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Abstract. This article concerns the existence of non-oscillatory solutions for non-linear, non-
homogeneous differential equations. In these equations, the unknown function depends on dis-
tributed arguments that can be retarded or advanced and have variable delays. Using contraction
mappings, we show the existence of solutions, and estimate their norms. Then our results are ex-
tended to dynamic equations on times scales, and to difference equations.
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1 Introduction

This article concerns the existence of non-oscillatory solutions for the delay differential equation

d

dt

(
rm−1(t)

d

dt

(
rm−2(t) · · · d

dt

(
r1(t)

d

dt

(
x(t) + p(t)x(τ(t))

))
· · ·
))

+

∫ b

a
g(t, ξ, x(δ(t, ξ))) dµ(ξ) = f(t) ,

(1.1)
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where m ≥ 1, f ∈ C([0,+∞),R), g ∈ C([0,+∞) × [a, b] × R,R), p ∈ C([0,+∞),R), ri are
positive functions having m − i derivatives on [0,+∞). The delay arguments τ(t) and δ(t, ξ) are
continuous functions satisfying conditions specified below, and the integral is defined in the Stieltjes
sense where µ is non-decreasing.

Our goal is to study an equation that is more general than those studied in previous publications,
consider various ranges for the coefficient p(t), and extend these results to dynamic equations on
times scales and to difference equations. With this in mind, we consider (1.1) because it has the
following properties: higher order than the equations studied in [3, 9, 10, 12, 13]; a forcing term
f(t) not considered in [3, 4, 9, 13]; variable delays that include the fixed delays in [4, 9, 13] and the
variable delays in [3, 10, 11, 12, 13]; a variable coefficient p(t) that includes the fixed coefficients in
[4, 9] and the variable coefficients in [3, 11, 12, 13]; and the coefficients ri(t) not necessarily equal
to 1, as in the above references, except for [11, 12] where r1(t) is variable.

Oscillation results for delay differential equations can be found in [1, 5, 6, 7, 8], and their
references. Non-oscillation results for equations related to (1.1), can be summarized as follows:
Zhang [13] studied the equation

d

dt

[
x(t) + p(t)x(t− τ)

]
+Q1(t)x(t− δ1)−Q2(t)x(t− δ2) = 0 , (1.2)

where τ, δ1, δ2 are non-negative constants, and Q1, Q2 are non-negative functions. Kulenovic [9]
studied the equation

d2

dt2
[
x(t) + p x(t− τ)

]
+Q1(t)x(t− δ1)−Q2(t)x(t− δ2) = 0 , (1.3)

where p is a constant not equal to ±1. Candan [3] studied the first and second order (k = 1, 2)
equations

dk

dtk
[
x(t) + p(t)x(t− τ)

]
+

∫ b

a
q1(t, ξ)x(t− ξ) dξ −

∫ d

c
q2(t, ξ)x(t− ξ) dξ = 0 , (1.4)

where τ is a non-negative constant. Note that equations (1.2)–(1.4) are linear and homogeneous. Li
[10] studied the linear equation

d2

dt2
[
x(t) + p(t)x(τ0(t))

]
+ q1(t)x(τ1(t))− q2(t)x(τ2(t)) = e(t) , (1.5)

on time scales. Chen [4] studied the nonlinear equation

dm

dtm
[
x(t) + cx(t− τ)

]
+ g(t, x(t− δ(t))) = 0 , (1.6)

where c is a constant, c 6= ±1. There, it is assumed that: For each t, g(t, x) is non-decreasing,
xg(t, x) > 0 when x 6= 0; and for a fixed x0 > 0, it is assumed that

∫∞
0 sm−1g(s, x0) ds < ∞.

Note that (H3) below is less restrictive than these assumptions. Rath [11] studied the non-linear
non-homogeneous equation

dm−1

dtm−1

[
r1(t)

[
x(t) + p(t)x(τ(t))

]′]
+ q(t)G(x(h(t))) = f(t) . (1.7)

In the above references, p(t) is not allowed to oscillate around the values p = 0,−1,+1. However,
Rath [11] found a non-oscillatory solution for (1.7) when p(t) = ±1 and τ is increasing. There it is
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assumed that r2 = · · · = rm = 1 and
∫∞

0 1/r1(t) dt < ∞. We do not assume these conditions for
(1.1) and replace q(t)G((x(h(t))) in (1.7) with a distributed delay.

Note that the Stieltjes integral allows the delay in (1.1) to include the delays in (1.2)–(1.7). Also
note that an appropriate choice of the variable delays τ and δ, allows (1.1) to be an ordinary, an
advanced, a retarded, or a neutral differential equation.

2 Results

By a solution, we mean a function x ∈ C([t0,+∞),R) such that x(t) + p(t)x(τ(t)) is m times
continuous differentiable and satisfies (1.1) for t ≥ t0. We assume that an initial condition for (1.1)
is available; i.e., a function φ defined on a sufficiently large interval [−t∗, t0], where x(t) = φ(t).

A solution is said to be oscillatory if it has zeros of arbitrarily large value; otherwise the solution
is non-oscillatory.

In this article, we use the following assumptions.

(H1) The delay τ(t) is m times continuous differentiable and limt→∞ τ(t) =∞.

(H2) The delay δ is in C([0,∞)× [a, b],R) and satisfies

lim
t→∞

min
a≤ξ≤b

δ(t, ξ) =∞.

(H3) The nonlinearity g satisfies g(t, ξ, 0) = 0 and the Lipschitz condition

|g(t, ξ, x)− g(t, ξ, y)| ≤ K(t, ξ)|x− y|,

for all t ≥ 0, all ξ ∈ [a, b], and all x, y in some interval [−M0,M0]. Furthermore, we assume
that ∫ ∞

0

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

∫ b

a
K(sn, ξ) dµ(ξ) dsn · · · ds1 <∞. (2.1)

(H4) The right-hand side of (1.1) satisfies∫ ∞
0

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

|f(sn)| dsn · · · ds1 <∞ . (2.2)

Note that assumptions (H3) and (H4) reduce the effect that g and f have on the solution of (1.1), as
t→∞.

For simplicity of notation we define the operators

Lm[z](t) =
d

dt

(
rm−1(t)

d

dt

(
rm−2(t) · · · d

dt

(
r1(t)

d

dt
z(t)

)
· · ·
))
, (2.3)

L̂m[z](t) = (−1)m
∫ ∞
t

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

z(sn) dsn · · · ds1 . (2.4)
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Then (1.1) can be written as

Lm[x(t) + p(t)x(τ(t))] +

∫ b

a
g(t, ξ, x(δ(t, ξ))) dµ(ξ) = f(t) .

Note that Lm[L̂m[z]] = z.

In our first result p(t) can oscillate about zero, but within certain bounds.

Theorem 2.1 Assume (H1)–(H4) and that there exists a constant p1 such that |p(t)| ≤ p1 < 1/2
for all t ≥ 0. Then for each constant M in (0,M0(1− 2p1)/6], there exist a time t0 and a solution
of (1.1) satisfying

M ≤ x(t) ≤ 6M

1− 2p1
∀t ≥ t0 .

Also there exists a solution of (1.1) satisfying − 6M
1−2p1

≤ x(t) ≤ −M for all t ≥ t0.

Proof. Using (2.1), (2.2) and (2.3), we select t∗ ≥ 0 such that

L̂m
[ ∫ b

a
K(·, ξ) dµ(ξ)

]
(t∗) <

1− 2p1

3
, L̂m[|f(·)|](t∗) <

1− 2p1

3
. (2.5)

Then select a time t0 such that t∗ ≤ t0, t∗ ≤ τ(t), and t∗ ≤ δ(t, ξ)) for all t ≥ t0 and all ξ ∈ [a, b].

First we find a positive solution in the set of continuous functions

B1 = {x : M ≤ x(t) ≤ 6M

1− 2p1
for t ≥ t0} .

Note that this set is bounded, closed, convex, and complete under the supremum norm ‖x‖ =
supt≥t0 |x(t)|. As standard technique, we transform (1.1) into an integral equation, and define an
operator whose fixed points yield solutions of (1.1). Let

G1[x](t) =


G1[x](t0) if t < t0,

M(7−2p1)
2(1−2p1) − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .

Certainly G1[x](t) being the integral of continuous functions is a continuous. For each x in B1,
using that |p(t)| ≤ p1 < 1/2 and (2.5), we have

G1[x](t) ≤ M(7− 2p1)

2(1− 2p1)
+ p1

6M

1− 2p1
+

6M

(1− 2p1)

(1− 2p1)

3
+
M

2
=

6M

1− 2p1
,

G1[x](t) ≥ M(7− 2p1)

2(1− 2p1)
− p1

6M

1− 2p1
− 6M

(1− 2p1)

(1− 2p1)

3
− M

2
= M .

Therefore, G1 maps B1 into B1. For any two functions x1, x2 in B1, using that 0 ≤ p(t) ≤ p1 <
1/2 and (2.5), we have

|G1[x1](t)−G1[x2](t)| ≤ p1‖x1 − x2‖+
1− 2p1

3
‖x1 − x2‖ =

p1 + 1

3
‖x1 − x2‖ .
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Since p1 < 1/2, it follows that p1+1
3 < 1 and that G1 is a contraction mapping in the complete set

B1. Then there exists a function x in B1 such that G1[x] = x. Applying the operator Lm to this
equality, we show that x is a solution of (1.1).

Now we find a negative solution of (1.1) in the set

B2 = {x : − 6M

1− 2p1
≤ x(t) ≤ −M for t ≥ t0} .

Let

G2[x](t) =


G2[x](t0) if t < t0,

−M(7−2p1)
2(1−2p1) − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .

For each x in B2, using that 0 ≤ p(t) ≤ p1 < 1/2 and (2.5), we have

− 6M

1− 2p1
≤ G2[x](t) ≤ −M .

Therefore, G2 maps B2 into B2. For any two functions x1, x2 in B2, using that |p(t)| ≤ p1 < 1/2
and (2.5), we have

|G2[x1](t)−G2[x2](t)| ≤ p1 + 1

3
‖x1 − x2‖ .

Since p1 < 1/2, it follows that p1+1
3 < 1 and that G2 has a fixed point in B2, which is a solution of

(1.1). This completes the proof. �

Next we consider wider ranges for p(t), but p(t) can not approach ±1.

Theorem 2.2 Assume (H1)–(H4) and that one of the following two conditions is satisfied: 0 ≤
p(t) ≤ p2 < 1 for all t ≥ 0, or −1 < −p2 ≤ p(t) ≤ 0 for all t ≥ 0. Then for each constant M in
(0,M0(1− p2)/6], there exist a time t0 and a solution of (1.1) satisfying

M ≤ x(t) ≤ 6M

1− p2
∀t ≥ t0 .

Also there exists a solution of (1.1) satisfying − 6M
1−p2 ≤ x(t) ≤ −M for all t ≥ t0.

Proof. Using (2.1), we select t∗ ≥ 0 such that

L̂m
[ ∫ b

a
K(·, ξ) dµ(ξ)

]
(t∗) <

1− p2

3
, L̂m[|f(·)|](t∗) <

M

2
. (2.6)

Then t0 ≥ t∗ such that t∗ ≤ τ(t), and t∗ ≤ δ(t, ξ)) for all t ≥ t0 and all ξ ∈ [a, b].

First assume that 0 ≤ p(t) ≤ p2 < 1. We shall find a positive solution in the set

B3 = {x : M ≤ x(t) ≤ 6M

1− p2
for t ≥ t0} .
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Define the operator

G3[x](t) =


G3[x](t0) if t ≤ t0,
M(7+5p2)
2(1−p2) − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .

For each x in B3, using that 0 ≤ p(t) ≤ p2 < 1 and (2.6), we have

G3[x](t) ≤ M(7 + 5p2)

2(1− p2)
+ 0 +

6M

(1− p2)

(1− p2)

3
+
M

2
=

6M

1− p2
,

G3[x](t) ≥ M(7 + 5p2)

2(1− p2)
− p2

6M

1− p2
− 6M

(1− p2)

(1− p2)

3
− M

2
= M .

Therefore, G3 maps B3 into B3. For any two functions x1, x2 in B3, using that 0 ≤ p(t) ≤ p2 < 1
and (2.6), we have

|G3[x1](t)−G3[x2](t)| ≤ 2p2 + 1

3
‖x1 − x2‖ .

Since p2 < 1, it follows that 2p2+1
3 < 1 and that G3 is a contraction mapping in B3. Then there

exists a function x in such that G3 x = x. Computing n derivatives, we show that x is a solution of
(1.1).

Now assuming that 0 ≤ p(t) ≤ p2 < 1, we find a negative solution in the set

B4 = {x : − 6M

1− p2
≤ x(t) ≤ −M for t ≥ t0} .

Let

G4[x](t) =


G4[x](t0) if t ≤ t0,

−M(7+5p2)
2(1−p2) − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .

For each x in B4, using that 0 ≤ p(t) ≤ p2 < 1 and (2.6), we have

−M(2 + p2)

1− p2
≤ G4[x](t) ≤ −M .

Therefore, G4 maps B4 into B4. For any two functions x1, x2 in B4, using that 0 ≤ p(t) ≤ p2 < 1
and (2.5), we have

|G4[x1](t)−G4[x2](t)| ≤ 2p2 + 1

3
‖x1 − x2‖ .

Since p1 < 1, it follows that 2p2+1
3 < 1 and that G4 has a fixed point in B4, which is solution of

(1.1).

Now assuming that −1 < −p2 ≤ p(t) ≤ 0, we find a positive solution in the set

B5 = {x : M ≤ x(t) ≤ 6M

1− p2
for t ≥ t0} .

Define the operator

G5[x](t) =


G5[x](t0) if t ≤ t0,
7M
2 − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .
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For each x in B5, using that −1 < −p2 ≤ p(t) ≤ 0 and (2.6), we have

G5[x](t) ≤ 7M

2
+ p2

6M

1− p2
+

6M

(1− p2)

(1− p2)

3
+
M

2
=

6M

1− p2
,

G5[x](t) ≥ 7M

2
− p2

6M

1− p2
− 6M

(1− p2)

(1− p2)

3
− M

2
= M .

Therefore, G5 maps B5 into B5. For any two functions x1, x2 in B5, using that −1 < −p2 ≤
p(t) ≤ 0 and (2.6), we have

|G5[x1](t)−G5[x2](t)| ≤ 2p2 + 1

3
‖x1 − x2‖ .

Since p2 < 1, it follows that 2p2+1
3 < 1 and that G5 has a fixed point in B5, which is a solution of

(1.1).

Now assuming that −1 < −p2 ≤ p(t) ≤ 0, we find a negative solution in the set

B6 = {x : − 6M

1− p2
≤ x(t) ≤ −M for t ≥ t0} .

Let

G6[x](t) =


G6[x](t0) if t ≤ t0,

−7M
2 − p(t)x(τ(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(t) if t ≥ t0 .

For each x in B6, using that −1 < p2 ≤ p(t) ≤ 0 and (2.6), we have

− 6M

1− p2
≤ G6[x](t) ≤ −M .

Therefore,G6 mapsB6 intoB6. For any two functions x1, x2 inB6, using that−1 < p2 ≤ p(t) ≤ 0
and (2.6), we have

|G6[x1](t)−G6[x2](t)| ≤ 2p2 + 1

3
‖x1 − x2‖ .

Since p2 < 1, it follows that 2p2+1
3 < 1 and that G6 has a fixed point in B6, which is a solution of

(1.1). This completes the proof. �

Theorem 2.3 Assume (H1)–(H4), τ(t) is strictly increasing, and that one of the following two
conditions is satisfied: 1 < p3 ≤ p(t) ≤ p4 for all t ≥ 0, or−p4 ≤ p(t) ≤ −p3 < −1 for all t ≥ 0.
Then for each constant M in (0, M0(p3−1)

3(p4−1) ], there exist a time t0 and a solution of (1.1) satisfying

M ≤ x(t) ≤ 3Mp4

p3 − 1
∀t ≥ t0 .

Also there exists a solution of (1.1) satisfying −3M(p4−1)
p3−1 ≤ x(t) ≤ −M for all t ≥ t0.

Proof. Using (2.1), we select t∗ ≥ 0 such that

L̂m
[ ∫ b

a
K(·, ξ) dµ(ξ)

]
(t∗) <

p3 − 1

3
, L̂m[|f(·)|](t∗) <

M

2
. (2.7)
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Since τ(t) is strictly increasing and limt→∞ τ(t) = ∞, the function τ is invertible and
limt→∞ τ

−1(t) = ∞, Then we select t0 ≥ t∗, such that t∗ ≤ τ−1(t), and t∗ ≤ δ(t, ξ)) for all
t ≥ t0 and all ξ ∈ [a, b].

First assuming that 1 < p3 ≤ p(t) ≤ p4, we find a positive solution in the set

B7 = {x : M ≤ x(t) ≤ 3Mp4

p3 − 1
for t ≥ t0} .

Define the operator

G7[x](t) =


G7[x](t0) if t < t0,

1
p(τ−1(t))

[
M(2p4 + 3p4

p3−1 + 1
2)− x(τ−1(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(τ−1(t))

]
if t ≥ t0 .

For each x in B7, using that 1 < p3 ≤ p(t) ≤ p4 and (2.7), we have

M ≤ G7[x](t) ≤ 3Mp4

p3 − 1
.

Therefore, G7 maps B7 into B7. For any two functions x1, x2 in B7, using that 1 < p3 ≤ p(t) ≤ p4

and (2.7), we have

|G7[x1](t)−G7[x2](t)| ≤
( 2

3p3
+

1

3

)
‖x1 − x2‖ .

Since p3 > 1, it follows that 2
3p3

+ 1
3 < 1 and that G7 is a contraction mapping in B7. Then G7 has

a fixed point which is a solution of (1.1).

Now assuming that 1 < p3 ≤ p(t) ≤ p4, we find a negative solution in the set

B8 = {x : − 3Mp4

p3 − 1
≤ x(t) ≤ −M for t ≥ t0} .

Define the operator

G8[x](t) =


G8[x](t0) if t ≤ t0,

1
p(τ−1(t))

[
−M(2p4 + 3p4

p3−1 + 1
2)− x(τ−1(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(τ−1(t))

]
if t ≥ t0 .

For each x in B8, using that 1 < p3 ≤ p(t) ≤ p4 and (2.7), we have

− 3Mp4

p3 − 1
≤ G8[x](t) ≤ −M .

Therefore, G8 maps B8 into B8. For any two functions x1, x2 in B8, using that 1 < p3 ≤ p(t) ≤ p4

and (2.7), we have

|G8[x1](t)−G8[x2](t)| ≤
( 2

3p3
+

1

3

)
‖x1 − x2‖ .

Since p3 > 1, it follows that 2
3p3

+ 1
3 < 1 and that G8 is a contraction mapping in B8. Then G8 has

a fixed point which is a solution of (1.1).
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Now assuming that −p4 ≤ p(t) ≤ −p3 < −1, we find a positive solution in the set

B9 = {x : M ≤ x(t) ≤ 3Mp4

p3 − 1
for t ≥ t0} .

Define the operator

G9[x](t) =


G9[x](t0) if t ≤ t0,

1
p(τ−1(t))

[
−M(2p4 − 1

2)− x(τ−1(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(τ−1(t))

]
if t ≥ t0 .

For each x in B7, using that −p4 ≤ p(t) ≤ −p3 < −1 and (2.7), we have

M ≤ G9[x](t) ≤ 3Mp4

p3 − 1
.

Therefore, G9 maps B9 into B9. For any two functions x1, x2 in B9, using −p4 ≤ p(t) ≤ −p3 <
−1 and (2.7), we have

|G9[x1](t)−G9[x2](t)| ≤
( 2

3p3
+

1

3

)
‖x1 − x2‖ .

Since p3 > 1, it follows that 2
3p3

+ 1
3 < 1 and that G9 is a contraction mapping in B9. Then G9 has

a fixed point which is a solution of (1.1).

Now assuming that −p4 ≤ p(t) ≤ −p3 < −1, we find a negative solution in the set

B10 = {x : − 3Mp3

3p4 − 2p3 − 1
≤ x(t) ≤ −M for t ≥ t0} .

Define the operator

G10[x](t) =


G10[x](t0) if t ≤ t0,

1
p(τ−1(t))

[
M(p3 − 1

2 + p3(p3−1)
3p4−2p3−1) −

1
2)− x(τ−1(t))

−L̂m
[ ∫ b

a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(·)
]
(τ−1(t))

]
if t ≥ t0 .

For each x in B10, using −p4 ≤ p(t) ≤ −p3 < −1 and (2.7), we have

− 3Mp3

3p4 − 2p3 − 1
≤ G10[x](t) ≤ −M .

Therefore, G10 maps B10 into B10. For any two functions x1, x2 in B10, using −p4 ≤ p(t) ≤
−p3 < −1 and (2.7), we have

|G10[x1](t)−G10[x2](t)| ≤
( 2

3p3
+

1

3

)
‖x1 − x2‖ .

Since p3 > 1, it follows that 2
3p3

+ 1
3 < 1 and that G10 is a contraction mapping in B10. Then G10

has a fixed point which is a solution of (1.1). This completes the proof. �
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Next, we allow p(t) to reach ±1. However, p(t) must be constant. In this section, we follow the
strategy in [11] where they assumed that rm−2(t) = · · · = r2(t) = 1 and

∫∞
0 1/r1 <∞. We do not

assume these conditions here, and correct two of their mistakes, as explained below. The main tool
is the Schauder fixed point theorem that reads as follows: Let B be a closed, convex and non-empty
subset of a Banach space X . Let G : B → B be a continuous mapping such that G(B) is relatively
compact in X . Then G has at least one fixed point in B.

Under the assumption that τ is increasing (strictly increasing), its inverse τ−1 exists and is also
increasing. We define its iterated inverses as follows:

τ0 = t, τ−2(t) = τ−1
(
τ−1(t)

)
, τ−3(t) = τ−1

(
τ−1

(
τ−1(t)

))
, . . . .

First we claim that limt→∞ τ
−1(t) =∞. On the contrary suppose that there exists an upper bound,

α > τ−1(t) for all t ∈ R. Since τ is increasing, t = τ(τ−1(t)) < τ(α) for all t ∈ R, which is
a contradiction. Assuming that τ(t) < t for all t, since τ−1 is increasing, we have t < τ−1(t) <
τ−2(t) < . . . . Next we claim that

lim
i→∞

τ−i(t) =∞ .

On the contrary suppose that the sequence ti := τ−i(t) is bounded above. Then {ti} being increas-
ing, it converges to a finite number, limi→∞ ti = α <∞. Since τ is increasing, from the inequality
ti < τ−1(ti) < α, we have τ(ti) < ti < τ(α). In the limit, α = limi→∞ ti ≤ τ(α), which
contradicts τ(t) < t for all t.

Theorem 2.4 Assume (H1)–(H4), τ(t) is strictly increasing and τ(t) < t for all t ≥ 0. Then for
each constant M in (0,M0/3], there exist a time t0 and a solution of (1.1) with p(t) = 1 satisfying

M ≤ x(t) ≤ 3M ∀t ≥ t0 .

Also there exists a solution satisfying −3M ≤ x(t) ≤ −M for all t ≥ t0.

Under the additional assumptions

∞∑
i=1

∫ ∞
τ−i(0)

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

∫ b

a
K(sn, ξ) dµ(ξ) dsn · · · ds1 <∞, (2.8)

∞∑
i=1

∫ ∞
τ−i(0)

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

|f(sn)| dsn · · · ds1 <∞, (2.9)

there exists a solution of (1.1) with p(t) = −1 satisfyingM ≤ x(t) ≤ 3M for all t ≥ t0. Also there
exists a solution satisfying −3M ≤ x(t) ≤ −M for all t ≥ t0.

Proof. Since limt→∞ τ
−1(t) =∞, using (2.1) and (2.2), we select t∗ ≥ 0 such that

∞∑
i=1

∫ τ−2i(t∗)

τ−(2i−1)(t∗)

1

r1(s1)

∫ ∞
s1

· · ·
∫ ∞
sn−1

∫ b

a
K(sn, ξ) dµ(ξ) dsn · · · ds1 <

1

6
,

∞∑
i=1

∫ τ−2i(t∗)

τ−(2i−1)(t∗)

1

r1(s1)

∫ ∞
s1

· · ·
∫ ∞
sn−1

|f(sn)| dsn · · · ds1 <
M

2
,

Then we select t0 ≥ t∗, such that t∗ ≤ τ(t), and t∗ ≤ δ(t, ξ)) for all t ≥ t0 and all ξ ∈ [a, b].
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First we assume that p(t) = 1, we look for positive solutions in the set

B11 = {x : M ≤ x(t) ≤ 3M for t ≥ t0} .

Define the operator

G11[x](t) =


G11[x](t0) if t < t0,

2M −
∑∞

i=1

∫ τ−2i(t)

τ−(2i−1)(t)
1

r1(s1)

∫∞
s1
· · · 1

rsn−1 (sn−1)

×
∫∞
sn−1

[∫ b
a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1 if t ≥ t0 .

The assumption τ(t) < t guarantees the continuity of G11[x](t). If there is an open interval (t3, t4)
such that τ(t3) = t3 and τ(t) 6= t on this interval, then G11[x] can not be continuous at t3. This
detail was overlooked in [11, p. 11]

Clearly for all x ∈ B11, 2M −M ≤ G11[x](t) ≤ 2M +M . Next we show that G11(B11) is a
collection of equi-continuous functions.

For each ε > 0 and t1 ≥ t0, we need to find a δ > 0 (independent of x ∈ B11) such that
|G11[x](t)−G11[x](t1)| < ε for all t for which |t− t1| < δ.

From (2.1) and (2.2), select a t2 ≥ t0, such that
∞∑
i=1

∫ τ−2i(t2)

τ−(2i−1)(t2)

1

r1(s1)
· · ·
∫ b

a
3MK(sn, ξ) dµ(ξ) + |f(sn)

∣∣ dsn · · · ds1

≤
∫ ∞
τ−1(t2)

1

r1(s1)
· · ·
∫ b

a
3M K(sn, ξ) dµ(ξ) + |f(sn

∣∣ dsn · · · ds1 <
ε

4
.

Then |G11[x](t)−G11[x](t1)| < ε/2 for all t1, t ≥ t2 and all x ∈ B11.

Since limi→∞ τ
−i(t1) =∞, there exists an integer N such that t2 ≤ τ−2N (t1). Let

F̃ = sup
t0≤s1≤t2

1

r1(s1)

∫ ∞
s1

· · ·
∫ b

a
3MK(sn, ξ) dµ(ξ) + |f(sn)

∣∣ dsn · · · ds2 .

For t such that t1 ≤ t ≤ τ−1(t1), we have τ−1(t1) ≤ τ−1(t) ≤ τ−2(t1) and

|G11[x](t)−G11[x](t1)| ≤
N∑
i=1

∫ τ−(2i−1)(t)

τ−(2i−1)(t1)
F̃ +

ε

2
.

Using the continuity of τ−i there exists δi > 0 such that |t− t1| < δi implies∫ τ−(2i−1)(t)

τ−(2i−1)(t1)
F̃ <

ε

2N
.

For the case t < t1, we just reverse the roles of t and t1. By choosing δ = min{δi : 1 ≤ i ≤ N}, we
have the desired equi-continuity. Next by the Arzela-Ascoli theorem, the set G11(B11) is compact.
By the Schauder theorem there is a fixed point x in B11. For this fixed point we have

x(t) + x(τ(t)) = G11[x](t) +G11[x](τ(t))

= 4M −
∫ ∞
t

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

×
∫ ∞
sn−1

[ ∫ b

a
g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1
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Applying the operator Lm in both sides of this equation, we show that x is a solution to (1.1) with
p(t) = 1.

To show the existence of a negative solution, we use the set

B12 = {x : −3M ≤ x(t) ≤ −M for t ≥ t0} ,

and the operator

G12[x](t) =


G12[x](t0) if t < t0,

−2M −
∑∞

i=1

∫ τ−2i(t)

τ−(2i−1)(t)
1

r1(s1)

∫∞
s1
· · · 1

rsn−1 (sn−1)

×
∫∞
sn−1

[ ∫ b
a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1 if t ≥ t0 .

Next we set p(t) = −1. Note that if t ≥ t1, then
∫∞
τ−i(t) ≤

∫∞
τ−i(t1), as long as the integrand is

non-negative. If there is time t2 > 0 such that τ(t2) = t2, then τ−i(t2) ≤ t2 for all i. In this case
it is impossible to satisfy assumptions (2.8) and (2.9), and G13[x](t2) = ∞, as defined below. To
avid this difficulty, we assume that τ(t) < t for all t. This detail was overlooked in [11, p. 11].

Since the series in (2.8) and (2.9) converge, there is an integer N such that

∞∑
i=N

∫ ∞
τ−i(0)

1

r1(s1)

∫ ∞
s1

· · ·
∫ ∞
sn−1

∫ b

a
K(sn, ξ) dµ(ξ) dsn · · · ds1 <

1

6
,

∞∑
i=N

∫ ∞
τ−i)(0)

1

r1(s1)

∫ ∞
s1

· · ·
∫ ∞
sn−1

|f(sn)| dsn · · · ds1 <
M

2
,

Then we select t0 ≥ t∗, such that t∗ ≤ τ(t), and t∗ ≤ δ(t, ξ)) for all t ≥ t0 and all ξ ∈ [a, b]. We
will look for positive solutions in the set

B13 = {x : M ≤ x(t) ≤ 3M for t ≥ t0} .

Define the operator

G13[x](t) =


G13[x](t0) if t < t0,

2M −
∑∞

i=1

∫∞
τ−i(t)

1
r1(s1)

∫∞
s1
· · · 1

rsn−1 (sn−1)

×
∫∞
sn−1

[ ∫ b
a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1 if t ≥ t0 .

Clearly for all x ∈ B13, 2M −M ≤ G13[x](t) ≤ 2M + M . Next we show that G13(B13) is a
collection of equi-continuous functions.

From (2.8) and (2.9), select an integer N such that

∞∑
i=N

∫ ∞
τ−i(0)

1

r1(s1)

∫ ∞
s1

· · ·
∫ b

a
3MK(sn, ξ) dµ(ξ) + |f(sn)

∣∣ dsn · · · ds1 <
ε

2

Then for t ≥ t1 ≥ 0,

|G13[x](t)−G13[x](t1)| ≤
N∑
i=1

∫ τ−i(t)

τ−i(t1)

1

r1(s1)

∫ ∞
s1

· · · dsn · · · ds1 +
ε

2
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Using the continuity of τ−i there exists δi > 0 such that |t− t1| < δi implies∫ τ−i(t)

τ−i(t1)

1

r1(s1)

∫ ∞
s1

· · · dsn · · · ds1 <
ε

2N
.

For the case t < t1, we just reverse the roles of t and t1. By choosing δ = min{δi : 1 ≤ i ≤ N},
we have the equi-continuity of G13(B13). Next by the Arzela-Ascoli theorem, the set G13(B13) is
compact. By the Schauder theorem there is a fixed point x in B13. For this fixed point we have

x(t)− x(τ(t)) = G13[x](t)−G13[x](τ(t))

= −
∫ ∞
t

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

×
∫ ∞
sn−1

[ ∫ b

a
g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1

Applying the operator Lm in both sides of this equation, we show that x is a solution to (1.1) with
p(t) = −1.

To show the existence of a negative solution, we use the set

B14 = {x : −3M ≤ x(t) ≤ −M for t ≥ t0} ,

and the operator

G13[x](t) =


G13[x](t0) if t < t0,

−2M −
∑∞

i=1

∫∞
τ−i(t)

1
r1(s1)

∫∞
s1
· · · 1

rsn−1 (sn−1)

×
∫∞
sn−1

[∫ b
a g(·, ξ, x(δ(·, ξ))) dµ(ξ)− f(sn)

]
dsn · · · ds1 if t ≥ t0 .

This completes the proof. �

3 Dynamic and difference equations

In this section we extend the previous results to equations on times scales, and to a discrete version
of (1.1). First, we find non-oscillatory solutions to the dynamic equation(

rm−1(t)
(
· · ·
(
r1(t)

(
x(t) + p(t)x(τ(t))

)∆)∆
· · ·
)∆)∆

+

∫ b

a
g(t, ξ, x(δ(t, ξ) ∆ξ = f(t) ,

(3.1)

on a time scale T. This is, the variable t belongs to a non-empty closed subset T of real numbers.
We assume that supT = ∞, and that if T is right dense at a point t, then T is also right dense at
the points τ(t) and δ(t, ξ) for all ξ ∈ [a, b]. Derivatives are understood as Hilger derivatives (also
called ∆ derivatives); see the book by Bohner [2] for information about time scales.

We assume that the following functions are rd-continuous on their domains. f : T → R,
g : T× [a, b]×R×R→ R, p : T→ R, ri : T→ R, τ : T→ T and δ : T× [a, b]×R→ R. Also
we assume ri is positive and has m− i derivatives.

By a solution we mean a function x, from T to R, that satisfies (3.1) for all t in [t0,∞) ∩ T. To
state our results, assumptions (H1)–(H4) need some modifications:
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(H1’) The delay τ(t) is m times differentiable and limt→∞ τ(t) =∞.

(H2’) The delay δ is rd-continuous, and satisfies

lim
t→∞

min
a≤ξ≤b

δ(t, ξ) =∞.

(H3’) The nonlinearity g satisfies g(t, ξ, 0) = 0 and the Lipschitz condition

|g(t, ξ, x)− g(t, ξ, y)| ≤ K(t, ξ)|x− y|,

for all t ≥ 0, all ξ ∈ [a, b], and all x, y in some interval [−M0,M0]. Furthermore, we assume
that ∫ ∞

0

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

∫ b

a
K(sn, ξ) ∆ξ∆sn · · ·∆s1 <∞. (3.2)

(H4’) The right-hand side of (3.1) satisfies∫ ∞
0

1

r1(s1)

∫ ∞
s1

· · · 1

rsn−1(sn−1)

∫ ∞
sn−1

|f(sn)|∆sn · · ·∆s1 <∞ . (3.3)

The statements in Theorems 2.1 and 2.2 hold with obvious changes in notation. For Theorems
2.3 and 2.4, we need the additional assumption that if T is right dense at a point t, then T is right
dense at τ−1(t). Other than this, translating the previous results to time scales is a straight forward
process.

Next, we find non-oscillatory sequences that satisfy a discrete version of (1.1). Functions of t
are replaced by sequences with index n: x(t) by xn, p(t) by pn, and so on. Let ∆ be the forward
difference operator

∆xn = xn+1 − xn .
We consider the m-order difference equation

∆
(
rm−1,n∆

(
· · ·∆

(
r1,n∆

(
xn + pnxτ(n)

))
· · ·
))

+
b∑

ξ=a

g(n, ξ, xδ(n,ξ) = fn . (3.4)

where a, b,m, n, ξ are non-negative integers, f, g, p, x real-valued sequences. The delays are
integer-valued functions: τ : Z+ → Z, δ : Z+ × Z → Z that satisfy the assumptions stated below.
The coefficients ri,n are positive sequences, and the operator ∆ refers to the variable n. Note that
there are no differentiability conditions, and that assumptions (H1)–(H4) need some modifications:

(H1”) The delay τ satisfies limn→∞ τ(n) =∞.

(H2”) The delay δ satisfies limn→∞mina≤ξ≤b δ(n, ξ) =∞.

(H3”) The non linearity g satisfies g(n, ξ, 0) = 0 and the Lipschitz condition

|g(n, ξ, x)− g(n, ξ, y)| ≤ K(n, ξ)|x− y|,

for all n ≥ 0, all ξ ∈ [a, b], and all x, y in some interval [−M0,M0]. Furthermore, we assume
that

∞∑
s1=0

1

r1,s1

∞∑
s2=s1

· · · 1

rm−1,sm−1

∞∑
sm=sm−1

b∑
ξ=a

K(sm, ξ) <∞. (3.5)
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(H4”) The right-hand side of (3.4) satisfies

∞∑
s1=0

1

r1,s1

∞∑
s2=s1

· · · 1

rm−1,sm−1

∞∑
sm=sm−1

|f(sm)| <∞ . (3.6)

Translating the results in Theorems 2.1–2.4 to sequences satisfying (3.4) is straight forward
process.

Concluding remarks

We found non-oscillatory solutions for various ranges of the coefficient p(t), in particular when it
oscillates about zero. However, we are unable to obtain the same results when p(t) oscillates about
±1. This remains an open question.
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