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1 Introduction

Seeking tractable solutions of nonlinear evolution equations has been the focus of intense study for
the past several decades (see, e.g., [1]-[11]). In this regard many strategies have been employed that
include the Hirota bilinear method [2], homogeneous balance method [3], trigonometric method
[4], the hyperbolic method [5], the Jacobi elliptic function method [6] and iterative method [7, 8].
On the other hand, perturbative techniques have also been used to extract multi-order exact periodic
solutions based on Lamé equation and Jacobi elliptic functions [9, 10, 11]. In this note we propose
a generalized class of Lamé equation in which an auxiliary function f(ξ) is present whose role is
to consider correlations between it and the perurbatively reduced nonlinear evolution equation for
different orders of the perturbative parameter.

A generalized Lamé equation is expressed as

d2y

dξ2
+
[
λ− (n+ 1)(n+ 2)a1a2(f(ξ))2

]
y = 0, (1.1)

where λ stands for an eigenvalue, n is a positive integer and we restrict the auxiliary function f(ξ)
to obey an elliptic equation (

df

dξ

)2

=
(
1 + a1f

2
) (
a2f

2 + a3
)
. (1.2)

In (1.1) and (1.2), a1, a2, a3 are real constants. It is well known that equation (1.2) admits of
several categories of solutions for different values of a1, a2, a3 all expressible in terms of modulus
k of the Jacobi elliptic functions. For later use we summarize a few relevant ones in Table 1.

Table 1: f(ξ) is provided along with the values of the parameters aj , j = 1, 2, 3. The complemen-
tary modulus is denoted by k′2 = 1− k2 [12].

a1 a2 a3 f(ξ)

−1 −k2 1 sn(ξ, k)
−1 k2 k′2 cn(ξ, k)
−1 1 −k′2 dn(ξ, k)
−1 −k′2 −k2 nc(ξ, k), i.e., 1

cn(ξ,k)

−k′2 1 −1 nd(ξ, k), i.e., 1
dn(ξ,k)

1 k′2 1 sc(ξ, k), i.e., sn(ξ,k)
cn(ξ,k)

−1 −k2 1 cd(ξ, k), i.e., cn(ξ,k)
dn(ξ,k)

−1 −1 k2 dc(ξ, k), i.e., dn(ξ,k)
cn(ξ,k)

k2 −k′2 1 sd(ξ, k), i.e., sn(ξ,k)
dn(ξ,k)

It should be mentioned that while we would attend to the enlisted set of f(ξ) in Table 1 to widen
the scope of enquiry, some particular cases of f(ξ), namely sn(ξ, k), dn(ξ, k) and cd(ξ, k), have
been studied in the literature [9, 10, 11] to search for solutions of the relevant PDEs by applying
the perturbation techniques on the latter. However, as will be clear from Table 1 there exist other
variants of f(ξ) which open up different cases of new solutions not only for the already considered
PDEs but other types as well by perturbatively reducing them to an ODE form so as to match with
(1.1).
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We have selected a physically meaningful model of a generalized shallow water wave equation
[13, 14, 15, 16] which is amenable to a perturbative treatment by looking for a travelling wave
variable u(x, t) = u(ξ) with ξ = γ(x − ct) where γ is the wave number and c is the wave speed.
We discuss the procedure of obtaining the solutions in section 2. In section 3 we take up ap-
plicability of our scheme to other nonlinear evolution equations namely, the Korteweg de Vries
(KdV) equation, modified KdV equation, Boussinesq equation, Klein-Gordon equation and mod-
ified Benjamin-Bona-Mahony (mBBM) equation with a view to tracking down new unexplored
multi-order solutions. The main point of our analysis is to demonstrate that all such solutions can
be written down in a generic form in terms of the function f .

To make equation (1.1) accessible in terms of known Lamé functions, we recast it in terms of a
new variable η by applying the transformation f(ξ) =

√
η. Using (1.2) this gives

d2y

dη2
+

1

2

[
1

η
+

1

η + 1
a1

+
1

η + µ

]
dy

dη
− ν + (n+ 1)(n+ 2)η

4η(η + 1
a1

)(η + µ)
y = 0, (1.3)

where the parameters µ and ν are defined by µ = a3
a2

and ν = − λ
a1a2

.

Equation (1.3) is readily solvable for the special cases of n = 1 and 2 for different choices of
µ and ν subject to certain relation between them. The solutions expressible by the corresponding
Lamé functions are [9]

n = 1 LI1(ξ) = (1 + a1η)
1
2 (a3 + a2η)

1
2 = (1 + a1f

2)
1
2 (a3 + a2f

2)
1
2 , (1.4)

λ = −(a2 + a1a3) [provided ν = (µ+
1

a1
)].

n = 1 LII1 (ξ) = η
1
2 (1 + a1η)

1
2 = f(1 + a1f

2)
1
2 , (1.5)

λ = −(a2 + 4a1a3) [provided ν = (4µ+
1

a1
)].

n = 1 LIII1 (ξ) = η
1
2 (a3 + a2η)

1
2 = f(a3 + a2f

2)
1
2 , (1.6)

λ = −(4a2 + a1a3) [provided ν = (µ+
4

a1
)].

n = 2 L2(ξ) = η
1
2 (1 + a1η)

1
2 (a3 + a2η)

1
2 = f(1 + a1f

2)
1
2 (a3 + a2f

2)
1
2 , (1.7)

λ = −4(a2 + a1a3) [provided ν = 4(µ+
1

a1
)].

Henceforth we will be guided by the solutions (1.4) - (1.7) along with an appropriate f from
Table 1 for the various multi-order cases that follow from a nonlinear PDE.

2 A generalized shallow water wave equation

We turn attention to a generalized class of shallow water wave (GSWW) equation given by [13, 14,
15, 16]

uxxxt + αuxuxt + βutuxx − uxt − uxx = 0, (2.1)
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where α, β ∈ R− {0}. Equation (2.1) can be derived from a classical study of water waves under
the so-called Boussinesq approximation. More interestingly, there also follows various classical
and non-classical reductions from GSWW such as the KdV and BBM equations. Investigations
of Painlevé tests reveal complete integrability for specific values of α and β namely α = β or
α = 2β [14]. Recently we extended [16] the Jacobian elliptic function method to classify new
exact travelling wave solutions expressible in terms of quasi-periodic elliptic integral function and
doubly-periodic Jacobian elliptic functions.

For the travelling wave solutions u = u(ξ), equation (2.1) can be reduced in terms of the
variable v(ξ) ≡ du

dξ to the ODE form

d2v

dξ2
+ Pv2 +Qv + c1 = 0. (2.2)

where P = α+β
2γ , Q = 1−c

γ2c
and c1 is an integrating constant.

To tackle (2.2) perturbatively we set

v(ξ) = v0(ξ) + εv1(ξ) + ε2v2(ξ) + · · · (2.3)

where ε(> 0) is a small parameter and v0(ξ), v1(ξ), v2(ξ), ... represent various multi-order solu-
tions like the zeroth-order, first-order, second-order solutions etc. of equation (2.2). Accordingly
we can write u(ξ) as

u(ξ) = u0(ξ) + εu1(ξ) + ε2u2(ξ) + · · · (2.4)

where ui(ξ) =
∫ ξ
0 vi(τ) dτ.

Substituting the series (2.3) in equation (2.2) we obtain for each power of ε the corresponding
equations

ε0 :
d2v0
dξ2

+ Pv20 +Qv0 + c1 = 0 , (2.5)

ε1 :
d2v1
dξ2

+ (2Pv0 +Q)v1 = 0 , (2.6)

ε2 :
d2v2
dξ2

+ (2Pv0 +Q)v2 = −Pv21 , (2.7)

and so on.

We now proceed to solve the above chain of equations by first expanding v0 namely,

v0 =

l∑
i=0

Aif
i, (2.8)

where Ai’s are constants and then comparing highest order linear and nonlinear terms in (2.5). In
this way we obtain l = 2 by making use of (1.2). Thus (2.8) gets reduced to the quadratic form

v0 = A0 +A1f +A2f
2. (2.9)
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2.1 Zeroth-order exact solution

With v0 given by (2.9) we are led to the following system of coupled equations:

2a3A2 + PA2
0 +QA0 + c1 = 0, (2.10)

A1[(a2 + a1a3) + 2PA0 +Q] = 0 , (2.11)

4(a2 + a1a3)A2 + P (A2
1 + 2A0A2) +QA2 = 0 , (2.12)

A1[a1a2 + PA2] = 0 , (2.13)

A2[6a1a2 + PA2] = 0. (2.14)

It is readily seen that we generate the following set of consistent solutions A0 = − 1
2P [Q+ 4(a2 +

a1a3)], A1 = 0 and A2 = −6a1a2
P along with the constraint

[16(a2 + a1a3)
2 − 48a1a2a3]−Q2 + 4Pc1 = 0. (2.15)

From (2.15) we obtain wave speed as

c = [1± 4γ2{(a2 + a1a3)
2 − 3a1a2a3 +

α+ β

8γ
c1}

1
2 ]−1 (2.16)

where the two signs signal the two directions. Note that in order to have c real we can always adjust
the integration constant c1 to keep (a2 + a1a3)

2 + α+β
8γ c1 > 3a1a2a3. Further for the finiteness of

c we require (a2 + a1a3)
2 + α+β

8γ c1 6= 3a1a2a3 + 1
16γ4

.

From (2.5) and (2.9) we get for the first integral

v0 =
du0
dξ

= − 1

2P
[Q+ 4(a2 + a1a3)]−

6a1a2
P

f2 (2.17)

which in turn gives the zeroth-order solution

u0 = − 1

2P
[Q+ 4(a2 + a1a3)]ξ −

6a1a2
P

∫
f2 dξ. (2.18)

As is evident, u0 depends upon the choice of the auxiliary function f . In Table 2 we furnish the
various forms for u0 corresponding to different elliptic functions of Table 1. A sample graph of

Table 2: Wave velocity c = 1

1±4γ2
√

1−k2k′2+α+β
8γ c1

, E(φ, k) is the incomplete elliptic integral function of

second kind where sinφ = sn(ξ, k) and Λ = − 1
2P [Q− 4(1 + k2)].

f(ξ) Zeroth-order solution u0
sn(ξ, k) or cn(ξ, k) or dn(ξ, k) Λξ + 6

P E(φ, k)
nc(ξ, k) or sc(ξ, k) or dc(ξ, k) Λξ + 6

P [E(φ, k)− sn(ξ, k)dc(ξ, k)]
nd(ξ, k) or sd(ξ, k) or cd(ξ, k) Λξ + 6

P [E(φ, k)− k2sn(ξ, k)cd(ξ, k)]

the zeroth-order solution u0 for f = sn(ξ, k) is depicted in Figure 1 and a plot of wave-speed for
variation of the constant c1 is shown in Figure 2.
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Figure 1: Zeroth-order exact solution corresponding to f(ξ) = sn(ξ, k) for k = 0.5, α = 1, β =
4, γ = 1
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Figure 2: Wave speed c vs constant of integration c1 for f(ξ) = sn(ξ, k) for k = 0.5, α = 1, β =
4, γ = 1

2.2 First-order exact solution

Knowing v0 from (2.17), equation (2.6) reads

d2v1
dξ2

+ [−4(a2 + a1a3)− 12a1a2f
2]v1 = 0, (2.19)

which matches with (1.1) for λ = −4(a2 + a1a3). This gives n = 2 implying that the solution of
(2.19) can be written as

v1 =
du1
dξ

= c2L2(ξ) = c2f(1 + a1f
2)

1
2 (1 +

a2
a3
f2)

1
2 , (2.20)

where c2 is an arbitrary constant.

Integration of (2.20) with the use of (1.2) immediately provides the result

u1 = ±c2
2
f2 (2.21)

which serves as a first order approximation to equation (2.1). Figure 3 gives a plot of u1 for f =
sn(ξ, k).
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Figure 3: First-order exact solution corresponding to f(ξ) = sn(ξ, k) for k = 0.5, α = 1, β =
4, γ = 1, c2 = 1

2.3 Second-order exact solution

Using (2.17) and (2.20) the second-order equation (2.7) takes the form

d2v2
dξ2

+ [−4(a2 + a1a3)− 12a1a2f
2]v2 = −Pc22f2(1 + a1f

2)(a3 + a2f
2). (2.22)

We observe that the coefficients of (2.22) are polynomials in f . This prompts us to take a polynomial
ansatz for v2 namely

v2 =

l∑
i=0

Bif
i. (2.23)

Substitution of the above into (2.22) we get l = 4 on equating the highest power of f from both
sides. Thus (2.23) is reduced to the biquadratic form

v2 = B0 +B1f +B2f
2 +B3f

3 +B4f
4. (2.24)

Putting (2.24) into (2.22) and equating the coefficients of f i (i = 0 to 6) to zero, we have the
following system of coupled equations,

a3B2 − 2(a2 + a1a3)B0 = 0,

(a2 + a1a3)B1 − 2a3B3 = 0,

12a3B4 − 12a1a2B0 + Pc22a3 = 0,

(a2 + a1a3)B3 − 2a1a2B1 = 0, (2.25)

−6a1a2B2 + 12(a2 + a1a3)B4 + Pc22(a2 + a1a3) = 0,

a1a2B3 = 0,

8a1a2B4 + Pc22a1a2 = 0.

Solving for B0, B1, B2, B3, B4 we obtain

B0 = − a3c
2
2P

24a1a2
, B1 = 0, B2 = −(a2 + a1a3)c

2
2P

12a1a2
, B3 = 0, B4 = −c

2
2P

8
. (2.26)
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Figure 4: Second-order exact solution corresponding to f(ξ) = sn(ξ, k) for k = 0.5, α = 1, β =
4, γ = 1, c2 = 1

Hence the solution of equation (2.22) can be written as

v2 =
du2
dξ

= − c22P

24a1a2
[a3 + 2(a2 + a1a3)f

2 + 3a1a2f
4] (2.27)

Using (1.2) we can integrate (2.27) to get

u2 = ± c22P

24a1a2
f(1 + a1f

2)
1
2 (a3 + a2f

2)
1
2 . (2.28)

u2 is plotted for f = sn(ξ, k) in Figure 4.

3 Application to other nonlinear evolution equations

In the previous section, we considered a nonlinear second-order ODE containing a functional pa-
rameter f and obtained specific solutions in terms of f . It was shown that the use of Jacobi elliptic
function method in a perturbative way yielded new multi-order exact solutions that depended upon
f in a generic way. In this section we show that our approach can be profitably applied to other
nonlinear equations resulting in more general types of solutions that have not been reported to the
best of our knowledge. A complete list of our results are presented in Table 3.

(i) KdV equation

The concerned equation is of the form

ut + αuux + βuxxx = 0 (3.1)

where α and β are real parameters. Let us choose f = cd(ξ, k) for which a1 = −1, a2 = −k2 and a3 = 1.
Substituting these values into the zeroth-order, first-order and second-order exact solutions listed in Table 3,
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Table 3: New general multi-order exact solutions for various non-linear evolution equations

Equation Multi-order exact solutions un, n = 0, 1, 2

(i) KdV equation u0 = c
α −

4βγ2

α [(a2 + a1a3) + 3a1a2f
2],

ut + αuux + βuxxx = 0 [where c = ±βγ2{16(a2 + a1a3)
2 − 48a1a2a3 + 2 α

βγ2
c1}

1
2 ]

u1 = c2f(1 + a1f
2)

1
2 (a3 + a2f

2)
1
2

u2 = − c22α
48a1a2βγ2

[a3 + 2(a2 + a1a3)f
2 + 3a1a2f

4]

(ii) mKdV equation u0 = ±
√
−6βγ2a1a2

α f,

ut + αu2ux + βuxxx = 0 [where c = βγ2(a2 + a1a3)]
u1 = c2(1 + a1f

2)
1
2 (a3 + a2f

2)
1
2

u2 = ± c22
2

√
− α

6βγ2a1a2
f [(a2 + a1a3) + 2a1a2f

2]

(iii) Boussinesq equation u0 = − 1
2β [c20 − c2 + 4αγ2(a2 + a1a3)]− 6αγ2

β a1a2f
2,

utt − c20uxx − αuxxxx − β(u2)xx = 0 [where c = {c20 ± 4αγ2
√

(a2 + a1a3)2 − 3a1a2a3}
1
2 ]

u1 = c2f(1 + a1f
2)

1
2 (a3 + a2f

2)
1
2

u2 = − c22β
24a1a2αγ2

[a3 + 2(a2 + a1a3)f
2 + 3a1a2f

4]

(iv) Klein-Gordon equation u0 = ±
√
−2(c2−1)γ2a1a2

β f,

utt − uxx + αu+ βu3 = 0 [where c = ±{1− α
γ2(a2+a1a3)

}
1
2 ]

u1 = c2(1 + a1f
2)

1
2 (a3 + a2f

2)
1
2

u2 = ± c22
2

√
− β

2(c2−1)γ2a1a2 f [(a2 + a1a3) + 2a1a2f
2]

(v) mBBM equation u0 = ±
√

6βγ2ca1a2 f,
ut + c0ux + u2ux + βuxxt = 0 [where c = c0

1+(a2+a1a3)βγ2
]

u1 = c2(1 + a1f
2)

1
2 (a3 + a2f

2)
1
2

u2 = ± c22
2

√
1

6βγ2ca1a2
f [(a2 + a1a3) + 2a1a2f

2]

we find

u0 =
c

α
+

4βγ2

α
(1 + k2)− 12βγ2

α
k2cd2(ξ, k)

u1 = c2k
′2cd(ξ, k)sd(ξ, k)nd(ξ, k) (3.2)

u2 = − c22α

48βγ2k2
[1− 2(1 + k2)cd2(ξ, k) + 3k2cd4(ξ, k)].

These solutions have been obtained in [10] for α = 1 where the authors used the notations m and k in places
of k and γ respectively and their scale is A = k′2c2, c1 = 0. The KdV equation has also been studied in [9]
and their results can be extracted from ours for f = sn(ξ, k) corresponding to α = 1.

(ii) mKdV equation

ut + αu2ux + βuxxx = 0. (3.3)

Our general result listed in Table 3 contains, as special cases, the following results reported in earlier works.

• f = sn(ξ, k) (cf. [9])
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u0 = ±γk
√
−6β

α
sn(ξ, k)

u1 = c2 cn(ξ, k)dn(ξ, k) (3.4)

u2 = ± (1 + k2)c22
12γk

√
−6α

β
sn(ξ, k)[

2k2

1 + k2
sn2(ξ, k)− 1]

• f = cd(ξ, k) (cf. [10])

u0 = ±γk
√
−6β

α
cd(ξ, k)

u1 = (1− k2)c2 sd(ξ, k)nd(ξ, k) (3.5)

u2 = ± (1 + k2)c22
12γk

√
−6α

β
cd(ξ, k)[

2k2

1 + k2
cd2(ξ, k)− 1]

(iii) Boussinesq equation

utt − c20uxx − αuxxxx − β(u2)xx = 0. (3.6)

From the general solution given in terms of f (see Table 3) one can deduce the ones obtained in [9] as special
case for f = sn(ξ, k).

(iv) Klein-Gordon equation

utt − uxx + αu+ βu3 = 0. (3.7)

The above equation was considered in [11]. Their results correspond to the case f = dn(ξ, k) and we do
indeed recover their solutions from Table 3 as given below:

u0 = ±

√
2α

βγ2(k2 − 2)
dn(ξ, k)

u1 = k2c2 sn(ξ, k)cn(ξ, k) (3.8)

u2 = ∓c
2
2

2

√
β

2γ2(c2 − 1)
dn(ξ, k)[2− k2 − 2dn2(ξ, k)]

(v) mBBM equation

ut + c0ux + u2ux + βuxxt = 0. (3.9)

For f = sn(ξ, k) the multi-order solutions to (3.9) read from Table 3

u0 = ±γ
√

6cβ sn(ξ, k)

u1 = c2 cn(ξ, k)dn(ξ, k) (3.10)

u2 = ∓c
2
2(1 + k2)

12γk

√
6

cβ
sn(ξ, k)[12− 2k2

1 + k2
sn2(ξ, k)].

These results were obtained in the paper [9].
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4 Concluding remarks

In this paper we have derived exact multi-order periodic solutions for a generalized shallow water wave equa-
tion in a perturbative framework which are based on various types of Jacobi elliptic functions. The presence
of an auxiliary function in our scheme, whose particular form makes reference to any particular Jacobi func-
tion explicit, can be suitably chosen to connect with other classes of PDE such as the KdV, modified KdV,
Boussinesq, Klein-Gordon and modified Benjamin-Bona-Mahony equation. The general character of our
results encompasses those special cases which have earlier been studied in the literature.
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