–Rassias stable.
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