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Abstract. In this paper we use the contraction mapping theorem to obtain asymptotic stability re-
sults of the zero solution of a nonlinear neutral Volterra difference equation with variable delays.
Some conditions which allow the coefficient sequences to change sign and do not ask the bounded-
ness of delays are given. An asymptotic stability theorem with a sufficient condition is proved. The
obtained results improve and generalize those due to Raffoul (2006) [11], Yankson (2009) [15] and
Yankson (2006) [16].
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1 Introduction

Certainly, the Lyapunov direct method has been, for more than 100 years, the main tool for the
study of stability properties of ordinary, functional, partial differential and difference equations.
Nevertheless, the application of this method to problems of stability in differential and difference
equations with delay has encountered serious difficulties if the delay is unbounded or if the equation
has unbounded terms ( [2, 3, 5–8, 13]). Recently, Burton, Furumochi, Zhang, Raffoul, Islam, Yank-
son and others have noticed that some of these difficulties vanish or might be overcome by means
of fixed point theory (see [1–3, 9, 11, 12, 15–17]). The fixed point theory does not only solve the
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problem on stability but has a significant advantage over Lyapunov’s direct method. The conditions
of the former are often averages but those of the latter are usually pointwise (see [2]).

In this paper we consider the nonlinear neutral Volterra difference equation with variable delays

4x (n) = −a (n)x (n− τ1 (n)) + c (n)4x (n− τ2 (n)) +
n−1∑

s=n−τ2(n)

k (n, s) q (x(s)) , (1.1)

with the initial condition

x (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z,

where ψ is bounded sequence and for each n0 ∈ Z+,

mj (n0) = inf {n− τj (n) , n ≥ n0} , m (n0) = min {mj (n0) , j = 1, 2} .

Here 4 denotes the forward difference operator 4x (t) = x (n+ 1) − x (n) for any sequence
{x (n) , n ∈ Z+}. Throughout this paper we assume that a, c : Z+ → R, k : Z+ ×
([m2 (n0) ,∞) ∩ Z) → R, q : R → R and τ1, τ2 : Z+ → Z+ with n − τ1 (n) → ∞ and
n − τ2 (n) → ∞ as n → ∞. The function q (x) is locally Lipschitz in x. That is, there is positive
constant L so that if |x| , |y| ≤ L1 for some positive constant L1 then

|q (x)− q (y)| ≤ L ‖x− y‖ and q (0) = 0. (1.2)

Equation (1.1) and its special cases have been investigated by many authors. For example,
Raffoul in [11] and Yankson in [15] have studied the equation

4x (n) = −a (n)x (n− τ1 (n)) , (1.3)

and proved the following.

Theorem A (Raffoul [11]). Suppose that τ1 (n) = r and a (n+ r) 6= 1 and there exists a constant
α < 1 such that

n−1∑
s=n−r

|a (s+ r)|+
n−1∑
s=0

(
|a (s+ r)|

∣∣∣∣∣
n−1∏
k=s+1

[1− a (k + r)]

∣∣∣∣∣
s−1∑

u=s−r
|a (u+ r)|

)
≤ α, (1.4)

for all n ∈ Z+ and
n−1∏
s=0

[1− a (s+ r)] → 0 as n → ∞. Then, for every small initial sequence

ψ : [−r, 0] ∩ Z → R, the solution x (n) = x (n, 0, ψ) of (1.3) is bounded and tends to zero as
n→∞.

Theorem B (Yankson [15]). Suppose that the inverse sequence g of n−τ1 (n) exists, 1−a (g (n)) 6=
0 and there exists a constant α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

n−1∑
s=n−τ1(n)

|a (g (s))|+
n−1∑
s=n0

|a (g(s))| ∣∣∣∣∣
n−1∏
k=s+1

[1− a (g(s))]

∣∣∣∣∣
s−1∑

u=s−τ1(s)

|a (g (s))|

 ≤ α. (1.5)

Then the zero solution of (1.3) is asymptotically stable if
n−1∏
s=n0

[1− a (g(s))]→ 0 as n→∞.
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Obviously, Theorem B improves and generalizes Theorem A. On other hand, Yankson in [16]
considered the following nonlinear neutral Volterra difference equation

x (n+ 1) = a1 (n)x (n) + c (n)4x (n− τ2 (n)) +
n−1∑

s=n−τ2(n)

k (n, s) q (x(s)) , (1.6)

where a1 : Z+ → R and 0 ≤ τ2 (n) ≤ τ0 for some constant τ0, and obtained the following theorem.

Theorem C (Yankson [16]). Let a1 (n) 6= 0 for all n ∈ [n0,∞) ∩ Z. Suppose that (1.2) holds and
there exists a constant α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

|c (n− 1)|+
n−1∑
s=n0

|φ2(s)|+ L
s−1∑

u=s−τ2(s)

|k (s, u)|


∣∣∣∣∣
n−1∏
u=s+1

a1 (u)

∣∣∣∣∣ ≤ α, (1.7)

where φ2(s) = c(s) − c (s− 1) a1(s). Then the zero solution of (1.6) is asymptotically stable if
n−1∏
s=n0

a1(s)→ 0 as n→∞.

Remark 1.1 The Theorem C is still true if the delay τ2 is unbounded.

Our purpose here is to give, by using the contraction mapping principle, asymptotic stability
results of a nonlinear neutral Volterra difference equation with variable delays (1.1). For details on
contraction mapping principle we refer the reader to [14] and for more on the calculus of difference
equations, we refer the reader to [4] and [10]. The results presented in this paper improve and
generalize the main results in [11, 15, 16].

2 Main results

Let D (n0) denote the set of bounded sequences ψ : [m (n0) , n0] ∩ Z → R with the maximum
norm ‖.‖. Also, let (B, ‖.‖) be the Banach space of bounded sequences x : [m (n0) ,∞) ∩ Z → R
with the maximum norm. For each (n0, ψ) ∈ Z+ ×D (n0), a solution of (1.1) through (n0, ψ) is a
sequence [m (n0) , n0 + α]∩Z→ R for some positive constant α > 0 such that x satisfies (1.1) on
[n0, n0 + α)∩Z and x = ψ on [m (n0) , n0]∩Z. We denote such a solution by x (n) = x (n, n0, ψ).
For each (n0, ψ) ∈ Z+×D (n0), there exists a unique solution x (n) = x (n, n0, ψ) of (1.1) defined
on [m (n0) ,∞) ∩ Z. For a fixed n0, we define ‖ψ‖ = max {|ψ (n)| : n ∈ [m (n0) , n0] ∩ Z}.

Let hj : [m (n0) ,∞) ∩ Z→ R be an arbitrary sequence. Rewrite (1.1) as

4x (n) = −
2∑
j=1

hj (n)x (n) +4n

2∑
j=1

n−1∑
s=n−τj(n)

hj(s)x(s) +
2∑
j=1

hj (n− τj (n))x (n− τj (n))

− a (n)x (n− τ1 (n)) + c (n)4x (n− τ2 (n)) +
n−1∑

s=n−τ2(n)

k (n, s) q (x(s)) , (2.1)
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where 4n represents that the difference is with respect to n. If we let H (n) = 1 −
∑2

j=1 hj (n)
then (2.1) is equivalent to

x (n+ 1) = H (n)x (n) +4n

2∑
j=1

n−1∑
s=n−τj(n)

hj (s)x(s) +
2∑
j=1

hj (n− τj (n))x (n− τj (n))

− a (n)x (n− τ1 (n)) + c (n)4x (n− τ2 (n)) +
n−1∑

s=n−τ2(n)

k (n, s) q (x(s)) . (2.2)

Lemma 2.1 Suppose thatH (n) 6= 0 for all n ∈ [n0,∞)∩Z. Then x is a solution of equation (1.1)
if and only if

x (n) =

x (n0)− c (n0 − 1)x (n0 − τ2 (n0))−
2∑
j=1

n0−1∑
s=n0−τj(n0)

hj(s)x(s)


n−1∏
u=n0

H (u)

+ c (n− 1)x (n− τ2 (n)) +
2∑
j=1

n−1∑
s=n−τj(n)

hj (s)x(s)

+
n−1∑
s=n0

n−1∏
u=s+1

H (u) {[h1 (s− τ1(s))− a(s)]x (s− τ1(s))

+ [h2 (s− τ2(s))− φ(s)]x (s− τ2(s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


−

2∑
j=1

n−1∑
s=n0

{1−H(s)}
n−1∏
u=s+1

H (u)

s−1∑
u=s−τj(s)

hj (u)x (u) , (2.3)

where
φ (n) = c (n)− c (n− 1)H (n) . (2.4)

Proof. Let x be a solution of (1.1). By multiplying both sides of (2.2) by
n∏

u=n0

H−1 (u) and by

summing from n0 to n− 1 we obtain

n−1∑
s=n0

4

[
s−1∏
u=n0

H−1 (u)x(s)

]
=

n−1∑
s=n0

s∏
u=n0

H−1 (u)4s

2∑
j=1

s−1∑
u=s−τj(s)

hj (u)x (u)

+
n−1∑
s=n0

s∏
u=n0

H−1 (u)

2∑
j=1

{hj (s− τj (s))}x (s− τj(s))

+

n−1∑
s=n0

s∏
u=n0

H−1 (u)

−a(s)x (s− τ1(s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

s∏
u=n0

H−1 (u) c(s)4x (s− τ2(s)) .
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As a consequence, we arrive at

n−1∏
u=n0

H−1 (u)x (n)−
n0−1∏
u=n0

H−1 (u)x (n0)

=
2∑
j=1

n−1∑
s=n0

s∏
u=n0

H−1 (u)4s

s−1∑
u=s−τj(s)

hj (u)x (u)

+
2∑
j=1

n−1∑
s=n0

s∏
u=n0

H−1 (u) {hj (s− τj(s))}x (s− τj(s))

+
n−1∑
s=n0

s∏
u=n0

H−1 (u)

−a(s)x (s− τ1(s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

s∏
u=n0

H−1 (u) c(s)4x (s− τ2(s)) .

By dividing both sides of the above expression by
n−1∏
u=n0

H−1 (u) we get

x (n) = x (n0)
n−1∏
u=n0

H (u)

+
2∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u)4s

s−1∑
u=s−τj(s)

hj (u)x (u)

+

2∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj(s))}x (s− τj(s))

+
n−1∑
s=n0

n−1∏
u=s+1

H (u)

−a(s)x (s− τ1 (s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

n−1∏
u=s+1

H (u) c(s)4x (s− τ2 (s)) . (2.5)

By performing a summation by parts, we have

n−1∑
s=n0

n−1∏
u=s+1

H (u)4s

s−1∑
u=s−τj(s)

hj (u)x (u)

=

n−1∑
s=n−τj(n)

hj(s)x (s)−
n−1∏
u=n0

H (u)

n0−1∑
s=n0−τj(n0)

hj(s)x(s)

−
n−1∑
s=n0

{1−H(s)}
n−1∏
u=s+1

H (u)
s−1∑

u=s−τj(s)

hj (u)x (u) , (2.6)
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and

n−1∑
s=n0

n−1∏
u=s+1

H (u) c(s)4x (s− τ2 (s))

= − c (n0 − 1)x (n0 − τ2 (n0))
n−1∏
u=n0

H (u) + c (n− 1)x (n− τ2 (n))

−
n−1∑
s=n0

n−1∏
u=s+1

H (u)φ(s)x (s− τ2(s)) , (2.7)

where φ is given by (2.4). Finally, substituting (2.6) and (2.7) into (2.5) completes the proof. �

Definition 2.2 The zero solution of (1.1) is Lyapunov stable if for any ε > 0 and any integer n0 ≥ 0
there exists a δ > 0 such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z implies |x (n, n0, ψ)| ≤ ε for
n ∈ [n0,∞) ∩ Z.

Theorem 2.3 Let H (n) 6= 0 for all n ∈ [n0,∞) ∩ Z. Suppose that (1.2) holds, and there exists a
positive constant M and a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z∣∣∣∣∣

n−1∏
u=n0

H (u)

∣∣∣∣∣ ≤M, (2.8)

and

|c (n− 1)|+
2∑
j=1

n−1∑
s=n−τj(n)

|hj(s)|

+
n−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
|h1 (s− τ1(s))− a(s)|+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H(s)|

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)| ≤ α . (2.9)

Then the zero solution of (1.1) is stable.

Proof. Let ε > 0 be given. Choose δ > 0 such that

(M + αM) δ + αε ≤ ε.

Let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z. Define

S = {ϕ ∈ B : ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, ‖ϕ‖ ≤ ε} .

This (S, ‖.‖) is a complete metric space where ‖.‖ is the maximum norm.
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Use (2.3) to define the operator P : S→ S by (Pϕ) (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z and

(Pϕ) (n) =

ψ (n0)− c (n0 − 1)ψ (n0 − τj (n0))−
2∑
j=1

n0−1∑
s=n0−τj(n0)

hj(s)ψ (s)


n−1∏
u=n0

H (u)

+ c (n− 1)ϕ (n− τ2 (n)) +
2∑
j=1

n−1∑
s=n−τj(n)

hj (s)ϕ(s)

+

n−1∑
s=n0

n−1∏
u=s+1

H (u) {[h1 (s− τ1(s))− a(s)]ϕ (s− τ1 (s))

+ [h2 (s− τ2(s))− φ(s)]ϕ (s− τ2(s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (ϕ (u))


−

N∑
j=1

n−1∑
s=n0

{1−H(s)}
n−1∏
u=s+1

H (u)
s−1∑

u=s−τj(s)

hj (u)ϕ (u) , (2.10)

for n ∈ [n0,∞) ∩ Z. Clearly, Pϕ is bounded. We first show that P maps from S to S. We have

|(Pϕ) (n)|

≤Mδ + αMδ +

|c (n− 1)|+
2∑
j=1

n−1∑
s=n−τj(n)

|hj(s)|

+

n−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
|h1 (s− τ1(s))− a(s)|+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H(s)|

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

 ‖ϕ‖
≤ (M + αM) δ + αε

≤ ε,

by (1.2), (2.8) and (2.9). Thus P maps S into itself. We next show that P is a contraction. Let
ϕ1, ϕ2 ∈ S, then

|(Pϕ1) (n)− (Pϕ2) (n)|

≤

|c (n− 1)|+
2∑
j=1

n−1∑
s=n−τj(n)

|hj (s)|

+

n−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
|h1 (s− τ1(s))− a(s)|+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H(s)|

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

 ‖ϕ1 − ϕ2‖

≤ α ‖ϕ1 − ϕ2‖ ,
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by (1.2) and (2.9). This shows that P is a contraction with contraction constant α. Thus, by the
contraction mapping principle ( [14], p. 2), P has a unique fixed point x in S which is a solution of
(1.1) with x = ψ on [m (n0) , n0] ∩ Z and |x (n)| = |x (n, n0, ψ)| ≤ ε for n ∈ [n0,∞) ∩ Z. This
proves that the zero solution of (1.1) is stable. �

Definition 2.4 The zero solution of (1.1) is asymptotically stable if it is Lyapunov stable and if for
any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z implies
x (n, n0, ψ)→ 0 as n→∞.

Theorem 2.5 Assume that the hypotheses of Theorem 2.3 hold. Also assume that

n−1∏
u=n0

H (u)→ 0 as n→∞. (2.11)

Then the zero solution of (1.1) is asymptotically stable.

Proof. We have already proved that the zero solution of (1.1) is stable. Let ψ ∈ D (n0) such that
|ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z and define

S∗= {ϕ ∈ B : ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, ‖ϕ‖ ≤ ε and ϕ (n)→ 0 as n→∞} .

Define P : S∗ → S∗ by (2.10). From the proof of Theorem 2.3, the map P is a contraction with the
contraction constant α and for every ϕ ∈ S∗, ‖Pϕ‖ ≤ ε.

We next show that (Pϕ) (n) → 0 as n → ∞. There are five terms on the right hand side in
(2.10). Denote them, respectively, by Ik, k = 1, 2, ..., 5. It is obvious that the first term I1 tends to
zero as t→∞, by condition (2.11). Also, due to the facts that ϕ (n)→ 0 and n− τj (n)→∞ for
j = 1, 2 as n→∞, the second term I2 tends to zero, as n→∞. Left to show that each one of the
remaining terms in (2.10), go to zero at infinity.

Let ϕ ∈ S∗ be fixed. For the given ε1 > 0, we choose N0 > n0 large enough such that
n − τj (n) ≥ N0, j = 1, 2 implies |ϕ(s)| < ε1 if s ≥ n − τj (n). Therefore, the third term I3 in
(2.10) satisfies

|I3| =

∣∣∣∣∣∣
2∑
j=1

n−1∑
s=n−τj(n)

hj(s)ϕ(s)

∣∣∣∣∣∣
≤

2∑
j=1

n−1∑
s=n−τj(n)

|hj(s)| |ϕ(s)|

≤ ε1
2∑
j=1

n−1∑
s=n−τj(n)

|hj(s)| ≤ αε1 < ε1.

Thus, I3 → 0 as n→∞. Now for a given ε1 > 0, there exists a N1 > n0 such that s ≥ N1 implies
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|ϕ (s− τj(s))| < ε1 for j = 1, 2. Thus, for n ≥ N1, the term I4 in (2.10) satisfies

|I4| =

∣∣∣∣∣
n−1∑
s=n0

n−1∏
u=s+1

H (u)

{
[h1 (s− τ1(s))− a(s)]ϕ (s− τ1 (s))

+ [h2 (s− τ2(s))− φ(s)]ϕ (s− τ2(s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (ϕ (u))


∣∣∣∣∣∣

≤
N1−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)| |ϕ (s− τ1(s))|

+ |h2 (s− τ2(s))− φ(s)| |ϕ (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)| |ϕ (u)|


+

n−1∑
s=N1

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)| |ϕ (s− τ1(s))|

+ |h2 (s− τ2(s))− φ(s)| |ϕ (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)| |ϕ (u)|


≤ sup
σ≥m(n0)

|ϕ (σ)|
N1−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)|

+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+ ε1

n−1∑
s=N1

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)|

+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|

 .

By (2.11), we can find N2 > N1 such that n ≥ N2 implies

sup
σ≥m(n0)

|ϕ (σ)|
N1−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)|

+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


= sup

σ≥m(n0)
|ϕ (σ)|

∣∣∣∣∣∣
n−1∏
u=N2

H (u)

∣∣∣∣∣∣
N1−1∑
s=n0

∣∣∣∣∣
N2−1∏
u=s+1

H (u)

∣∣∣∣∣
{
|h1 (s− τ1(s))− a(s)|

+ |h2 (s− τ2(s))− φ(s)|+ L
s−1∑

u=s−τ2(s)

|k (s, u)|

 < ε1 .

Now, apply (2.9) to have |I4| < ε1+αε1 < 2ε1. Thus, I4 → 0 as n→∞. Similarly, by using (2.9),
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then, if n ≥ N2 then term I5 in (2.10) satisfies

|I5| =

∣∣∣∣∣∣
2∑
j=1

n−1∑
s=n0

{1−H(s)}
n−1∏
u=s+1

H (u)
s−1∑

u=s−τj(s)

hj (u)ϕ (u)

∣∣∣∣∣∣
≤ sup

σ≥m(n0)
|ϕ (σ)|

∣∣∣∣∣∣
n−1∏
u=N2

H (u)

∣∣∣∣∣∣
2∑
j=1

N1−1∑
s=n0

|1−H(s)|

∣∣∣∣∣
N2−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

+ ε1

2∑
j=1

n−1∑
s=N1

|1−H (s)|

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

< ε1 + αε1 < 2ε1.

Thus, I5 → 0 as n→∞. In conclusion (Pϕ) (n)→ 0 as n→∞, as required. Hence P maps S∗
into S∗.

By the contraction mapping principle, P has a unique fixed point x ∈ S∗ which solves (1.1).
Therefore, the zero solution of (1.1) is asymptotically stable. �

Letting τ1 = 0, a = 1− a1, we have

Corollary 2.6 Let H (n) 6= 0 for all n ∈ [n0,∞) ∩ Z. Suppose that (1.2) holds and there exists a
constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

|c (n− 1)|+
n−1∑

s=n−τ2(n)

|h2(s)|

+

n−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
|h1(s)− 1 + a1(s)|+ |h2 (s− τ2(s))− φ(s)|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

n−1∑
s=n0

|1−H(s)|

∣∣∣∣∣
n−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τ2(s)

|h2 (u)| ≤ α , (2.12)

where φ (n) = c (n)− c (n− 1)H (n). Then the zero solution of (1.6) is asymptotically stable if

n−1∏
u=n0

H (u)→ 0 as n→∞.

Remark 2.7 When h1(s) = 1− a1(s) and h2(s) = 0, Corollary 2.6 reduces to Theorem C.

For the special case c (n) = 0 and q (x) = 0, we can get

Corollary 2.8 Suppose that 1 − h1 (n) 6= 0 for all n ∈ [n0,∞) ∩ Z, and there exists a constant



NONLINEAR NEUTRAL VOLTERRA DIFFERENCE EQUATIONS 99

α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z

n−1∑
s=n−τ1(n)

|h1 (s)|+
n−1∑
s=n0

∣∣∣∣∣
n−1∏
u=s+1

[1− h1 (n)]

∣∣∣∣∣ |h1 (s− τ1(s))− a(s)|
+

n−1∑
s=n0

|h1(s)|

∣∣∣∣∣
n−1∏
u=s+1

[1− h1 (n)]

∣∣∣∣∣
s−1∑

u=s−τ1(s)

|h1 (u)| ≤ α . (2.13)

Then the zero solution of (1.3) is asymptotically stable if

n−1∏
u=n0

[1− h1 (n)]→ 0 as n→∞.

Remark 2.9 When h1(s) = a (g(s)), Corollary 2.8 reduces to Theorem B.
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