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1 Introduction

The object of our investigations is the degenerate equations of the following type

∂

∂t
B(x, t, u) +A(u) = F (x, t), (x, t) ∈ Q, (1.1)

where Q := Ω × (0, T ), Ω is a domain in Rn (n ∈ N), A is a differential expression of the elliptic
type, B, F are given functions. The function B may be such that B(x, t, u) = u for every u ∈ R
and for a.e. (x, t) ∈ Q1, and B(x, t, u) = 0 for every u ∈ R and for a.e. (x, t) ∈ Q \ Q1, where
Q1 is an arbitrary measurable subset of Q. These equations are the elliptic-parabolic equations
(see [32]). The various problems for equation (1.1) are investigated in [2], [3], [5], [18], [19], [20],
[31], [32] etc. For the linear B, A corresponding problems are considered in [31], [32]. If the
nonlinear function B independs of the spatial variable x, then the solvability of the problems for
systems of equations (1.1) is proved in [2]. The case of the dependence of the nonlinear function B
only on x and u is considered in [20].

The mentioned above papers are devoted the equations with the constant exponent of nonlinear-
ity, for example, equations (1.1) withA(u) = −div(|∇u|p−2∇u), where p = const. If the exponent
of nonlinearity p is a function of the variable x, then (1.1) are the equations with variable exponents
of nonlinearity (see [27]). Nowadays, nonlinear differential equations with variable exponents of
nonlinearity actively being studied (see, for example, [1], [4], [6], [7], [8], [9], [10], [11], [12], [13],
[25], [26], [27] and references given there). These equations describe many physical processes
(see [25], [30]) such us electromagnetic fields, electrorheological fluids, image reconstruction pro-
cesses, current flow in variable temperature field. The solutions of these problems belong to some
generalized Lebesgue and Sobolev spaces. The mentioned spaces were firstly introduced in [29].
Properties of these spaces were studied in [16], [22], [24], [28], [29], [33] and others.

In this paper we consider the initial-boundary-value problems for the elliptic-parabolic equa-
tions with variable exponents of nonlinearity. A typical example of the equations being studied here
are

∂

∂t
(b(x)u)−

n∑
i=1

(
âi(x, t)|uxi |pi(x)−2uxi

)
xi

+â0(x, t)|u|p0(x)−2u=f(x, t), (1.2)

(x, t) ∈ Q, where b is a measurable bounded function such that b(x) ≥ 0 for a.e. x ∈ Ω,
â0, . . . , ân are measurable positive functions, p0, . . . , pn (the exponents of nonlinearity) are mea-
surable bounded functions such that p0(x) > 1, . . . , pn(x) > 1 for a.e. x ∈ Ω, f is an integrable
function.

Notice that the unique solvability of the initial-boundary-value problems for the equations
similar to (1.2) with b(x) ≡ const > 0 are investigated in [1], [4], [17], [21], [34]. In case
p1(x) ≡ const, . . . , pn(x) ≡ const the problems for the equations similar to (1.2) are studied
in [3], [18], [20], [31], [32]. In this paper we consider the mentioned cases together. Such situation
was investigated only in [5], but here we use the weaker conditions for initial date as compared
to [5].
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2 Notation and auxiliary facts

Let n ∈ N, T > 0 be some numbers, | · | be norm of the space Rn, i.e. |x| := (|x1|2 + . . .+ |xn|2)1/2

if x = (x1, . . . , xn) ∈ Rn. Suppose Ω ⊂ Rn is a bounded domain with the piecewise smooth
boundary ∂Ω, ∂Ω = Γ0 ∪ Γ1, where Γ0 is the closure of an open set on ∂Ω, in particular, either
Γ0 = ∅ or Γ0 = ∂Ω, Γ1 := ∂Ω \ Γ0, ν = (ν1, . . . , νn) is a unit outward pointing normal vector on
the ∂Ω. Put Q := Ω× (0, T ), Σ0 := Γ0 × (0, T ), Σ1 := Γ1 × (0, T ).

Let us introduce some functional spaces. Let eitherG = Ω orG = Q. Suppose that r ∈ L∞(Ω),
r(x) ≥ 1 for a.e. x ∈ Ω. Consider a linear subspace Lr(·)(G) of the space L1(G) which consists
of the measurable functions v such that ρG,r(v) < ∞, where ρG,r(v) :=

∫
Ω |v(x)|r(x) dx if G =

Ω, and ρG,r(v) :=
∫
Q |v(x, t)|r(x) dx dt if G = Q. This is a Banach space with respect to the

norm ||v||Lr(·)(G) := inf{λ > 0 | ρG,r(v/λ) ≤ 1} (see [22, p. 599]) and it is called a generalized
Lebesgue space. Note that if r(x) = r0 = const ≥ 1 for a.e. x ∈ Ω then || · ||Lr(·)(G) equals to the

standard norm || · ||Lr0 (G) of the Lebesgue space Lr0(G). Note also that the set C(G) is dense in
Lr(·)(G) (see [22, p. 603]). According to [22, p. 599], if ess inf

x∈Ω
r(x) > 1, then the space Lr(·)(G)

is reflexive and the dual space [Lr(·)(G)]∗ equals Lr′(·)(G), where the function r′ is defined by the
equality 1

r(x) + 1
r′(x) = 1 for a.e. x ∈ Ω. But there exist properties of standard Legesgue spaces

that is not valid for generalized Lebesgue spaces (see [33] for more details). Thus the properties of
the generalized Lebesgue spaces are not simple corollaries of the correspondent properties of the
standard Lebesgue spaces (see, for example, the mentioned papers, and Lemmas 1, 2 below).

Consider the functions p = (p0, . . . , pn) : Ω → Rn+1, and b : Ω → R such that following
conditions are satisfied:

(P) for every i ∈ {0, 1, . . . , n} pi : Ω→ R is a measurable function such

that p−i := ess inf
x∈Ω

pi(x) > 1, p+
i := ess sup

x∈Ω
pi(x) < +∞,

(B) b ∈ L∞(Ω), b(x) ≥ 0 for a.e. x ∈ Ω.

Denote by p′ = (p′0, . . . , p
′
n) : Ω → Rn+1 the vector-function such that 1

pi(x) + 1
p′i(x)

= 1 for

a.e. x ∈ Ω (i = 0, n).

Now let us give the definitions of the following functional spaces. First, denote by W 1
p(·)(Ω)

a generalized Sobolev space of functions v ∈ Lp0(·)(Ω) such that vx1 ∈ Lp1(·)(Ω), . . . , vxn ∈
Lpn(·)(Ω). This is a Banach space with respect to the norm

||v||W 1
p(·)(Ω) := ||v||Lp0(·)(Ω) +

n∑
i=1

||vxi ||Lpi(·)(Ω).

Let W̃ 1
p(·)(Ω) be the subspace of W 1

p(·)(Ω) that equals to the closure of the space C̃1(Ω) := {v ∈
C1(Ω) | v|Γ0 = 0

}
with respect to the norm || · ||W 1

p(·)(Ω).

Put by definition V b
p := {v ∈ W̃ 1

p(·)(Ω) | b1/2v ∈ L2(Ω)}. It is easy to verify that V b
p is a

Banach space with respect to the norm

||v||V b
p

:= ||v||W 1
p(·)(Ω) + ||b1/2v||L2(Ω).
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Further, denote byW 1,0
p(·)(Q) a space of functions w ∈ Lp0(·)(Q) such that wx1 ∈ Lp1(·)(Q), . . . ,

wxn ∈ Lpn(·)(Q). Consider this space with the norm

||w||
W 1,0

p(·)(Q)
:= ||w||Lp0(·)(Q) +

n∑
i=1

||wxi ||Lpi(·)(Q).

Define W̃ 1,0
p(·)(Q) be the subspace of the space W 1,0

p(·)(Q) that equals the closure of

C̃1,0(Q) :=
{
w ∈ C(Q)

∣∣ wxi ∈ C(Q) (i = 1, n), w|Σ0 = 0
}

with respect to the norm || · ||
W 1,0

p(·)(Q)
.

By definition, put U b
p := {w ∈ W̃ 1,0

p(·)(Q) | b1/2w ∈ C([0, T ];L2(Ω))}. It is easy to verify that
this is Banach space with respect to the norm

||w||Ub
p

:= ||w||
W 1,0

p(·)(Q)
+ max
t∈[0,T ]

||b1/2(·)w(·, t)||L2(Ω) .

Clearly, for every w ∈ U b
p we have w(·, t) ∈ V b

p for a.e. t ∈ [0, T ].

Finally, denote by Fp′ a space of vector-functions (f0, f1, . . . , fn) such that fi ∈ Lp′i(·)(Q), and
fi = 0 a.e. in some neighborhood of the surface Σ1 (i = 0, n). Denote by Hb the closure of the
space {b1/2v

∣∣ v ∈ C(Ω)} with respect to the norm || · ||L2(Ω).

Note that if b(x) ≥ b0 = const > 0 for a.e. x ∈ Ω, then V b
p continuously embeds in L2(Ω), U b

p

continuously embeds in L2(Q), and Hb = L2(Ω).

3 Statement of the problem and main result

In this paper we consider the problem of the finding the function u : Q → R satisfying (in some
sense) the equation

∂

∂t
(b(x)u)−

n∑
i=1

∂

∂xi
ai(x, t, u,∇u) + a0(x, t, u,∇u)

= −
n∑
i=1

∂

∂xi
fi(x, t) + f0(x, t), (x, t) ∈ Q, (3.1)

the boundary conditions

u(x, t)
∣∣∣
(x,t)∈Σ0

= 0,
n∑
i=1

ai(x, t, u,∇u) νi(x)
∣∣∣
(x,t)∈Σ1

= 0, (3.2)

and the initial condition (
b1/2(x)u(x, t)

)
|t=0 = u0(x), x ∈ Ω. (3.3)

Here b : Ω → [0,+∞), ai : Q × R1+n → R, fi : Q → R (i = 0, n), u0 : Ω → R are given
real-valued functions. Notice that the equality b = 0 may be studied on any subset of Ω and the
spatial part of the differential expression in the left-hand side of equation (3.1) is elliptic.
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We consider a weak solutions of problem (3.1)–(3.3), and thus we introduce following classes
of the initial data. Define Ap(1−3) to be the set of the functions (a0, a1, . . . , an) satisfying the
following assumptions:

(A1) for every i ∈ {0, 1, . . . , n}

Q× R1+n 3 (x, t, s, ξ) 7→ ai(x, t, s, ξ) ∈ R

is the Caratheodory function, i.e. ai(x, t, ·, ·) : R1+n → R is the

continuous function for a.e. (x, t) ∈ Q, and ai(·, ·, s, ξ) : Q→ R

is the measurable function for every (s, ξ) ∈ R1+n;

(A2) for every i ∈ {0, 1, . . . , n}, for every (s, ξ) ∈ R1+n, and

for a.e. (x, t) ∈ Q the following estimate is valid

|ai(x, t, s, ξ)| ≤ C1

(
|s|p0(x)/p′i(x) +

n∑
j=1

|ξj |pj(x)/p′i(x)
)

+ hi(x, t),

where C1 = const > 0, hi ∈ Lp′i(·)(Q);

(A3) for every (s1, ξ
1), (s2, ξ

2) ∈ R1+n and for a.e. (x, t) ∈ Q the

inequality

n∑
i=1

(
ai(x, t, s1, ξ

1)− ai(x, t, s2, ξ
2)
)
(ξ1
i − ξ2

i )

+
(
a0(x, t, s1, ξ

1)− a0(x, t, s2, ξ
2)
)
(s1 − s2) ≥ 0 (3.4)

holds.

Now we can give a definition of the weak solution to (3.1)–(3.3).

Definition. If p, b satisfy conditions (P), (B) respectively, u0 ∈ Hb, (f0, f1, . . . , fn) ∈ Fp′ ,
(a0, a1, . . . , an) ∈ Ap(1−3). The function u ∈ U b

p is called weak solution of problem (3.1)–(3.3)
if u satisfies the initial condition (3.3), that is

lim
t→+0

∫
Ω

|b1/2(x)u(x, t)− u0(x)|2 dx = 0, (3.5)

and the integral equality∫∫
Q

{ n∑
i=1

ai(x, t, u,∇u) vxi ϕ+ a0(x, t, u,∇u) v ϕ− b(x)u v ϕ′
}

dx dt

=

∫∫
Q

{ n∑
i=1

fi vxi ϕ+ f0 v ϕ
}

dx dt (3.6)

holds for every v ∈ V b
p and ϕ ∈ C1

0 (0, T ).
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Denote by Ap(1−3, 3∗) a subset of the functions (a0, a1, . . . , an) ∈ Ap(1−3) satisfying the
following condition:

(A3∗) if s1 6= s2 then the sign ” ≥ ” in the inequality (3.4) must be

replaced by the sign ” > ” for a.e. x ∈ Ω such that b(x) = 0.

Theorem 1. If p, b satisfy conditions (P), (B) respectively, u0 ∈ Hb, (f0, f1, . . . , fn) ∈ Fp′ ,
(a0, a1, . . . , an) ∈ Ap(1−3, 3∗), then the weak solution of problem (3.1)–(3.3) is unique.

Denote by Ap(1−4) the subset of the functions (a0, a1, . . . , an) ∈ Ap(1−3) satisfying the
following property:

(A4) for every (s, ξ) ∈ R1+n and for a.e. (x, t) ∈ Q we have

n∑
i=1

ai(x, t, s, ξ)ξi + a0(x, t, s, ξ)s ≥ K1

( n∑
i=1

|ξi|pi(x) + |s|p0(x)
)
− g(x, t),

where g ∈ L1(Q), and K1 = const > 0.

Note that the function g from above satisfies g(x, t) ≥ 0 for a.e. (x, t) ∈ Q. This follows from
inequality in condition (A4) if ξ1 = . . . = ξn = 0, s = 0.

Theorem 2. If p, b satisfy conditions (P), (B) respectively, u0 ∈ Hb, (f0, f1, . . . , fn) ∈ Fp′ ,
(a0, a1, . . . , an) ∈ Ap(1−4) then problem (3.1)–(3.3) has a weak solution u. Moreover, an arbitrary
weak solution u of this problem satisfies following estimate

max
t∈[0,T ]

∫
Ω

b(x)|u(x, t)|2 dx+

∫∫
Q

{ n∑
i=1

∣∣uxi(x, t)∣∣pi(x)
+|u(x, t)|p0(x)

}
dx dt

≤ C2

∫∫
Q

{ n∑
i=1

∣∣fi(x, t)∣∣p′i(x)
+ g(x, t)

}
dx dt+ C3

∫
Ω

|u0(x)|2 dx, (3.7)

where C2, C3 are positive constants depending only on K1 and p−i (i = 0, n).

Let Ap(1−3, 3∗, 4) be the subset of the functions (a0, a1, . . . , an) ∈ Ap(1−3) satisfying the
conditions (A3∗) and (A4).

Collorary 1. If p, b satisfy conditions (P), (B) respectively, u0 ∈ Hb, (f0, f1, . . . , fn) ∈ Fp′ ,
(a0, a1, . . . , an) ∈ Ap(1−3, 3∗, 4) then problem (3.1)–(3.3) has a unique weak solution and esti-
mate (3.7) holds.

4 Auxiliary statements

We need some technical statements that play an important role in obtaining the main results.

Consider a family of functions {ωρ : R → R | ρ > 0} such that for every ρ > 0 we have
ωρ(z) := (1/ρ)ω1(z/ρ), z ∈ R, where ω1 ∈ C∞0 (R) is a standard mollifier (see [15, p. 629]), i.e.
suppω1 ⊂ [−1, 1], ω1(z) ≥ 0, ω1(−z) = ω1(z) if z ∈ R,

∫
R ω1(z) dz = 1.
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For every ρ > 0 we define the mollification of any ψ ∈ L1(Q) by the rule

ψρ(x, t) :=

∫
R

ψ̂(x, τ)ωρ(τ − t) dτ for a.e. (x, t) ∈ Q,

where ψ̂(x, t) :=

{
ψ(x, t), x ∈ Ω, t ∈ (0, T ),

0, x ∈ Ω, t 6∈ (0, T ).

The following statement is well-known for standard Lebesgue spaces (see [15]). For the gener-
alized Lebesgue spaces you can find this statement in [11] (see also the proof of Lemma 1 in [7])
but we will prove Lemma 1 in other way for convenience.

Lemma 1. If r ∈ L∞(Ω), r(x) ≥ 1 for a.e. x ∈ Ω, then for every function f ∈ Lr(·)(Q) we
have

fρ−→
ρ→0

f strongly in Lr(·)(Q).

Proof. It is enough to show that for every ε > 0 there exists constant δ > 0 such that for every
ρ ∈ (0, δ) we have ∫∫

Q

|fρ(x, t)− f(x, t)|r(x) dx dt < ε. (4.1)

Let {h̃l}∞l=1 ⊂ C(Q) be a sequence of functions such that h̃l −→
l→∞

f strongly in Lr(·)(Q), i.e.

∫∫
Q

|f(x, t)− h̃l(x, t)|r(x) dx dt −→
l→∞

0. (4.2)

For every l ∈ N we put hl(x, t) =


h̃l(x, t), (x, t) ∈ Q,
h̃l(x, 0), x ∈ Ω, t ≤ 0,

h̃l(x, T ), x ∈ Ω, t ≥ T.
Thus hl ∈ C(Ω× R). Let

hl,ρ(x, t) :=

∫
R

hl(x, τ)ωρ(τ − t) dτ, (x, t) ∈ Ω× R, ρ > 0.

Take an arbitrary l ∈ N and ρ > 0. Using the well-known inequality
(a+ b+ c)q ≤ 3q−1(aq + bq + cq), a, b, c ≥ 0, q ≥ 1, we get∫∫

Q

|fρ(x, t)−f(x, t)|r(x) dx dt≤3r
+−1

[∫∫
Q

|fρ(x, t)− hl,ρ(x, t)|r(x) dx dt

+

∫∫
Q

|hl,ρ(x, t)− hl(x, t)|r(x) dx dt+

∫∫
Q

|hl(x, t)− f(x, t)|r(x) dx dt

]
, (4.3)

where r+ := ess sup
x∈Ω

r(x).
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Consider the first integral of the right-hand side of inequality (4.3). Using the Hölder inequality,
for a.e. x ∈ Ω we get

|fρ(x, t)− hl,ρ(x, t)| =
∫

|τ−t|≤ρ

(f̂(x, τ)− hl(x, τ))ωρ(τ − t) dτ

≤ C4

( ∫
|τ−t|≤ρ

|f̂(x, τ)− hl(x, τ)|r(x)dτ
) 1

r(x)
2

1
r′(x) ρ

− 1
r(x) ,

where C4 > 0 is some constant independent of l, ρ. From this after simple transformations we have

∫∫
Q

|fρ(x, t)− hl,ρ(x, t)|r(x) dx dt ≤ C5

[ 0∫
−ρ

∫
Ω

|hl(x, t)|r(x) dx dt

+

T+ρ∫
T

∫
Ω

|hl(x, t)|r(x) dx dt+

∫∫
Q

|f(x, t)− hl(x, t)|r(x) dx dt

]
, (4.4)

where the constant C5 > 0 does not depends on ρ and l.

Combining (4.4) with (4.3), we obtain ∫∫
Q

|fρ(x, t)− f(x, t)|r(x) dx dt

≤C6

[∫∫
Q

|f(x, t)− hl(x, t)|r(x) dx dt+

∫∫
Q

|hl,p(x, t)− hl(x, t)|r(x) dx dt

+

0∫
−ρ

∫
Ω

|hl(x, t)|r(x) dx dt+

T+ρ∫
T

∫
Ω

|hl(x, t)|r(x) dx dt
]
, (4.5)

where C6 > 0 is independent of ρ, l.

Fix ε > 0. Taking into account (4.2), we choose the number lε ∈ N such that

C6

∫∫
Q

|f(x, t)− hlε(x, t)|r(x) dx dt <
ε

3
. (4.6)

We can prove that

max
(x,t)∈Q

|hl,p(x, t)− hl(x, t)| −→
ρ→0

0 (4.7)

for every fixed l ∈ N in the standard way. Since (4.7) holds, there exists δ1 > 0 such that

max
(x,t)∈Q

|hlε,ρ(x, t)− hlε(x, t)| ≤ 1
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if ρ ∈ (0, δ1). Hence, for every ρ ∈ (0, δ1) we get∫∫
Q

|hlε,ρ(x, t)−hlε(x, t)|r(x) dx dt≤mesn+1Q max
(x,t)∈Q

|hlε,ρ(x, t)−hlε(x, t)|,

where mesn+1Q is the Lebesgue measure of the set Q. Then there exists δ2 ∈ (0, δ1) such that

C6

∫∫
Q

|hl,p(x, t)− hl(x, t)|r(x) dx dt <
ε

3
(4.8)

for all ρ ∈ (0, δ2).

Since mesn+1{Ω × (−ρ, 0)} = ρmesnΩ −→
ρ→+0

0, and mesn+1{Ω × (T, T + ρ)} =

ρmesnΩ −→
ρ→+0

0, using the absolute continuity of the Lebesgue integral, we choose a number

δ ∈ (0, δ2) such that for every ρ ∈ (0, δ) the inequality

C6

[ 0∫
−ρ

∫
Ω

|hlε(x, t)|r(x) dx dt+

T+ρ∫
T

∫
Ω

|hlε(x, t)|r(x) dx dt
]
<
ε

3
(4.9)

holds. Therefore, from (4.5) in view of (4.6), (4.8), (4.9) it follows (4.1). �

Lemma 2. Suppose that b satisfies condition (B), and w ∈ W̃ 1,0
p(·)(Q) such that b1/2w ∈ L2(Q),

and the identity∫∫
Q

{ n∑
i=1

givxiϕ+ g0vϕ− bwvϕ′
}

dx dt = 0, v ∈ Vbp, ϕ ∈ C1
0 (0, T ), (4.10)

holds for some functions gj ∈ Lp′j(·)(Q) (j = 0, n). Then b1/2w ∈ C([0, T ]; L2(Ω)) and for every

θ ∈ C1([0, T ]), v ∈ Vbp, and t1, t2 ∈ [0, T ], t1 < t2, we have

θ(t2)

∫
Ω

b(x)w(x, t2)v(x) dx− θ(t1)

∫
Ω

b(x)w(x, t1)v(x) dx

+

t2∫
t1

∫
Ω

{ n∑
i=1

givxiθ + g0vθ − bwvθ′
}

dx dt = 0, (4.11)

1

2
θ(t2)

∫
Ω

b(x)|w(x, t2)|2 dx− 1

2
θ(t1)

∫
Ω

b(x)|w(x, t1)|2 dx

− 1

2

t2∫
t1

∫
Ω

b|w|2θ′ dx dt+

t2∫
t1

∫
Ω

{ n∑
i=1

giwxi + g0w

}
θ dx dt = 0. (4.12)

Proof. We use some ideas of the proof from [32, Proposition 1.2, p. 106]. Let us construct
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functions

ŵ(x, t) :=


w(x,−t), −T < t < 0,
w(x, t), 0 ≤ t ≤ T,

w(x, 2T − t), T < t < 2T,

ĝi(x, t) :=


−gi(x,−t), −T < t < 0,
gi(x, t), 0 ≤ t ≤ T,

−gi(x, 2T − t), T < t < 2T
(i = 0, n).

Firstly we prove the equality

2T∫
−T

∫
Ω

{ n∑
i=1

ĝi vxiϕ+ ĝ0 v ϕ− b ŵ v ϕ′
}

dx dt = 0 (4.13)

for every ϕ ∈ C1
0 (−T, 2T ), v ∈ V b

p . It is easy to show that equality (4.13) holds for every v ∈ V b
p ,

and arbitrary ϕ ∈ C1
0 (−T, 2T ) such that supp ϕ ⊂ (−T, 0) ∪ (0, T ) ∪ (T, 2T ) (notice that it is

enough to make the corresponding substitution of variable t into identity (4.10)).

Suppose that suppϕ ∩ {0, T} 6= ∅. It can be assumed without loss of gen-
erality that suppϕ ⊂ (−T, T ), 0 ∈ suppϕ. Then for every m ∈ N choose
a function χm ∈ C1(R) such that: 1) |χm(t)| ≤ 1, |χ′m(t)| ≤ 2m, and
χm(−t) = χm(t) if t ∈ R; 2) χm(t) = 1 if t ∈ (−∞,−2/m) ∪ (2/m,+∞);
3) χm(t) = 0 if t ∈ (−1/m, 1/m) (for example, we may put χm(t) = 1

2 sin(πm(t − 3
2m)) + 1

2
if t ∈ ( 1

m ,
2
m)). It is understood that for every t ∈ R\{0} we have χm(t) −→

m→+∞
1. Therefore

equality (4.13) is fulfilled for v ∈ V b
p and with ϕ instead of χmϕ, where m ∈ N. The simple

transformations yield

T∫
−T

∫
Ω

{ n∑
i=1

ĝi vxi ϕ+ ĝ0 v ϕ− bŵ v ϕ′
}
χm dx dt

−
2/m∫
−2/m

∫
Ω

bŵ v ϕχ′m dx dt = 0, (4.14)

where m ∈ N, v ∈ V b
p , ϕ ∈ C1

0 (−T, 2T ), suppϕ ⊂ (−T, T ).

Consider the second term of the left-hand side of (4.14). Notice that ϕ(t)−ϕ(−t) = 2ϕ′(ξ(t)) t,
where t > 0 and ξ(t) is some number between −t and t. Then after simple transformations we
obtain

2/m∫
−2/m

∫
Ω

bŵ v ϕχ′m dx dt=2

2/m∫
1/m

∫
Ω

t χ′m(t)ϕ′(ξ(t))b(x)w(x, t) v(x) dx dt. (4.15)

Note that

|t χ′m(t)ϕ′(ξ(t)) b(x)w(x, t) v(x) | ≤ C7|b(x)w(x, t) v(x)|, (4.16)
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(x, t) ∈ Ω × (0, T ), where C7 > 0 is some independent of m constant, and the right-hand side of
the inequality (4.16) belongs to L1(Q). From (4.15) by (4.16) we have

2/m∫
−2/m

∫
Ω

bŵ v ϕχ′m dx dt −→
m→+∞

0. (4.17)

Letting m → +∞ in (4.14) and taking into account (4.17) and the Dominated Convergence
Theorem (see [15, p. 648]) we obtain (4.13).

Now let {ωρ | ρ > 0} be the functions from the beginning of this subsection. Choose a number
k0 ∈ N such that 1/k0 < T/2. By definition, for each k ≥ k0 put

ŵk(x, τ) :=

∫
R

ŵ(x, t)ω1/k(t− τ) dt,

ĝi,k(x, τ) :=

∫
R

ĝi(x, t)ω1/k(t− τ) dt, i ∈ {0, . . . , n},

for a.e. x ∈ Ω and for every τ ∈ [−T/2, T ].

According to Lemma 3.1, we have

ŵk −→
k→∞

ŵ in Lp0(·)
(
Ω× (−T/2, T )

)
, (4.18)

ŵk,xi −→
k→∞

ŵxi in Lpi(·)
(
Ω× (−T/2, T )

)
, i = 1, n, (4.19)

b1/2ŵk −→
k→∞

b1/2ŵ in L2

(
Ω× (−T/2, T )

)
, (4.20)

ĝi,k −→
k→∞

ĝi in Lp′i(·)
(
Ω× (−T/2, T )

)
, i = 0, n. (4.21)

Note that b1/2ŵk ∈ C([−T/2, T ];L2(Ω)), k ≥ k0.

For each τ ∈ [T/2, T ], k ≥ k0, substituting ω1/k(· − τ) instead of ϕ(·) in (4.13), and using the
simple transformations, we get∫

Ω

{
b(x)

∂

∂τ
ŵk(x, τ) v(x)+

n∑
i=1

ĝi,k(x, τ) vxi(x)+ĝ0,k(x, τ) v(x)

}
dx=0. (4.22)

Let k, l ∈ N be arbitrary numbers such that k, l ≥ k0. Put ŵkl := ŵk − ŵl, ĝi,kl := ĝi,k − ĝi,l
(i = 0, n). The difference between (4.22) and the same equality with k = l equals∫

Ω

{
b(x)

∂

∂τ
ŵkl(x, τ) v(x)+

n∑
i=1

ĝi,kl(x, τ) vxi(x)+ĝ0,kl(x, τ) v(x)
}

dx=0, (4.23)
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where v ∈ V b
p , τ ∈ [−T/2, T ].

Take a function θ ∈ C1(R). For every τ ∈ [−T/2, T ] the functions ŵkl(·, τ) θ(τ) belongs to
v ∈ Vbp. Substituting ŵkl(·, τ) θ(τ) instead of v(·) in (4.23), integrating the obtained equality over
τ ∈ (t1, t2) (−T/2 ≤ t1 < t2 ≤ T ), we have

1

2

∫
Ω

b(x)|ŵkl(x, τ)|2θ(τ)
∣∣∣τ=t2

τ=t1
dx− 1

2

t2∫
t1

∫
Ω

b(x)|ŵkl(x, τ)|2θ′(τ) dx dτ

+

t2∫
t1

∫
Ω

{ n∑
i=1

ĝi,kl(x, τ)(ŵkl(x, τ))xi +ĝ0,kl(x, τ)ŵkl(x, τ)
}
θ(τ) dx dτ=0. (4.24)

Now suppose

0 ≤ θ(τ) ≤ 1 if τ ∈ R, θ(τ) = 0 if τ ≤ −T/2,
θ(τ) = 1 if τ ≥ 0, |θ′(τ)| ≤ 4/T if τ ∈ [−T/2, 0].

Taking t1 = −T/2 and t2 = t ∈ [0, T ] in (4.24) we obtain

max
t∈[0,T ]

∫
Ω

b(x)|ŵkl(x, t)|2 dx ≤ 4

T

0∫
−T/2

∫
Ω

b(x)|ŵkl(x, τ)|2 dx dτ

+2

T∫
−T/2

∫
Ω

{ n∑
i=1

|ĝi,kl(x, τ)| |(ŵkl(x, τ))xi |+|ĝ0,kl(x, τ)| |ŵkl(x, τ)|
}

dx dτ. (4.25)

From (4.25), taking into account (4.18)–(4.21), we get

b1/2 ŵk,l −→
k, l→+∞

0 in C([0, T ];L2(Ω)).

This yields that {b1/2ŵk}∞k=1 is a Cauchy sequence in the space C([0, T ]; L2(Ω)) and

b1/2ŵk −→
k→+∞

b1/2ŵ in C([0, T ];L2(Ω)). (4.26)

Hence b1/2w ∈ C([0, T ];L2(Ω)).

Take an arbitrary function θ ∈ C1([0, T ]), and take any points t1, t2 ∈ [0, T ] such that t1 < t2.
Multiplying (4.22) by θ(τ) and integrating the obtained equality over τ ∈ [t1, t2] we get

t2∫
t1

∫
Ω

b(x)

[
∂

∂τ
ŵk(x, τ)

]
v(x) θ(τ) dx dτ

+

t2∫
t1

∫
Ω

{ n∑
i=1

ĝi,k(x, τ)vxi(x)θ(τ) + ĝ0,k(x, τ)v(x) θ(τ)
}

dx dτ = 0. (4.27)
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Using the formula of integration by parts for first term in the left-hand side of (4.27), and letting
k → +∞ in obtained identity, in view of (4.21), (4.26), we get (4.11).

For each τ ∈ [T/2, T ], k ≥ k0, substituting in (4.22) ŵk(·, τ)θ(τ) instead of v(·), we integrate
this equality over τ ∈ (t1, t2). Similarly to (4.24) we get

1

2

∫
Ω

b(x)|ŵk(x, τ)|2θ(τ)
∣∣∣τ=t2

τ=t1
dx− 1

2

t2∫
t1

∫
Ω

b(x)|ŵk(x, τ)|2θ′(τ) dx dτ

+

t2∫
t1

∫
Ω

{ n∑
i=1

ĝi,k(x, τ)(ŵk(x, τ))xi + ĝ0,k(x, τ)ŵk(x, τ)
}
θ(τ) dx dτ = 0. (4.28)

Letting k → +∞ in (4.28), and using (4.18)–(4.21), (4.26) we get (4.12). �

5 Proof of the main results

For every functions w ∈ L1(Q) such that wx1 , . . . , wxn ∈ L1(Q) we denote

aj(w)(x, t) := aj(x, t, w(x, t),∇w(x, t)), (x, t) ∈ Q, j = 0, n.

Proof of Theorem 2.1. Suppose that problem (3.1)–(3.3) has two weak solutions u1 and u2.
Consider the difference between (3.6) with u = u2 and (3.6) with u = u1. By Lemma 3.2 with
w = u1 − u2, θ ≡ 1, t1 = 0, t2 = τ ∈ (0, T ], we get (see (4.12))

1

2

∫
Ω

b(x)w2(x, τ) dx+

τ∫
0

∫
Ω

{ n∑
i=1

(ai(u1)− ai(u2))(u1,xi − u2,xi)

+ (a0(u1)− a0(u2))(u1 − u2)

}
dx dt = 0, τ ∈ (0, T ].

This equality and (A3) yield b(x)w2(x, t) = 0 and

n∑
i=1

(ai(u1)− ai(u2))(u1,xi − u2,xi) + (a0(u1)− a0(u2))(u1 − u2) = 0

for a.e. (x, t) ∈ Q. The first equality implies that w(x, t) = 0 for a.e. (x, t) ∈ G, where G :={
(x, t) | b(x) > 0, t ∈ (0, T )

}
. The second equality and condition (A3∗) imply that w(x, t) = 0

for a.e. (x, t) ∈ Q\G. Therefore, w(x, t) = 0 for a.e. (x, t) ∈ Q. �

Proof of Theorem 2.2. We use Galerkin’s method. Let {wj | j ∈ N} be a linear independent set
of the functions from C̃1(Ω) whose finite linear combinations are dense in Vbp , and, additionally,
the finite linear combinations of the functions {b1/2wj | j ∈ N} are dense in Hb. Then we take a
sequence {u0,m =

∑m
k=1 α

m
k wk}∞m=1 of the finite linear combinations of the functions {wj | j ∈ N}

such that

||u0 − b1/2u0,m||L2(Ω) −→
m→∞

0. (5.1)
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Notice that for every η ∈ [0, 1] and for a.e. x ∈ Ω we have

|b1/2(x)− (b(x) + η)1/2|2|u0,m(x)|2 ≤ 4(b(x) + 1)|u0,m(x)|2.

Then, taking into account the Dominated Convergence Theorem (see [15, p. 648]), for everym ∈ N
we get

||b1/2u0,m − (b+ η)1/2u0,m||L2(Ω) −→
η→+0

0.

Therefore there exists a sequence of positive numbers {ηm}∞m=1 such that ηm −→
m→∞

0, and

||b1/2u0,m − (b+ ηm)1/2u0,m||L2(Ω) −→
m→∞

0. (5.2)

Put by definition

bm(x) := b(x) + ηm, m ∈ N, x ∈ Ω. (5.3)

Therefore, taking into account (5.1) and (5.2), we have

||u0 − b1/2m u0,m||L2(Ω) −→
m→∞

0. (5.4)

According to Galerkin’s method, for every m ∈ N we put

um(x, t) =
m∑
k=1

cm,k(t)wk(x), (x, t) ∈ Q,

where cm,1, . . . , cm,m are solutions of the Cauchy problem for the system of ordinary differential
equations

∫
Ω

bmum,twj dx+

∫
Ω

{ n∑
i=1

(ai(um)− fi)wj,xi

+ (a0(u0)− f0)wj

}
dx = 0, j = 1,m, (5.5)

um|t=0 = u0,m. (5.6)

The linear independence of functions w1, . . . , wm yields that the matrix (amk,j)
m
k,j=1 is positive-

definite, where amk,j =
∫

Ω bmwkwj dx (k, j = 1,m). Thus the system of ordinary differential equa-
tions (5.5) can be transformed to the normal form. Hence, according to the theorems of existence
and extension of the solution to this problem (see [14]), we get the global solution c1,m, . . . .., cm,m
of problem (5.5), (5.6). This solution is defined on the interval [0, Tm〉, where Tm ≤ T . Here
the braces ”〉” means either ”)” or ”]”. Further we will get the estimates that imply the equality
[0, Tm〉 = [0, T ].

Multiply the equation of system (5.5) with number j ∈ {1, . . . ,m} by cm,j and sum over j ∈
{1, . . . ,m}. Integrating the obtained equality over t ∈ [0, τ ] ⊂ [0, Tm〉, and using the integration-
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by-parts formula, we have

1

2

∫
Ω

bm(x)|um(x, τ)|2 dx− 1

2

∫
Ω

bm(x)|u0,m(x)|2 dx

+

τ∫
0

∫
Ω

{ n∑
i=1

ai(um)um,xi + a0(um)um

}
dx dt

=

τ∫
0

∫
Ω

{ n∑
i=1

fium,xi + f0um

}
dx dt, τ ∈ (0, Tm〉. (5.7)

Further we need Young’s inequality in the form

ab ≤ ε|a|r(x) + ε
− 1

r−−1 |b|r′(x), a, b ∈ R, q > 1, 0 < ε < 1, (5.8)

for a.e. x ∈ Ω, where r ∈ L∞(Ω), r(x) > 1, r′(x) := r(x)/(r(x) − 1) for a.e. x ∈ Ω,
r− := ess inf

x∈Ω
r(x).

Take an arbitrary value ε ∈ (0, 1). From (5.7), using condition (A4) and inequality (5.8) with
small enough ε ∈ (0, 1) (for example, ε = 1

2 min{1,K1} > 0), we get∫
Ω

bm(x)|um(x, τ)|2 dx+K1

τ∫
0

∫
Ω

{ n∑
i=1

|um,xi(x, t)|pi(x)

+ |um(x, t)|p0(x)
}

dx dt ≤ C8

τ∫
0

∫
Ω

n∑
i=0

|fi(x, t)|p
′
i(x) dx dt

+2

τ∫
0

∫
Ω

g(x, t) dx dt+

∫
Ω

bm(x)|u0,m(x)|2 dx, τ ∈ (0, Tm〉. (5.9)

From (5.4) it follows that the sequence {
∫

Ω bm(x)u2
0,m(x) dx}∞m=1 is bounded. Hence

from (5.9) we get the following estimates∫
Ω

bm(x)u2
m(x, τ) dx ≤ C9, (5.10)

τ∫
0

∫
Ω

{ n∑
i=1

|um,xi(x, t)|pi(x) + |um(x, t)|p0(x)
}

dx dt ≤ C10, (5.11)

where C9, C10 > 0 are independent of m,Tm. Estimate (5.10) implies that there exists an indepen-
dent of Tm constant that bounds the functions cm,1, . . . , cm,m on [0, Tm〉. Thus [0, Tm〉 = [0, T ].

Condition (A2) and estimates (5.11) yield∫∫
Q

|ai(um)(x, t)|p′i(x) dx dt ≤ C11, i = 0, n, (5.12)
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where C11 > 0 is independent of m.

Since the spaces Lpi(·)(Q), Lp′i(·)(Q) (i = 0, n) are reflexive (see [22, p. 600]), and esti-
mates (5.10)-(5.12) hold, we obtain the existence of subsequence (we call it {um}m∈N again), the
functions v∗ ∈ L2(Ω), ũ ∈ L∞(0, T ; L2(Ω)), u ∈ Lp0(·)(Q), and χi ∈ Lp′i(·)(Q) (i = 0, n) such
that uxi ∈ Lpi(·)(Q) (i = 1, n), and

b1/2m (·)um(·, T ) −→
m→∞

v∗(·) weakly in L2(Ω), (5.13)

b1/2m um −→
m→∞

ũ ∗ −weakly in L∞(0, T ;L2(Ω)), (5.14)

um −→
m→∞

u weakly in W̃ 1,0
p(·)(Q), (5.15)

ai(um) −→
m→∞

χi weakly in Lp′i(·)(Q) (i = 1, n). (5.16)

Let us prove that u is a weak solution of problem (3.1)–(3.3). First note that

b1/2m −→
m→∞

b1/2 strongly in L2(Ω) and almost everywhere on Ω. (5.17)

Now let us prove that

ũ(x, t) = b1/2(x)u(x, t) for a.e. (x, t) ∈ Q. (5.18)

Indeed, take a function ψ ∈ C(Q). Then (5.14) yields that∫∫
Q

b1/2m umψ dx dt −→
m→∞

∫∫
Q

ũψ dx dt. (5.19)

Taking into account (5.17) and the Dominated Convergence Theorem (see [15, p. 648]) it is
easy to show that b1/2m ψ −→

m→∞
b1/2ψ in Lp′0(·)(Q). Hence, by (5.15) we obtain∫∫

Q

umb
1/2
m ψ dx dt −→

m→∞

∫∫
Q

ub1/2ψ dx dt. (5.20)

Relations (5.19), (5.20) imply that for every ψ ∈ C(Q) the equality∫∫
Q

ũψ dx dt =

∫∫
Q

b1/2uψ dx dt

holds, i.e. equality (5.18) is true.

Fix the numbers j,m ∈ N such that m ≥ j. Multiplying the equation of system (5.5) with
number j by the function θ ∈ C1([0, T ]) we integrate the obtained equality in t ∈ [0, T ]. Letting
m→∞, and taking into account (5.4), (5.6), (5.13)–(5.18), we get

θ(T )

∫
Q

b1/2(x)v∗(x)wj(x) dx− θ(0)

∫
Q

b1/2(x)u0(x)wj(x) dx

−
∫∫
Q

buwjθ
′ dx dt+

∫∫
Q

{ n∑
i=1

(χi − fi)wj,xi +(χ0−f0)wj

}
θ dx dt=0. (5.21)
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This equality yields that for every v ∈ V b
p and θ ∈ C1([0, T ]) the equality

θ(T )

∫
Ω

b1/2(x)v∗(x)v(x) dx− θ(0)

∫
Ω

b1/2(x)u0(x)v(x) dx

−
∫∫
Q

buvθ′ dx dt+

∫∫
Q

{ n∑
i=1

(χi − fi)vxi + (χ0 − f0)v
}
θ dx dt = 0 (5.22)

holds.

Notice that if we take θ = ϕ ∈ C1
0 (0, T ) in (5.22) then for every v ∈ Vbp and ϕ ∈ C1

0 (0, T ) we
have the equality∫∫

Q

{ n∑
i=1

(χi − fi)vxiϕ+ (χ0 − f0)vϕ− buvϕ′
}

dx dt = 0. (5.23)

According to Lemma 3.2, (5.23) implies that

b1/2u ∈ C([0, T ];L2(Ω)) (5.24)

and for every v ∈ Vbp and θ ∈ C1([0, T ]) the equality

θ(T )

∫
Ω

b(x)u(x, T )v(x) dx− θ(0)

∫
Ω

b(x)u(x, 0)v(x) dx

−
∫∫
Q

buvθ′ dx dt+

∫∫
Q

{ n∑
i=1

(χi − fi)vxi + (χ0 − f0)v
}
θ dx dt = 0 (5.25)

holds.

From (5.22) and (5.25) we get

b1/2(x)u(x, 0) = u0(x), b1/2(x)u(x, T ) = v∗(x) for a.e. x ∈ Ω. (5.26)

In view of (5.15) and (5.24) we conclude that u ∈ U b
p . First equality from (5.26) implies (3.5).

According to (5.23) to prove (3.6) it is enough to show that the equality∫∫
Q

{ n∑
i=1

χivxiϕ+χ0vϕ
}

dx dt=

∫∫
Q

{ n∑
i=1

ai(u)vxiϕ+a0(u)vϕ
}

dx dt (5.27)

is valid for every v ∈ Vbp and ϕ ∈ C1
0 (0, T ). For this we use the monotonicity method (see [23]).

Take an arbitrary function w ∈ W̃ 1,0
p(·)(Q). Using condition (A3) for every m ∈ N we have

Wm :=

∫∫
Q

{ n∑
i=1

(ai(um)− ai(w))(um,xi − wxi)

+ (a0(um)− a0(w))(um − w)
}

dx dt ≥ 0.
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Hence,

Wm =

∫∫
Q

{ n∑
i=1

ai(um)um,xi + a0(um)um

}
dx dt

−
∫∫
Q

{ n∑
i=1

[
ai(um)wxi + ai(w)(um,xi − wxi)

]
+ a0(um)w + a0(w)(um − w)

}
dx dt ≥ 0, m ∈ N. (5.28)

From (5.28), using (5.7) with τ = T , we obtain

Wm =

∫∫
Q

{ n∑
i=1

fium,xi + f0um

}
dx dt− 1

2

∫
Ω

bm(x)|um(x, T )|2 dx

+
1

2

∫
Ω

bm(x)|u0,m(x)|2 dx−
∫∫
Q

{ n∑
i=1

[
ai(um)wxi

+ ai(w)(um,xi − wxi)
]

+ a0(um)w + a0(w)(um − w)
}

dx dt ≥ 0, (5.29)

where m ∈ N.

Taking into account (5.13) and the second equality of (5.26) we have

lim inf
m→∞

||b1/2m (·)um(·, T )||L2(Ω) ≥ ||b1/2(·)u(·, T )||L2(Ω). (5.30)

By (5.4), (5.15), (5.16), (5.30), from (5.29) we get

0 ≤ lim
m→∞

supWm ≤
∫∫
Q

{ n∑
i=1

fiuxi + f0u
}

dx dt

−1

2

∫
Ω

b(x)|u(x, T )|2 dx+
1

2

∫
Ω

|u0(x)|2 dx

−
∫∫
Q

{ n∑
i=1

[
χiwxi + ai(w)(uxi − wxi)

]
+ χ0w + a0(w)(u− w)

}
dx dt. (5.31)

From (5.23), using Lemma 3.2 with θ ≡ 1 and first equality of (5.26), we obtain

∫∫
Q

{ n∑
i=1

χiuxi + χ0u
}

dx dt =

∫∫
Q

{ n∑
i=1

fiuxi + f0u
}

dx dt

− 1

2

∫
Ω

b(x)|u(x, T )|2 dx+
1

2

∫
Ω

|u0(x)|2 dx. (5.32)

Thus, (5.31) and (5.32) imply that∫∫
Q

{ n∑
i=1

(χi − ai(w))(uxi − wxi) + (χ0 − a0(w))(u− w)
}

dx dt ≥ 0. (5.33)
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Using the standard monotonous method, we get (5.27). Therefore u is a weak solution of prob-
lem (3.1)–(3.3).

Finally let us prove estimate (3.7). Take arbitrary weak solution u to problem (3.1)–(3.3).
From (3.6), using Lemma 2 with θ ≡ 1, t1 = 0, t2 = τ ∈ (0, T ] (see (4.12)), we get

1

2

∫
Ω

b(x)|u(x, τ)|2 dx+

τ∫
0

∫
Ω

{ n∑
i=1

ai(u)uxi + a0(u)u
}

dx dt

=

τ∫
0

∫
Ω

{ n∑
i=1

fiuxi + f0u
}

dx dt+

∫
Ω

b(x)|u0(x)|2 dx.

From this similar as to show inequality (5.9), taking into account (A4), (5.8), we obtain (3.7). �
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