NOTES ON GLOBAL ATTRACTORS FOR A CLASS OF SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

Cung The Anh*
Department of Mathematics, Hanoi National University of Education
136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
Le Thi Thuy ${ }^{\dagger}$
Faculty of Mathematics, Hanoi Electric Power University
235 Hoang Quoc Viet, Tu Liem, Hanoi, Vietnam

Received September 5, 2011, final version December 29, 2011

Accepted January 2, 2012

Communicated by Dinh Nho Hào

Abstract

We study the regularity and fractal dimension estimates of global attractors for a class of semilinear degenerate parabolic equations in bounded domains.

Keywords: semilinear degenerate parabolic equation; global attractor; regularity; dimension; asymptotic a priori estimate method.

2010 Mathematics Subject Classification: 35B41, 35K65, 35D05.

1 Introduction

The understanding of the asymptotic behavior of dynamical systems is one of the most important problems of modern mathematical physics. One way to attack the problem for a dissipative dynamical system is to consider its global attractor. A first question is to study the existence of a global attractor. Once a global attractor is obtained, a next natural question is to study the most important properties of the global attractor from its fractal/Hausdorff dimension and dependence on parameters to its regularity and modes determining. In the last decades, many authors have paid attention

[^0]to these problems and received many results for a large class of partial differential equations (see e.g. $[4,11]$ and references therein). However, to the best of our knowledge, little seems to be known for the asymptotic behavior of solutions to degenerate equations.

This work is a continuation of the paper [1] in which the authors proved the existence and upper semicontinuity of a global attractor in $L^{2}(\Omega)$ for the semigroup generated by the following semilinear degenerate parabolic equation with a variable, nonnegative coefficient, defined on a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$, with smooth boundary $\partial \Omega$,

$$
\begin{align*}
\frac{\partial u}{\partial t}-\operatorname{div}(\sigma(x) \nabla u)+f(u) & =g(x), x \in \Omega, t>0, \\
u(x, t) & =0, x \in \partial \Omega, t>0, \tag{1.1}\\
u(x, 0) & =u_{0}(x), x \in \Omega,
\end{align*}
$$

where the coefficient diffusion σ, the nonlinearity f, and the external force g satisfy the following conditions:
$\left(\mathcal{H}_{\alpha}\right) \sigma$ is a nonnegative measurable function such that $\sigma \in L_{\mathrm{loc}}^{1}(\Omega)$ and for some $\alpha \in$ $(0,2), \liminf _{x \rightarrow z}|x-z|^{-\alpha} \sigma(x)>0$ for every $z \in \bar{\Omega} ;$
(F) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function satisfying

$$
\begin{align*}
f(u) u & \geq C_{1}|u|^{p}-C_{0}, \\
\left|f^{\prime}(u)\right| & \leq C_{2}\left(1+|u|^{p-2}\right), \tag{1.2}\\
f^{\prime}(u) & \geq-C_{3},
\end{align*}
$$

for some $p \geq 2$, where $C_{0}, C_{1}, C_{2}, C_{3}$ are positive constants;
(G) $g \in L^{2}(\Omega)$.

Problem (1.1) can be derived as a simple model for neutron diffusion (feedback control of nuclear reactor) (see [6]); in this case u and σ stand for the neutron flux and neutron diffusion respectively. The assumption $\left(\mathcal{H}_{\alpha}\right)$ has a strong physical significance which is related to the existence of regions occupied by perfect insulators or perfect conductors [3, 7, 8]. The degeneracy of problem (1.1) is considered in the sense that the measurable, nonnegative diffusion coefficient $\sigma(\cdot)$, is allowed to have at most a finite number of (essential) zeroes at some points.

The long-time behavior of solutions to problem type (1.1) has been studied extensively in recent years (see e.g. [1, 2, 7, 8]). In particular, it is proved in [1] the existence of a global attractor in $L^{2}(\Omega)$ for the semigroup $S(t)$ generated by problem (1.1) by constructing a bounded absorbing set in $\mathcal{D}_{0}^{1}(\Omega, \sigma) \cap L^{p}(\Omega)$ and using the compactness of the embedding $\mathcal{D}_{0}^{1}(\Omega, \sigma) \hookrightarrow L^{2}(\Omega)$. The aim of this paper is to show that the global attractor obtained in [1] is in fact in $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$ and to estimate its fractal dimension. As we know, if the external force g is only in $L^{2}(\Omega)$, then solutions of problem (1.1) are at most in $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$ and have no higher regularity. Therefore, we cannot construct a bounded absorbing set in a more regular space, which is compactly embedded into $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$. To overcome the difficulty caused by the lack of compactness of the embeddings, we exploit the asymptotic a priori estimate method introduced in $[9,12]$ to show the asymptotic compactness of $S(t)$ in $L^{2 p-2}(\Omega)$ and $\mathcal{D}_{0}^{2}(\Omega, \sigma)$. As a result, we obtain the existence of global attractors in the spaces $L^{2 p-2}(\Omega)$ and $\mathcal{D}_{0}^{2}(\Omega, \sigma)$. These global attractors and the global
attractor obtained in [1] are of course the same object because the uniqueness of the global attractor of a semigroup. It is noticed that the obtained results seem to be optimal because any stationary to (1.1) belong to the global attractor and cannot belong to a smaller space than $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$ if the forcing term $g \in L^{2}(\Omega)$. Finally, under a stronger assumption of the external force g, we prove the boundedness of the global attractor in $L^{\infty}(\Omega)$, and we use this boundedness to show that the global attractor has a finite fractal dimension.

The rest of the paper is organized as follows. In Section 2, we recall some results on function spaces and global attractors which we will use. Section 3 is devoted to the proof of the existence of the global attractor in $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$ for the semigroup $S(t)$ generated by problem (1.1). In the last section, we give the estimates of the fractal dimension of the global attractor.

2 Preliminaries

2.1 Function spaces and operator

In order to study problem (1.1) we introduce some weighted spaces, namely $\mathcal{D}_{0}^{1}(\Omega, \sigma)$ and $\mathcal{D}_{0}^{2}(\Omega, \sigma)$, defined as the closures of $C_{0}^{\infty}(\Omega)$ with respect to the following norms

$$
\begin{aligned}
\|u\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)} & :=\left(\int_{\Omega} \sigma(x)|\nabla u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}, \\
\|u\|_{\mathcal{D}_{0}^{2}(\Omega, \sigma)} & :=\left(\int_{\Omega}|\operatorname{div}(\sigma(x) \nabla u)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}},
\end{aligned}
$$

respectively. They are Hilbert spaces with respect to the following scalar products

$$
\begin{aligned}
& (u, v)_{\mathcal{D}_{0}^{1}}:=\int_{\Omega} \sigma(x) \nabla u \nabla v \mathrm{~d} x, \\
& (u, v)_{\mathcal{D}_{0}^{2}}:=\int_{\Omega} \operatorname{div}(\sigma(x) \nabla u) \operatorname{div}(\sigma(x) \nabla v) \mathrm{d} x .
\end{aligned}
$$

It is known (see e.g. [2]) that the operator $A u:=-\operatorname{div}(\sigma(x) \nabla u)$ with the homogeneous Dirichlet boundary condition in Ω has a family $\left\{e_{n}\right\}_{n=1}^{\infty}$ of eigenvectors, which forms an orthonormal basis of $L^{2}(\Omega)$, and a sequence of eigenvalues $\left\{\lambda_{n}\right\}_{n \geq 1}$ such that $0<\lambda_{1} \leq \ldots \leq \lambda_{n} \leq \ldots$ and $\lambda_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$.

We recall some basic results of Caldiroli and Musina [3] related to the function space $\mathcal{D}_{0}^{1}(\Omega, \sigma)$.
Proposition 2.1 Assume that Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$, and σ satisfies $\left(\mathcal{H}_{\alpha}\right)$. Then the following embeddings hold:
(i) $\mathcal{D}_{0}^{1}(\Omega, \rho) \hookrightarrow L^{2_{\alpha}^{*}}(\Omega)$ continuously;
(ii) $\mathcal{D}_{0}^{1}(\Omega, \rho) \hookrightarrow L^{p}(\Omega)$ compactly if $p \in\left[1,2_{\alpha}^{*}\right)$, where $2_{\alpha}^{*}=\frac{2 N}{N-2+\alpha}$.

The following result follows directly from the definitions of the spaces $\mathcal{D}_{0}^{1}(\Omega, \sigma), \mathcal{D}_{0}^{2}(\Omega, \sigma)$ and the embedding $\mathcal{D}_{0}^{1}(\Omega, \sigma) \hookrightarrow L^{2}(\Omega)$ when σ satisfies $\left(\mathcal{H}_{\alpha}\right)$.

Proposition 2.2 Assume that Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$, and σ satisfies $\left(\mathcal{H}_{\alpha}\right)$. Then $\mathcal{D}_{0}^{2}(\Omega, \sigma) \hookrightarrow \mathcal{D}_{0}^{1}(\Omega, \sigma)$ continuously.

Proof. For any function $u \in C_{0}^{\infty}(\Omega)$, we have

$$
\begin{aligned}
\|u\|_{\mathcal{D}_{0}^{1}(\Omega)}^{2}=\int_{\Omega} \sigma|\nabla u|^{2} \mathrm{~d} x & =-\int_{\Omega} \operatorname{div}(\sigma \nabla u) u \mathrm{~d} x \\
& \leq\left(\int_{\Omega}|\operatorname{div}(\sigma \nabla u)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\Omega}|u|^{2} \mathrm{~d} x\right)^{1 / 2}=\|u\|_{\mathcal{D}_{0}^{2}(\Omega)}\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

Noting that $\|u\|_{L^{2}(\Omega)} \leq C\|u\|_{\mathcal{D}_{0}^{1}(\Omega)}$, where C is independent of u, we get the desired result.

2.2 Global attractors

We recall some results in [12] which will be used later.

Proposition 2.3 Let $\{S(t)\}_{t \geq 0}$ be a semigroup on $L^{r}(\Omega)$ and suppose that $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in $L^{r}(\Omega)$. Then for any $\epsilon>0$ and any bounded subset $B \subset L^{r}(\Omega)$, there exist two positive constants $T=T(B)$ and $M=M(\epsilon)$ such that

$$
\operatorname{meas}\left(\Omega\left(\left|S(t) u_{0}\right| \geq M\right)\right) \leq \epsilon
$$

for all $u_{0} \in B$ and $t \geq T$, where meas (e) denotes the Lebesgue measure of $e \subset \Omega$ and $\left.\Omega\left(\left|S(t) u_{0}\right| \geq M\right)\right):=\left\{x \in \Omega| |\left(S(t) u_{0}\right)(x) \mid \geq M\right\}$.

Definition 2.4 Let X be a Banach space. The semigroup $\{S(t)\}_{t \geq 0}$ on X is called norm-to-weak continuous on X iffor any $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X, x_{n} \rightarrow x$, and $t_{n} \geq 0, t_{n} \rightarrow t$, we have $S\left(t_{n}\right) x_{n} \rightharpoonup S(t) x$ in X.

The following result is useful for verifying that a semigroup is norm-to-weak continuous.

Proposition 2.5 Let X, Y be two Banach spaces and X^{*}, Y^{*} be their respective dual spaces. We also assume that X is a dense subspace of Y, the injection $i: X \rightarrow Y$ is continuous and its adjoint $i^{*}: Y^{*} \rightarrow X^{*}$ is densely injective. Let $\{S(t)\}_{t \geq 0}$ be a semigroup on X and Y, respectively, and assume furthermore that $S(t)$ is continuous or weak continuous on Y. Then $\{S(t)\}_{t \geq 0}$ is norm-to-weak continuous on X iff $\{S(t)\}_{t \geq 0}$ maps compact subsets of $X \times \mathbb{R}^{+}$into bounded subsets of X.

Theorem 2.6 Let $\{S(t)\}_{t \geq 0}$ be a norm-to-weak continuous semigroup on $L^{q}(\Omega)$, and be continuous or weak continuous on $L^{r}(\Omega)$ for some $r \leq q$, and have a global attractor in $L^{r}(\Omega)$. Then $\{S(t)\}_{t \geq 0}$ has a global attractor in $L^{q}(\Omega)$ if and only if
(i) $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in $L^{q}(\Omega)$;
(ii) for any $\epsilon>0$ and any bounded subset B of $L^{q}(\Omega)$, there exist positive constants $M=$ $M(\epsilon, B)$ and $T=T(\epsilon, B)$ such that

$$
\begin{equation*}
\int_{\Omega\left(\left|S(t) u_{0}\right| \geq M\right)}\left|S(t) u_{0}\right|^{q} \mathrm{~d} x<\epsilon \tag{2.1}
\end{equation*}
$$

for any $u_{0} \in B$ and $t \geq T$.

Definition 2.7 The semigroup $\{S(t)\}_{t \geq 0}$ is called satisfying Condition (C) in X if and only if for any bounded set B of X and for any $\epsilon>0$, there exist a positive constant t_{B} and a finitedimensional subspace X_{1} of X, such that $\left\{P S(t) x \mid x \in B, t \geq t_{B}\right\}$ is bounded and

$$
|(I-P) S(t) x| \leq \epsilon \text { for any } t \geq t_{B} \text { and } x \in B
$$

where $P: X \rightarrow X_{1}$ is the canonical projector.

Theorem 2.8 Let X be a Banach space and $\{S(t)\}_{t \geq 0}$ be a norm-to-weak continuous semigroup on X. Then $\{S(t)\}_{t \geq 0}$ has a global attractor in X provided that the following conditions hold:
(i) $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in X,
(ii) $\{S(t)\}_{t \geq 0}$ satisfies Condition (C) in X.

2.3 Fractal dimensions of global attractors

Definition 2.9 Let M be a compact set in a metric space X. Then its fractal dimension is defined by

$$
\operatorname{dim}_{f} M=\varlimsup_{\epsilon \rightarrow 0} \frac{\ln n(M, \epsilon)}{\ln (1 / \epsilon)}
$$

where $n(M, \epsilon)$ is the minimal number of closed balls of the radius ϵ which cover the set M.

The following result was given in [5].

Theorem 2.10 Assume that M is a compact set in a Hilbert space H. Let V be a continuous mapping in H such that $M \subset V(M)$. Assume that there exists a finite dimensional projector P in the space H such that

$$
\begin{align*}
&\left\|P\left(V u_{1}-V u_{2}\right)\right\|_{H} \leq l\left\|u_{1}-u_{2}\right\|_{H}, \quad u_{1}, u_{2} \in M \tag{2.2}\\
&\left\|(I-P)\left(V u_{1}-V u_{2}\right)\right\|_{H} \leq \delta\left\|u_{1}-u_{2}\right\|_{H}, u_{1}, u_{2} \in M \tag{2.3}
\end{align*}
$$

where $\delta<1$. We also assume that $l \geq 1-\delta$. Then the compact set M possesses a finite fractal dimension, specifically,

$$
\begin{equation*}
\operatorname{dim}_{f}(M) \leq \operatorname{dim} P \cdot \ln \frac{9 l}{1-\delta}\left(\ln \frac{2}{1+\delta}\right)^{-1} \tag{2.4}
\end{equation*}
$$

3 Regularity of the global attractor

In the paper [1] the authors constructed a continuous (nonlinear) semigroup $S(t): L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ associated to problem (1.1) as follows

$$
S(t) u_{0}:=u(t),
$$

where $u(t)$ is the unique weak solution of problem (1.1) with the initial datum u_{0}, and proved that the semigroup $S(t)$ possesses a compact connected global attractor $\mathcal{A}_{L^{2}}$ in $L^{2}(\Omega)$. In this section, we will show that the global attractor $\mathcal{A}_{L^{2}}$ is in fact in $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$.

3.1 Existence of a global attractor in $L^{2 p-2}(\Omega)$

Lemma 3.1 Assume that assumptions $\left(\mathcal{H}_{\alpha}\right)$, (F) and (\mathbf{G}) hold. Then for any bounded subset B in $L^{2}(\Omega)$, there exists a positive constant $T=T(B)$ such that

$$
\left\|u_{t}(s)\right\|_{L^{2}(\Omega)}^{2} \leq \rho_{1} \text { for any } u_{0} \in B \text { and } s \geq T
$$

where $u_{t}(s)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(S(t) u_{0}\right)\right|_{t=s}$ and ρ_{1} is a positive constant independent of B.
Proof. We give here some formal caculations, the rigorous proof is done by use of Galerkin approximations and Lemma 11.2 in [10]. More precisely, we first derive some a priori estimates for the approximate Galerkin solutions u_{m} of the form

$$
u_{m}(t)=\sum_{i=1}^{m} c_{i m}(t) w_{i}
$$

where $\left\{w_{i}\right\}_{i=1}^{\infty}$ is a basis of $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$. These solutions are smooth enough to justify the computations. Then we get the corresponding estimates for the solution u by taking limits and using Lemma 11.2 in [10].

By differentiating (1.1) in time and denoting $v=u_{t}$, we get

$$
\begin{equation*}
v_{t}-\operatorname{div}(\sigma(x) \nabla v)+f^{\prime}(u) v=0 \tag{3.1}
\end{equation*}
$$

Multiplying the above equality by v, integrating over Ω and using (\mathbf{F}), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} \sigma(x)|\nabla v|^{2} \mathrm{~d} x \leq C_{3}\|v\|_{L^{2}(\Omega)}^{2} \tag{3.2}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|v\|_{L^{2}(\Omega)}^{2} \leq 2 C_{3}\|v\|_{L^{2}(\Omega)}^{2} \tag{3.3}
\end{equation*}
$$

On the other hand, it is proved in [1] that there exist a constant R and a time $t_{0}\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}\right)$ such that

$$
\begin{equation*}
\|u(t)\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+\|u(t)\|_{L^{p}(\Omega)}^{p} \leq R \quad \text { for all } \quad t \geq t_{0}\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}\right) . \tag{3.4}
\end{equation*}
$$

Taking the inner product of (1.1) with u_{t}, we obtain

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+2 \int_{\Omega} F(u) \mathrm{d} x\right)=\int_{\Omega} g u_{t} \mathrm{~d} x \leq \frac{1}{2}\|g\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} \tag{3.5}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} f(\xi) \mathrm{d} \xi$, thus

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\|u\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+2 \int_{\Omega} F(u) \mathrm{d} x\right) \leq\|g\|_{L^{2}(\Omega)}^{2} \tag{3.6}
\end{equation*}
$$

Noting that from (F) we get that

$$
\begin{equation*}
C_{4}\left(|u|^{p}-1\right) \leq F(u) \leq C_{5}\left(|u|^{p}+1\right) \tag{3.7}
\end{equation*}
$$

Integrating (3.6) from t to $t+1$ and then using (3.7), we get

$$
\begin{equation*}
\int_{t}^{t+1}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} \leq\|g\|_{L^{2}(\Omega)}^{2}+2 C_{5}|\Omega|+\|u(t)\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+2 C_{5}\|u(t)\|_{L^{p}(\Omega)}^{p} \tag{3.8}
\end{equation*}
$$

Since (3.4), there exists a constant C_{6} which depends on $\|g\|_{L^{2}(\Omega)}, C_{4}, C_{5}$ and R such that

$$
\begin{equation*}
\int_{t}^{t+1}\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} \leq C_{6}, \text { for } t \geq t_{0}\left(\left\|u_{0}\right\|_{L^{2}(\Omega)}\right) \tag{3.9}
\end{equation*}
$$

Combining (3.3) with (3.9), and using the uniform Gronwall inequality, we deduce that

$$
\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2} \leq C\left(\|g\|_{L^{2}(\Omega)},|\Omega|\right)
$$

as t large enough. The proof is complete.

Lemma 3.2 The semigroup $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in $L^{2 p-2}(\Omega)$, i.e., there exists a positive constant $\rho_{2 p-2}$, such that for any bounded subset $B \subset L^{2}(\Omega)$, there is a number $T=$ $T(B) \geq 0$ such that

$$
\|u(t)\|_{L^{2 p-2}(\Omega)} \leq \rho_{2 p-2}, \text { for any } t \geq T, u_{0} \in B
$$

Proof. Taking $|u|^{p-2} u$ as a test function, we obtain

$$
\int_{\Omega}|u|^{p-2} u \cdot u_{t} \mathrm{~d} x+\int_{\Omega} \sigma(x)|\nabla u|^{2}|u|^{p-2} \mathrm{~d} x+\int_{\Omega} f(u)|u|^{p-2} u \mathrm{~d} x=\int_{\Omega} g|u|^{p-2} u \mathrm{~d} x
$$

Hence, using (1.2) and Cauchy's inequality, we obtain

$$
\begin{aligned}
& \int_{\Omega} \sigma(x)|\nabla u|^{2}|u|^{p-2} \mathrm{~d} x+C_{1} \int_{\Omega}|u|^{2 p-2} \mathrm{~d} x \\
\leq & C_{0} \int_{\Omega}|u|^{p-1} \mathrm{~d} x+\frac{1}{C_{1}} \int_{\Omega}|g|^{2} \mathrm{~d} x+\frac{C_{1}}{2} \int_{\Omega}|u|^{2 p-2} \mathrm{~d} x+\frac{1}{C_{1}} \int_{\Omega}\left|u_{t}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

Using Cauchy's inequality once again, we arrive at

$$
\frac{C_{1}}{4} \int_{\Omega}|u|^{2 p-2} \mathrm{~d} x \leq \frac{1}{C_{1}}\|g\|_{L^{2}(\Omega)}^{2}+\frac{1}{C_{1}} \int_{\Omega}\left|u_{t}\right|^{2} \mathrm{~d} x+C
$$

By Lemma 3.1, we can conclude that

$$
\int_{\Omega}|u(t)|^{2 p-2} \mathrm{~d} x \leq \rho_{2 p-2}, \text { for any } t \geq T, u_{0} \in B
$$

where $\rho_{2 p-2}$ depends only on $C_{0}, C_{1}, C_{2},\|g\|_{L^{2}(\Omega)}$.

We now derive some estimates for the time derivatives of u by the well-known bootstrap technique. These estimates are useful for establishing asymptotic a priori estimates in $L^{2 p-2}(\Omega)$.

Lemma 3.3 For any $2 \leq r<\infty$ and any bounded subset $B \subset L^{2}(\Omega)$, there exists a positive constant T, which depends on r and the L^{2}-norm of B, such that

$$
\int_{\Omega}\left|u_{t}(s)\right|^{r} \mathrm{~d} x \leq M \quad \text { for any } u_{0} \in B, s \geq T
$$

where the positive constant M depends on r but not on B, and $u_{t}(s)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(S(t) u_{0}\right)\right|_{t=s}$.

Proof. We prove by induction on $k(k=0,1,2, \ldots)$ the existence of T_{k}, depending on k and B, such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{t}(s)\right|^{2\left(\frac{N}{N-2+\alpha}\right)^{k}} \mathrm{~d} x \leq M_{k} \quad \text { for any } u_{0} \in B, s \geq T_{k} \tag{k}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{t+1}\left(\int_{\Omega}\left|u_{t}(s)\right|^{2\left(\frac{N}{N-2+\alpha}\right)^{k+1}} \mathrm{~d} x\right)^{\frac{N}{N-2+\alpha}} \mathrm{d} s \leq M_{k} \quad \text { for any } u_{0} \in B, s \geq T_{k} \tag{k}
\end{equation*}
$$

where M_{k} depends on k but not on B.
(i) Initialization of the induction $(k=0)$: The estimate $\left(A_{0}\right)$ has been proved in Lemma 3.1, while (B_{0}) can be derived by integrating (3.2) from t to $t+1$ and using the embedding $\mathcal{D}_{0}^{1}(\Omega, \sigma) \hookrightarrow$ $L^{\frac{2 N}{N-2+\alpha}}(\Omega)$.
(ii) The induction argument: Assume that $\left(A_{k}\right)$ and $\left(B_{k}\right)$ hold for k, and we prove that they are true for $k+1$.
By differentiating (1.1) in time and denoting $v=u_{t}$, we have

$$
\begin{equation*}
v_{t}-\operatorname{div}(\sigma(x) \nabla v)+f^{\prime}(u) v=0 \tag{3.10}
\end{equation*}
$$

Multiplying (3.10) by $|v|^{2\left(\frac{N}{N-2+\alpha}\right)^{k+1}-2} . v$ and integrating over Ω, we obtain

$$
\begin{equation*}
C \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}|v|^{2\left(\frac{N}{N-2+\alpha}\right)^{k+1}} \mathrm{~d} x+C \int_{\Omega} \sigma(x)\left|\nabla\left(v^{\left(\frac{N}{N-2+\alpha}\right)^{k+1}}\right)\right|^{2} \mathrm{~d} x \leq C_{3} \int_{\Omega}|v|^{2\left(\frac{N}{N-2+\alpha}\right)^{k+1}} \mathrm{~d} x \tag{3.11}
\end{equation*}
$$

where the constant C depends on the spatial dimension N and k. Using $\left(B_{k}\right)$ and the uniform Gronwall inequality, we infer from (3.11) that

$$
\begin{equation*}
\int_{\Omega}|v|^{2\left(\frac{N}{N-2+\alpha}\right)^{k+1}} \mathrm{~d} x \leq M_{k+1} \text { for any } t \geq T_{k} \tag{3.12}
\end{equation*}
$$

which shows that $\left(A_{k+1}\right)$ is true. For $\left(B_{k+1}\right)$, we integrate (3.11) from t to $t+1$ and use (3.12) to get

$$
\begin{equation*}
\int_{t}^{t+1} \int_{\Omega} \left\lvert\, \nabla\left(\left.v^{\left.\left(\frac{N}{N-2+\alpha}\right)^{k+1}\right)}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leq M_{k+1}\right.\right. \tag{3.13}
\end{equation*}
$$

Using the embedding $\mathcal{D}_{0}^{1}(\Omega, \sigma) \hookrightarrow L^{\frac{2 N}{N-2+\alpha}}(\Omega)$, we obtain

$$
\begin{align*}
\left(\int_{\Omega}|v|^{\left(\frac{N}{N-2+\alpha}\right)^{k+1} \frac{2 N}{N-2+\alpha}} \mathrm{d} x\right)^{\frac{N-2+\alpha}{N}} & =\left\|v^{\left(\frac{N}{N-2+\alpha}\right)^{k+1}}\right\|_{L^{\frac{2 N}{N-2+\alpha}(\Omega)}}^{2} \\
& \leq C\left\|\nabla v^{\left(\frac{N}{N-2+\alpha}\right)^{k+1}}\right\|_{L^{2}(\Omega)}^{2} \tag{3.14}
\end{align*}
$$

Combining (3.13) and (3.14), we deduce (B_{k+1}) immediately. Since $\frac{N}{N-2+\alpha}>1(N \geq 2)$, we have $r \leq 2\left(\frac{N}{N-2+\alpha}\right)^{k}$ provided that $k \leq \log _{\frac{N}{N-2+\alpha}} \frac{r}{2}$.

Lemma 3.4 For any $\epsilon>0$ and any bounded subset $B \subset L^{2}(\Omega)$, there exist $T \geq 0$ and $n_{\epsilon} \in \mathbb{N}$, such that

$$
\int_{\Omega}\left|v_{2}\right|^{2} \mathrm{~d} x \leq C \epsilon \quad \text { for any } u_{0} \in B
$$

provided that $t \geq T$ and $m \geq n_{\epsilon}$, where $v_{2}=\left(I-P_{m}\right) v=\left(I-P_{m}\right) u_{t}$ and the constant C is independent of B and ϵ.

Proof. Multiplying (3.10) by v_{2} and integrating over Ω, we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2}+\left\|v_{2}\right\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2} \leq \int_{\Omega}\left|f^{\prime}(u) v\right|\left|v_{2}\right| \mathrm{d} x
$$

Hence,

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2}+\lambda_{m}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega}\left|f^{\prime}(u) v\right|\left|v_{2}\right| \mathrm{d} x \tag{3.15}
\end{equation*}
$$

where λ_{m} is the $m^{\text {th }}$ eigenvalue of the operator $A u:=-\operatorname{div}(\sigma(x) \nabla u)$ in Ω. From (\mathbf{F}), Lemmas 3.2 and 3.3 , we have

$$
\begin{equation*}
\int_{\Omega}\left|f^{\prime}(u) v\right|^{2} \mathrm{~d} x \leq\left(\int_{\Omega}\left|f^{\prime}(u)\right|^{2\left(\frac{p-1}{p-2}\right)}\right)^{\frac{p-2}{p-1}}\left(\int_{\Omega}|v|^{2(p-1)}\right)^{\frac{1}{p-1}} \leq M_{0} \tag{3.16}
\end{equation*}
$$

for any $u_{0} \in B$ provided that $t \geq T$, where the constant M_{0} is independent of B and the constant T depends only on B and p. Therefore, we infer from (3.15) that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2}+\lambda_{m}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2} \leq C
$$

If $t \geq T$, the last inequality shows that

$$
\left\|v_{2}(t)\right\|_{L^{2}(\Omega)}^{2} \leq\left\|v_{2}(T)\right\|_{L^{2}(\Omega)}^{2} e^{-\lambda_{m}(t-T)}+\frac{C}{\lambda_{m}}\left(1-e^{-\lambda_{m}(t-T)}\right)
$$

This implies that the conclusion of the lemma is true provided that t and m are large enough.

Choosing $Y=L^{2}(\Omega), X=L^{2 p-2}(\Omega)$, by Proposition 2.5, we see that the semigroup $\{S(t)\}_{t \geq 0}$ is norm-to-weak continuous on $L^{2 p-2}(\Omega)$. Thus, by Theorem 2.6 , to prove the existence of a global attractor in $L^{2 p-2}(\Omega)$, we only need to prove the following

Lemma 3.5 For any $\epsilon>0$ and any bounded subset $B \subset L^{2}(\Omega)$, there exist positive constants $M=M(B, \epsilon)$ and $T=T(B, \epsilon)$ such that

$$
\int_{\Omega(|u(t)| \geq M)}|u(t)|^{2 p-2} \mathrm{~d} x \leq C \epsilon \quad \text { for any } u_{0} \in B \text { as } t \geq T
$$

where the constant C is independent of B and ϵ.

Proof. For any fixed $\epsilon>0$, by Lemma 2.3 and (F), there exist $M_{1}=M_{1}(B, \epsilon)>0$ and $T_{1}=$ $T_{1}(B, \epsilon)>0$, such that the following estimates are valid for any $u_{0} \in B$ and $t \geq T_{1}$:

$$
\begin{align*}
& \int_{\Omega\left(|u(t)| \geq M_{1}\right)}|g|^{2} \mathrm{~d} x<\epsilon \text { and } \operatorname{meas}\left(\left(\Omega|u(t)| \geq M_{1}\right)\right)<\epsilon, \\
& \int_{\Omega\left(|u(s)| \geq M_{1}\right)}\left|u_{t}(s)\right|^{2} \mathrm{~d} x<C \epsilon \quad \text { for } s \geq T_{1}, \tag{3.17}
\end{align*}
$$

and $f(s) \geq 0$ for any $s \geq M_{1}, f(s) \leq 0$ for any $s \leq-M_{1}$. Denote $\Omega_{M_{1}}=\Omega\left(u(t) \geq M_{1}\right)$ and $\Omega_{2 M_{1}}=\Omega\left(u(t) \geq 2 M_{1}\right)$. Multiplying (1.1) by $\left(u-M_{1}\right)_{+}^{p-2}\left(u-M_{1}\right)_{+}$, where

$$
\left(u-M_{1}\right)_{+}= \begin{cases}u-M_{1}, & u \geq M_{1} \\ 0, & u \leq M_{1}\end{cases}
$$

we have

$$
\begin{array}{r}
\int_{\Omega_{M_{1}}}\left(u-M_{1}\right)_{+}^{p-1} u_{t} \mathrm{~d} x+(p-1) \int_{\Omega_{M_{1}}} \sigma(x)\left(u-M_{1}\right)_{+}^{p-2}|\nabla u|^{2} \mathrm{~d} x+\int_{\Omega_{M_{1}}} f(u)\left(u-M_{1}\right)_{+}^{p-1} \mathrm{~d} x \\
\leq \int_{\Omega_{M_{1}}}|g|^{2} \mathrm{~d} x \int_{\Omega_{M_{1}}}\left(u-M_{1}\right)_{+}^{2 p-2} \mathrm{~d} x
\end{array}
$$

Hence and using (3.17), we have

$$
\int_{\Omega_{M_{1}}} f(u)\left(u-M_{1}\right)^{p-1} \mathrm{~d} x \leq C \epsilon
$$

Therefore, we have

$$
\begin{aligned}
\int_{\Omega_{2 M_{1}}} f(u) u^{p-1} \frac{1}{2^{p-1}} \mathrm{~d} x & \leq \int_{\Omega_{2 M_{1}}} f(u) u^{p-2}\left(1-\frac{M_{1}}{u}\right)^{p-1} \mathrm{~d} x \\
& \leq \int_{\Omega_{M_{1}}} f(u)\left(u-M_{1}\right)^{p-1} \mathrm{~d} x \leq C \epsilon
\end{aligned}
$$

Noticing that meas $\left(\Omega_{2 M_{1}}\right) \leq \epsilon$ and (\mathbf{F}), the above inequality implies that

$$
\begin{equation*}
\int_{\Omega_{2 M_{1}}} u^{2 p-2} \mathrm{~d} x \leq C \epsilon \text { as } t \geq T_{1} . \tag{3.18}
\end{equation*}
$$

Now taking $\left|\left(u+M_{1}\right)_{-}\right|^{p-2}\left(u+M_{1}\right)_{-}$as a test function, where

$$
\left(u+M_{1}\right)_{-}= \begin{cases}u+M_{1}, & u \geq-M_{1} \\ 0, & u \leq-M_{1}\end{cases}
$$

we have in the same in fashion as above that

$$
\begin{equation*}
\int_{\Omega\left(u(t) \leq-2 M_{1}\right)}|u(t)|^{2 p-2} \mathrm{~d} x \leq C \epsilon, \text { as } t \geq T_{1} . \tag{3.19}
\end{equation*}
$$

Combining (3.18) and (3.19), we have

$$
\int_{\Omega\left(|u(t)| \geq 2 M_{1}\right)}|u(t)|^{2 p-2} \mathrm{~d} x \leq C \epsilon, \text { for any } u_{0} \in B, t \geq T_{1} .
$$

This completes the proof.

Therefore, by Theorem 2.6, we have

Theorem 3.6 Under the conditions $\left(\mathcal{H}_{\alpha}\right)$, (\mathbf{F}) and (G), the semigroup $\{S(t)\}_{t \geq 0}$ generated by problem (1.1) has a global attractor $\mathcal{A}_{L^{2 p-2}}$ in $L^{2 p-2}(\Omega)$, that is, $\mathcal{A}_{L^{2 p-2}}$ is compact, invariant in $L^{2 p-2}(\Omega)$ and attracts every bounded set of $L^{2}(\Omega)$ in the topology of $L^{2 p-2}(\Omega)$.

3.2 Existence of a global attractor in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$

First, we show the existence of a bounded absorbing set in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$.

Lemma 3.7 The semigroup $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$, i.e., there exists a constant $\rho_{A}>0$ such that for any bounded subset $B \subset L^{2}(\Omega)$, there is a $T_{B}>0$ such that

$$
\|\operatorname{div}(\sigma(x) \nabla u(t))\|_{L^{2}(\Omega)} \leq \rho_{A}, \text { for any } t \geq T_{B}, u_{0} \in B
$$

Proof. Taking the L^{2}-inner product of (1.1) with $-\operatorname{div}(\sigma(x) \nabla u)$, we have

$$
\begin{aligned}
& \|\operatorname{div}(\sigma(x) \nabla u)\|_{L^{2}(\Omega)}^{2} \\
\leq & \int_{\Omega} u_{t} \operatorname{div}(\sigma(x) \nabla u) \mathrm{d} x+\int_{\Omega} f^{\prime}(u) \sigma(x)|\nabla u|^{2} \mathrm{~d} x-\int_{\Omega} g(x) \operatorname{div}(\sigma(x) \nabla u) \mathrm{d} x
\end{aligned}
$$

By the Hölder inequality and assumption (F) we have

$$
\begin{equation*}
\|\operatorname{div}(\sigma(x) \nabla u)\|_{L^{2}(\Omega)}^{2} \leq C\left(\left\|u_{t}\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+\|g\|_{L^{2}(\Omega)}^{2}\right) \tag{3.20}
\end{equation*}
$$

Hence, from Lemma 3.1 and the fact that $\{S(t)\}_{t \geq 0}$ has a bounded absorbing set in $\mathcal{D}_{0}^{1}(\Omega, \sigma)$, we have

$$
\|\operatorname{div}(\sigma(x) \nabla u(t))\|_{L^{2}(\Omega)} \leq \rho_{A}
$$

for t large enough. This completes the proof.

Let $\mathcal{K}(A)$ be the Kuratowski measure of noncompactness in $L^{2}(\Omega)$ of A defined by

$$
\mathcal{K}(A)=\inf \{\delta>0 \mid A \text { has a finite open cover of sets of diameter }<\delta\}
$$

We have the following lemma in [12].

Lemma 3.8 Assume $f($.$) satisfies conditions (F). Then for any subset A \subset L^{2 p-2}(\Omega)$, if $\mathcal{K}(A)<\epsilon$ in $L^{2 p-2}(\Omega)$, then we have

$$
\mathcal{K}(f(A))<C \epsilon \text { in } L^{2}(\Omega)
$$

where $f(A)=\{f(u) \mid u \in A\}$ and the constant C depends on the $L^{2 p-2}$-norm of A, the Lebesgue measure of Ω and the coefficients C_{0}, C_{1}, C_{2} in (\mathbf{F}).

Let $H_{m}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ in $L^{2}(\Omega)$, where $\left\{e_{j}\right\}_{j=1}^{\infty}$ are eigenvectors of the operator $A u=$ $-\operatorname{div}(\sigma(x) \nabla u)$ with the homogeneous Dirichlet boundary condition in Ω and $P_{m}: L^{2}(\Omega) \rightarrow H_{m}$ be the orthogonal projection. We now verify that $\{S(t)\}_{t \geq 0}$ satisfies Condition (C) in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$.

Lemma 3.9 For any $\epsilon>0$ and any bounded subset $B \subset L^{2}(\Omega)$, there exist $T=T(\epsilon, B) \geq 0$ and $n_{\epsilon} \in \mathbb{N}$, such that

$$
\int_{\Omega}\left|\left(I-P_{m}\right) \operatorname{div}(\sigma(x) \nabla u)\right|^{2} \mathrm{~d} x \leq \epsilon \text { for any } u_{0} \in B
$$

provided that $t \geq T$ and $m \geq n_{\epsilon}$.

Proof. Denoting $u_{2}=\left(I-P_{m}\right) u$, and multiplying (1.1) by $-\operatorname{div}\left(\sigma(x) \nabla u_{2}\right)$, we have

$$
\begin{aligned}
& \int_{\Omega}\left|\left(I-P_{m}\right) \operatorname{div}(\sigma(x) \nabla u)\right|^{2} \mathrm{~d} x \\
& \leq \int_{\Omega} u_{t} \operatorname{div}\left(\sigma(x) \nabla u_{2}\right) \mathrm{d} x+\int_{\Omega} f(u) \operatorname{div}\left(\sigma(x) \nabla u_{2}\right) \mathrm{d} x-\int_{\Omega} g(x) \operatorname{div}\left(\sigma(x) \nabla u_{2}\right) \mathrm{d} x
\end{aligned}
$$

By Cauchy's inequality, we have
$\int_{\Omega}\left|\left(I-P_{m}\right) \operatorname{div}(\sigma(x) \nabla u)\right|^{2} \mathrm{~d} x \leq \frac{1}{2} \int_{\Omega}\left|\left(I-P_{m}\right) u_{t}\right|^{2} \mathrm{~d} x+\int_{\Omega}|f(u)|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega}\left|\left(I-P_{m}\right) g\right|^{2} \mathrm{~d} x$.
From Lemmas 3.4 and 3.8, we have

$$
\int_{\Omega}\left|\left(I-P_{m}\right) \operatorname{div}(\sigma(x) \nabla u)\right|^{2} \mathrm{~d} x \leq \epsilon \text { for any } u_{0} \in B, t \geq T, m \geq n_{\epsilon}
$$

From Lemmas 3.7, 3.9 and Theorem 2.8, we obtain the following result.

Theorem 3.10 Assume conditions $\left(\mathcal{H}_{\alpha}\right)$, (\mathbf{F}) and (\mathbf{G}) hold. Then the semigroup $\{S(t)\}_{t \geq 0}$ generated by problem (1.1) has a global attractor $\mathcal{A}_{\mathcal{D}_{0}^{2}}$ in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$, that is, $\mathcal{A}_{\mathcal{D}_{0}^{2}}$ is compact, invariant in $\mathcal{D}_{0}^{2}(\Omega, \sigma)$ and attracts every bounded set of $L^{2}(\Omega)$ in the topology of $\mathcal{D}_{0}^{2}(\Omega, \sigma)$.

Remark 3.11 The global attractors $\mathcal{A}_{L^{2 p-2}}$ and $\mathcal{A}_{\mathcal{D}_{0}^{2}}$ obtained in Theorems 3.6 and 3.10 are of course the same object and are equal to the global attractor $\mathcal{A}_{L^{2}}$ obtained in [1]. From now on, we will denote by \mathcal{A} the global attractor of the semigroup associated to problem (1.1). In particular, we have that \mathcal{A} is a compact set in $L^{2 p-2}(\Omega) \cap \mathcal{D}_{0}^{2}(\Omega, \sigma)$ and is connected in $L^{2 p-2}(\Omega)$ and $\mathcal{D}_{0}^{2}(\Omega, \sigma)$.

4 Fractal dimension estimates of the global attractor

In this section, instead of (\mathbf{G}), we assume the external force g satisfies a stronger condition:
$\left(\mathbf{G}^{\prime}\right) g \in L^{\infty}(\Omega)$.

Lemma 4.1 Under conditions (\mathbf{F}) and $\left(\mathbf{G}^{\prime}\right)$, the global attractor \mathcal{A} is uniformly bounded in $L^{\infty}(\Omega)$.

Proof. We multiply the first equation in (1.1) by $(u-M)_{+}$and integrate over Ω, we get

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x+\int_{\Omega} \sigma(x)\left|\nabla(u-M)_{+}\right|^{2} \mathrm{~d} x+ & \int_{\Omega} f(u)(u-M)_{+} \mathrm{d} x \\
& =\int_{\Omega} g(u-M)_{+} \mathrm{d} x
\end{aligned}
$$

Using the embedding $\mathcal{D}_{0}^{1}(\Omega, \sigma) \subset L^{2}(\Omega)$, we deduce that

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x+\lambda \int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x \leq \int_{\Omega}(g-f(u))(u-M)_{+} \mathrm{d} x
$$

By hypothesis $(\mathbf{F}), f(u) \rightarrow+\infty$ as $u \rightarrow+\infty$, so we can choose M large enough such that $f(u) \geq\|g\|_{L^{\infty}(\Omega)}$ when $u \geq M$. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x+2 \lambda \int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x \leq 0
$$

By Gronwall's inequality, we have

$$
\int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x \leq e^{-2 \lambda t} \int_{\Omega}\left(u_{0}-M\right)^{2} \mathrm{~d} x \rightarrow 0 \text { as } t \rightarrow+\infty
$$

Since the attractor is bounded in $L^{2}(\Omega)$ and for any $v \in \mathcal{A}$ there exists a u_{0} such that $v=S(t) u_{0}$, we have

$$
\begin{equation*}
\int_{\Omega}(u-M)_{+}^{2} \mathrm{~d} x=0 \tag{4.1}
\end{equation*}
$$

for all $u \in \mathcal{A}$. Repeating the same step above, just taking $(u+M)_{-}$instead of $(u-M)_{+}$, we deduce that

$$
\begin{equation*}
\int_{\Omega}(u+M)_{-}^{2} \mathrm{~d} x=0 \tag{4.2}
\end{equation*}
$$

Taking into account the definitions of $(u-M)_{+}$and $(u+M)_{-}$(see the proof of Lemma 3.5), it follows from (4.1) and (4.2) that $|u(x)| \leq M$ for a.e. $x \in \Omega$, that is, $\|u\|_{L^{\infty}(\Omega)} \leq M$.

Theorem 4.2 Assume that assumptions $\left(\mathcal{H}_{\alpha}\right),(\mathbf{F})$ and (\mathbf{G}) hold. Then the global attractor \mathcal{A} of the semigroup associated to problem (1.1) possesses a finite fractal dimension in $L^{2}(\Omega)$, specifically,

$$
\operatorname{dim}_{f} \mathcal{A} \leq m \ln \frac{9 e^{C_{3}}}{1-\delta}\left(\ln \frac{2}{1+\delta}\right)^{-1}
$$

where $\delta=e^{-2 \lambda_{m}}+\frac{C}{C_{3}+\lambda_{m}}$ for some $C>0$ and m is large enough such that $\delta<1$.

Proof. Let $u_{01}, u_{02} \in \mathcal{A}$ arbitrary, and let $u_{1}(t)=S(t) u_{01}$ and $u_{2}(t)=S(t) u_{02}$ be solutions to problem (1.1) with initial data u_{01}, u_{02}. Since $S(t) \mathcal{A}=\mathcal{A}$ for all $t \geq 0$ and, by Lemma 4.1, \mathcal{A} is a bounded set in $L^{\infty}(\Omega)$, there exists $M>0$ such that

$$
\begin{equation*}
\left\|u_{i}(t)\right\|_{L^{\infty}(\Omega)} \leq M, i=1,2, \text { for all } t \geq 0 \tag{4.3}
\end{equation*}
$$

Putting $w(t)=u_{1}(t)-u_{2}(t)$, from (1.1) we have

$$
\begin{equation*}
w_{t}-\operatorname{div}(\sigma(x) \nabla w)+f\left(u_{1}\right)-f\left(u_{2}\right)=0 \tag{4.4}
\end{equation*}
$$

Taking the inner product of (4.4) with $w(t)$ in $L^{2}(\Omega)$, we get

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|w\|_{L^{2}(\Omega)}^{2}+\|w\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+\left(f\left(u_{1}\right)-f\left(u_{2}\right), w\right)=0
$$

Using hypothesis (\mathbf{F}), in particular, we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|w\|_{L^{2}(\Omega)}^{2} \leq 2 C_{3}\|w\|_{L^{2}(\Omega)}^{2},
$$

hence,

$$
\|w(t)\|_{L^{2}(\Omega)}^{2} \leq e^{2 C_{3} t}\|w(0)\|_{L^{2}(\Omega)}^{2}
$$

Let $w(t)=w_{1}(t)+w_{2}(t)$, where $w_{1}(t)$ is the projection of $w(t)$ in $P_{m} L^{2}(\Omega)$, then

$$
\begin{equation*}
\left\|w_{1}(t)\right\|_{L^{2}(\Omega)}^{2} \leq e^{2 C_{3} t}\|w(0)\|_{L^{2}(\Omega)}^{2} . \tag{4.5}
\end{equation*}
$$

On the other hand, taking the inner product of (4.4) with $w_{2}(t)$ in $L^{2}(\Omega)$, we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|w_{2}\right\|_{L^{2}(\Omega)}^{2}+\left\|w_{2}\right\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2}+\left(f\left(u_{1}\right)-f\left(u_{2}\right), w_{2}\right)=0
$$

Since

$$
\begin{aligned}
\left|\int_{\Omega}\left(f\left(u_{1}\right)-f\left(u_{2}\right)\right) w_{2} \mathrm{~d} x\right| & \leq \int_{\Omega}\left|f^{\prime}\left(u_{1}+\theta\left(u_{2}-u_{1}\right)\right)\right||w|\left|w_{2}\right| \mathrm{d} x \\
& \leq C \int_{\Omega}\left(1+\left|u_{1}\right|^{p-2}+\left|u_{2}\right|^{p-2}\right)|w|\left|w_{2}\right| \mathrm{d} x \\
& \leq C\left\|w_{2}\right\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)}\left(1+\left\|u_{1}\right\|_{L^{\infty}(\Omega)}^{p-2}+\left\|u_{2}\right\|_{L^{\infty}(\Omega)}^{p-2}\right) \\
& \leq C\|w\|_{L^{2}(\Omega)}^{2} \text { because }\left\|u_{i}\right\|_{L^{\infty}(\Omega)} \leq M, i=1,2
\end{aligned}
$$

and $\left\|w_{2}\right\|_{\mathcal{D}_{0}^{1}(\Omega, \sigma)}^{2} \geq \lambda_{m}\left\|w_{2}\right\|_{L^{2}(\Omega)}^{2}$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|w_{2}\right\|_{L^{2}(\Omega)}^{2}+2 \lambda_{m}\left\|w_{2}\right\|_{L^{2}(\Omega)}^{2} \leq C\|w\|_{L^{2}(\Omega)}^{2}
$$

Hence, using Gronwall's inequality we have

$$
\begin{align*}
\left\|w_{2}(t)\right\|_{L^{2}(\Omega)}^{2} & \leq e^{-2 \lambda_{m} t}\left\|w_{2}(0)\right\|_{L^{2}(\Omega)}^{2}+C e^{-2 \lambda_{m} t} \int_{0}^{t} e^{2 \lambda_{m} s}\|w(s)\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s \\
& \leq e^{-2 \lambda_{m} t}\left\|w_{2}(0)\right\|_{L^{2}(\Omega)}^{2}+C e^{-2 \lambda_{m} t} \int_{0}^{t} e^{2 \lambda_{m} s} e^{2 C_{3} s}\|w(0)\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s \\
& \leq\left(e^{-2 \lambda_{m} t}+\frac{C e^{2 C_{3} t}}{\lambda_{m}+C_{3}}\right)\|w(0)\|_{L^{2}(\Omega)}^{2} . \tag{4.6}
\end{align*}
$$

From (4.5) and (4.6), in particular, we have

$$
\left\|w_{1}(1)\right\|_{L^{2}(\Omega)}^{2} \leq e^{2 C_{3}}\|w(0)\|_{L^{2}(\Omega)}^{2}, \quad\left\|w_{2}(1)\right\|_{L^{2}(\Omega)}^{2} \leq \delta\|w(0)\|_{L^{2}(\Omega)}^{2}
$$

where $\delta=e^{-2 \lambda_{m}}+\frac{C}{\lambda_{m}+C_{3}}<1$ if m is sufficiently large. Now, applying Theorem 2.8 with $M=\mathcal{A}$, $V=S(1), l=e^{2 C_{3}}$, and δ as above, we get the desired result.

Acknowledgements.

This work was supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED), Project 101.01-2010.05.

References

[1] C. T. Anh, N. D. Binh and L. T. Thuy, On the global attractors for a class of semilinear degenerate parabolic equations. Annales Polonici Mathematici 98 (2010), 71-89.
[2] C. T. Anh and P. Q. Hung, Global existence and long-time behavior of solutions to a class of degenerate parabolic equations. Annales Polonici Mathematici 93 (2008), 217-230.
[3] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem. Nonlinear Differential Equations and Applications 7 (2000), 187-199.
[4] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications 49, American Mathematical Society, Providence, RI, 2002.
[5] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative System. ACTA Scientific Publishing House, 1999.
[6] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. I: Physical origins and classical methods. Springer-Verlag, Berlin, 1985.
[7] N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation. Zeitschrift für angewandte Mathematik und Physik 56 (2005), 1130.
[8] N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence. Calculus of Variations and Partial Differential Equations 25 (2006), 361-393.
[9] Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications. Indiana University Mathematics Journal 51 (2002), 1541-1559.
[10] J. C. Robinson, Infinite-Dimensional Dynamical Systems. Cambridge University Press, 2001.
[11] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. 2nd edition, Springer-Verlag, 1997.
[12] C. K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. Journal of Differential Equations 15 (2006), 367-399.

[^0]: *e-mail address: anhctmath@hnue.edu.vn
 ${ }^{\dagger}$ e-mail address: thuylephuong@gmail.com

