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1 Introduction

The understanding of the asymptotic behavior of dynamical systems is one of the most important
problems of modern mathematical physics. One way to attack the problem for a dissipative dynam-
ical system is to consider its global attractor. A first question is to study the existence of a global
attractor. Once a global attractor is obtained, a next natural question is to study the most important
properties of the global attractor from its fractal/Hausdorff dimension and dependence on parame-
ters to its regularity and modes determining. In the last decades, many authors have paid attention
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to these problems and received many results for a large class of partial differential equations (see
e.g. [4, 11] and references therein). However, to the best of our knowledge, little seems to be known
for the asymptotic behavior of solutions to degenerate equations.

This work is a continuation of the paper [1] in which the authors proved the existence and upper
semicontinuity of a global attractor in L2(Ω) for the semigroup generated by the following semi-
linear degenerate parabolic equation with a variable, nonnegative coefficient, defined on a bounded
domain Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω,

∂u

∂t
− div(σ(x)∇u) + f(u) = g(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where the coefficient diffusion σ, the nonlinearity f , and the external force g satisfy the following
conditions:

(Hα) σ is a nonnegative measurable function such that σ ∈ L1
loc(Ω) and for some α ∈

(0, 2), lim inf
x→z

|x− z|−ασ(x) > 0 for every z ∈ Ω;

(F) f : R→ R is a C1-function satisfying

f(u)u ≥ C1|u|p − C0,

|f ′(u)| ≤ C2(1 + |u|p−2),

f ′(u) ≥ −C3,

(1.2)

for some p ≥ 2, where C0, C1, C2, C3 are positive constants;

(G) g ∈ L2(Ω).

Problem (1.1) can be derived as a simple model for neutron diffusion (feedback control of
nuclear reactor) (see [6]); in this case u and σ stand for the neutron flux and neutron diffusion re-
spectively. The assumption (Hα) has a strong physical significance which is related to the existence
of regions occupied by perfect insulators or perfect conductors [3, 7, 8]. The degeneracy of prob-
lem (1.1) is considered in the sense that the measurable, nonnegative diffusion coefficient σ(·), is
allowed to have at most a finite number of (essential) zeroes at some points.

The long-time behavior of solutions to problem type (1.1) has been studied extensively in recent
years (see e.g. [1, 2, 7, 8]). In particular, it is proved in [1] the existence of a global attractor in
L2(Ω) for the semigroup S(t) generated by problem (1.1) by constructing a bounded absorbing set
inD1

0(Ω, σ)∩Lp(Ω) and using the compactness of the embeddingD1
0(Ω, σ) ↪→ L2(Ω). The aim of

this paper is to show that the global attractor obtained in [1] is in fact in L2p−2(Ω)∩D2
0(Ω, σ) and to

estimate its fractal dimension. As we know, if the external force g is only in L2(Ω), then solutions
of problem (1.1) are at most in L2p−2(Ω) ∩ D2

0(Ω, σ) and have no higher regularity. Therefore, we
cannot construct a bounded absorbing set in a more regular space, which is compactly embedded
into L2p−2(Ω) ∩ D2

0(Ω, σ). To overcome the difficulty caused by the lack of compactness of the
embeddings, we exploit the asymptotic a priori estimate method introduced in [9, 12] to show the
asymptotic compactness of S(t) in L2p−2(Ω) and D2

0(Ω, σ). As a result, we obtain the existence
of global attractors in the spaces L2p−2(Ω) and D2

0(Ω, σ). These global attractors and the global
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attractor obtained in [1] are of course the same object because the uniqueness of the global attractor
of a semigroup. It is noticed that the obtained results seem to be optimal because any stationary to
(1.1) belong to the global attractor and cannot belong to a smaller space than L2p−2(Ω)∩D2

0(Ω, σ)
if the forcing term g ∈ L2(Ω). Finally, under a stronger assumption of the external force g, we
prove the boundedness of the global attractor in L∞(Ω), and we use this boundedness to show that
the global attractor has a finite fractal dimension.

The rest of the paper is organized as follows. In Section 2, we recall some results on function
spaces and global attractors which we will use. Section 3 is devoted to the proof of the existence of
the global attractor in L2p−2(Ω)∩D2

0(Ω, σ) for the semigroup S(t) generated by problem (1.1). In
the last section, we give the estimates of the fractal dimension of the global attractor.

2 Preliminaries

2.1 Function spaces and operator

In order to study problem (1.1) we introduce some weighted spaces, namelyD1
0(Ω, σ) andD2

0(Ω, σ),
defined as the closures of C∞0 (Ω) with respect to the following norms

‖u‖D1
0(Ω,σ) :=

(∫
Ω

σ(x) |∇u|2 dx

) 1
2

,

‖u‖D2
0(Ω,σ) :=

(∫
Ω

| div(σ(x)∇u)|2 dx

) 1
2

,

respectively. They are Hilbert spaces with respect to the following scalar products

(u, v)D1
0

:=

∫
Ω

σ(x)∇u∇v dx,

(u, v)D2
0

:=

∫
Ω

div(σ(x)∇u) div(σ(x)∇v) dx.

It is known (see e.g. [2]) that the operator Au := −div(σ(x)∇u) with the homogeneous
Dirichlet boundary condition in Ω has a family {en}∞n=1 of eigenvectors, which forms an orthonor-
mal basis of L2(Ω), and a sequence of eigenvalues {λn}n≥1 such that 0 < λ1 ≤ . . . ≤ λn ≤ . . .
and λn → +∞ as n→ +∞.

We recall some basic results of Caldiroli and Musina [3] related to the function spaceD1
0(Ω, σ).

Proposition 2.1 Assume that Ω is a bounded domain in RN (N ≥ 2), and σ satisfies (Hα). Then
the following embeddings hold:

(i) D1
0(Ω, ρ) ↪→ L2∗α(Ω) continuously;

(ii) D1
0(Ω, ρ) ↪→ Lp(Ω) compactly if p ∈ [1, 2∗α), where 2∗α = 2N

N−2+α .
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The following result follows directly from the definitions of the spaces D1
0(Ω, σ), D2

0(Ω, σ) and
the embedding D1

0(Ω, σ) ↪→ L2(Ω) when σ satisfies (Hα).

Proposition 2.2 Assume that Ω is a bounded domain in RN (N ≥ 2), and σ satisfies (Hα). Then
D2

0(Ω, σ) ↪→ D1
0(Ω, σ) continuously.

Proof. For any function u ∈ C∞0 (Ω), we have

‖u‖2D1
0(Ω) =

∫
Ω
σ|∇u|2 dx = −

∫
Ω

div(σ∇u)udx

≤
(∫

Ω
| div(σ∇u)|2 dx

)1/2(∫
Ω
|u|2 dx

)1/2
= ‖u‖D2

0(Ω) ‖u‖L2(Ω) .

Noting that ‖u‖L2(Ω) ≤ C ‖u‖D1
0(Ω), where C is independent of u, we get the desired result. �

2.2 Global attractors

We recall some results in [12] which will be used later.

Proposition 2.3 Let {S(t)}t≥0 be a semigroup on Lr(Ω) and suppose that {S(t)}t≥0 has a
bounded absorbing set in Lr(Ω). Then for any ε > 0 and any bounded subset B ⊂ Lr(Ω), there
exist two positive constants T = T (B) and M = M(ε) such that

meas(Ω(|S(t)u0| ≥M)) ≤ ε,

for all u0 ∈ B and t ≥ T , where meas(e) denotes the Lebesgue measure of e ⊂ Ω and
Ω(|S(t)u0| ≥M)) := {x ∈ Ω | |(S(t)u0)(x)| ≥M}.

Definition 2.4 Let X be a Banach space. The semigroup {S(t)}t≥0 on X is called norm-to-weak
continuous onX if for any {xn}∞n=1 ⊂ X , xn → x, and tn ≥ 0, tn → t, we have S(tn)xn ⇀ S(t)x
in X .

The following result is useful for verifying that a semigroup is norm-to-weak continuous.

Proposition 2.5 Let X,Y be two Banach spaces and X∗, Y ∗ be their respective dual spaces. We
also assume that X is a dense subspace of Y , the injection i : X → Y is continuous and its adjoint
i∗ : Y ∗ → X∗ is densely injective. Let {S(t)}t≥0 be a semigroup on X and Y , respectively, and
assume furthermore that S(t) is continuous or weak continuous on Y . Then {S(t)}t≥0 is norm-
to-weak continuous on X iff {S(t)}t≥0 maps compact subsets of X × R+ into bounded subsets of
X .

Theorem 2.6 Let {S(t)}t≥0 be a norm-to-weak continuous semigroup on Lq(Ω), and be contin-
uous or weak continuous on Lr(Ω) for some r ≤ q, and have a global attractor in Lr(Ω). Then
{S(t)}t≥0 has a global attractor in Lq(Ω) if and only if

(i) {S(t)}t≥0 has a bounded absorbing set in Lq(Ω);
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(ii) for any ε > 0 and any bounded subset B of Lq(Ω), there exist positive constants M =
M(ε, B) and T = T (ε, B) such that∫

Ω(|S(t)u0|≥M)
|S(t)u0|q dx < ε, (2.1)

for any u0 ∈ B and t ≥ T .

Definition 2.7 The semigroup {S(t)}t≥0 is called satisfying Condition (C) in X if and only if
for any bounded set B of X and for any ε > 0, there exist a positive constant tB and a finite-
dimensional subspace X1 of X , such that {PS(t)x|x ∈ B, t ≥ tB} is bounded and

|(I − P )S(t)x| ≤ ε for any t ≥ tB and x ∈ B,

where P : X → X1 is the canonical projector.

Theorem 2.8 Let X be a Banach space and {S(t)}t≥0 be a norm-to-weak continuous semigroup
on X . Then {S(t)}t≥0 has a global attractor in X provided that the following conditions hold:

(i) {S(t)}t≥0 has a bounded absorbing set in X ,

(ii) {S(t)}t≥0 satisfies Condition (C) in X .

2.3 Fractal dimensions of global attractors

Definition 2.9 Let M be a compact set in a metric space X . Then its fractal dimension is defined
by

dimfM = lim
ε→0

lnn(M, ε)

ln(1/ε)
,

where n(M, ε) is the minimal number of closed balls of the radius ε which cover the set M .

The following result was given in [5].

Theorem 2.10 Assume that M is a compact set in a Hilbert space H . Let V be a continuous
mapping in H such that M ⊂ V (M). Assume that there exists a finite dimensional projector P in
the space H such that

‖P (V u1 − V u2)‖H ≤ l‖u1 − u2‖H , u1, u2 ∈M, (2.2)

‖(I − P )(V u1 − V u2)‖H ≤ δ‖u1 − u2‖H , u1, u2 ∈M, (2.3)

where δ < 1. We also assume that l ≥ 1 − δ. Then the compact set M possesses a finite fractal
dimension, specifically,

dimf (M) ≤ dimP. ln
9l

1− δ
(

ln
2

1 + δ

)−1
. (2.4)
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3 Regularity of the global attractor

In the paper [1] the authors constructed a continuous (nonlinear) semigroup S(t) : L2(Ω)→ L2(Ω)
associated to problem (1.1) as follows

S(t)u0 := u(t),

where u(t) is the unique weak solution of problem (1.1) with the initial datum u0, and proved that
the semigroup S(t) possesses a compact connected global attractor AL2 in L2(Ω). In this section,
we will show that the global attractor AL2 is in fact in L2p−2(Ω) ∩ D2

0(Ω, σ).

3.1 Existence of a global attractor in L2p−2(Ω)

Lemma 3.1 Assume that assumptions (Hα), (F) and (G) hold. Then for any bounded subset B in
L2(Ω), there exists a positive constant T = T (B) such that

‖ut(s)‖2L2(Ω) ≤ ρ1 for any u0 ∈ B and s ≥ T,

where ut(s) = d
dt(S(t)u0)|t=s and ρ1 is a positive constant independent of B.

Proof. We give here some formal caculations, the rigorous proof is done by use of Galerkin appro-
ximations and Lemma 11.2 in [10]. More precisely, we first derive some a priori estimates for the
approximate Galerkin solutions um of the form

um(t) =
m∑
i=1

cim(t)wi,

where {wi}∞i=1 is a basis of L2p−2(Ω) ∩ D2
0(Ω, σ). These solutions are smooth enough to justify

the computations. Then we get the corresponding estimates for the solution u by taking limits and
using Lemma 11.2 in [10].

By differentiating (1.1) in time and denoting v = ut, we get

vt − div(σ(x)∇v) + f ′(u)v = 0. (3.1)

Multiplying the above equality by v, integrating over Ω and using (F), we obtain

1

2

d

dt
‖v‖2L2(Ω) +

∫
Ω
σ(x)|∇v|2 dx ≤ C3‖v‖2L2(Ω), (3.2)

hence,
d

dt
‖v‖2L2(Ω) ≤ 2C3‖v‖2L2(Ω). (3.3)

On the other hand, it is proved in [1] that there exist a constant R and a time t0(‖u0‖L2(Ω)) such
that

‖u(t)‖2D1
0(Ω,σ) + ‖u(t)‖pLp(Ω) ≤ R for all t ≥ t0(‖u0‖L2(Ω)). (3.4)

Taking the inner product of (1.1) with ut, we obtain

‖ut‖2L2(Ω)+
1

2

d

dt

(
‖u‖2D1

0(Ω,σ) + 2

∫
Ω
F (u) dx

)
=

∫
Ω
gut dx ≤ 1

2
‖g‖2L2(Ω)+

1

2
‖ut‖2L2(Ω), (3.5)
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where F (u) =
∫ u

0 f(ξ) dξ, thus

‖ut‖2L2(Ω) +
d

dt

(
‖u‖2D1

0(Ω,σ) + 2

∫
Ω
F (u) dx

)
≤ ‖g‖2L2(Ω). (3.6)

Noting that from (F) we get that

C4(|u|p − 1) ≤ F (u) ≤ C5(|u|p + 1). (3.7)

Integrating (3.6) from t to t+ 1 and then using (3.7), we get∫ t+1

t
‖ut‖2L2(Ω) ≤ ‖g‖

2
L2(Ω) + 2C5|Ω|+ ‖u(t)‖2D1

0(Ω,σ) + 2C5 ‖u(t)‖pLp(Ω). (3.8)

Since (3.4), there exists a constant C6 which depends on ‖g‖L2(Ω), C4, C5 and R such that∫ t+1

t
‖ut‖2L2(Ω) ≤ C6, for t ≥ t0(‖u0‖L2(Ω)) . (3.9)

Combining (3.3) with (3.9), and using the uniform Gronwall inequality, we deduce that

‖ut‖2L2(Ω) ≤ C(‖g‖L2(Ω), |Ω|),

as t large enough. The proof is complete. �

Lemma 3.2 The semigroup {S(t)}t≥0 has a bounded absorbing set in L2p−2(Ω), i.e., there exists
a positive constant ρ2p−2, such that for any bounded subset B ⊂ L2(Ω), there is a number T =
T (B) ≥ 0 such that

‖u(t)‖L2p−2(Ω) ≤ ρ2p−2, for any t ≥ T, u0 ∈ B.

Proof. Taking |u|p−2u as a test function, we obtain∫
Ω
|u|p−2u.ut dx+

∫
Ω
σ(x)|∇u|2|u|p−2 dx+

∫
Ω
f(u)|u|p−2udx =

∫
Ω
g|u|p−2udx.

Hence, using (1.2) and Cauchy’s inequality, we obtain∫
Ω
σ(x)|∇u|2|u|p−2 dx+ C1

∫
Ω
|u|2p−2 dx

≤ C0

∫
Ω
|u|p−1 dx+

1

C1

∫
Ω
|g|2 dx+

C1

2

∫
Ω
|u|2p−2 dx+

1

C1

∫
Ω
|ut|2 dx.

Using Cauchy’s inequality once again, we arrive at

C1

4

∫
Ω
|u|2p−2 dx ≤ 1

C1
‖g‖2L2(Ω) +

1

C1

∫
Ω
|ut|2 dx+ C.

By Lemma 3.1, we can conclude that∫
Ω
|u(t)|2p−2 dx ≤ ρ2p−2, for any t ≥ T, u0 ∈ B,

where ρ2p−2 depends only on C0, C1, C2, ‖g‖L2(Ω). �
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We now derive some estimates for the time derivatives of u by the well-known bootstrap tech-
nique. These estimates are useful for establishing asymptotic a priori estimates in L2p−2(Ω).

Lemma 3.3 For any 2 ≤ r < ∞ and any bounded subset B ⊂ L2(Ω), there exists a positive
constant T , which depends on r and the L2-norm of B, such that∫

Ω
|ut(s)|r dx ≤M for any u0 ∈ B, s ≥ T,

where the positive constant M depends on r but not on B, and ut(s) = d
dt(S(t)u0)|t=s.

Proof. We prove by induction on k (k = 0, 1, 2, . . . ) the existence of Tk, depending on k and B,
such that ∫

Ω
|ut(s)|2( N

N−2+α
)k dx ≤Mk for any u0 ∈ B, s ≥ Tk, (Ak)

and ∫ t+1

t

(∫
Ω
|ut(s)|2( N

N−2+α
)k+1

dx
) N
N−2+α

ds ≤Mk for any u0 ∈ B, s ≥ Tk, (Bk)

where Mk depends on k but not on B.

(i) Initialization of the induction (k = 0): The estimate (A0) has been proved in Lemma 3.1, while
(B0) can be derived by integrating (3.2) from t to t+ 1 and using the embedding D1

0(Ω, σ) ↪→
L

2N
N−2+α (Ω).

(ii) The induction argument: Assume that (Ak) and (Bk) hold for k, and we prove that they are
true for k + 1.
By differentiating (1.1) in time and denoting v = ut, we have

vt − div(σ(x)∇v) + f ′(u)v = 0. (3.10)

Multiplying (3.10) by |v|2( N
N−2+α

)k+1−2.v and integrating over Ω, we obtain

C
d

dt

∫
Ω
|v|2( N

N−2+α
)k+1

dx+ C

∫
Ω
σ(x)|∇(v( N

N−2+α
)k+1

)|2 dx ≤ C3

∫
Ω
|v|2( N

N−2+α
)k+1

dx ,

(3.11)
where the constant C depends on the spatial dimension N and k. Using (Bk) and the uniform
Gronwall inequality, we infer from (3.11) that∫

Ω
|v|2( N

N−2+α
)k+1

dx ≤Mk+1 for any t ≥ Tk , (3.12)

which shows that (Ak+1) is true. For (Bk+1), we integrate (3.11) from t to t+1 and use (3.12)
to get ∫ t+1

t

∫
Ω
|∇(v( N

N−2+α
)k+1

)|2 dx ds ≤Mk+1 . (3.13)

Using the embedding D1
0(Ω, σ) ↪→ L

2N
N−2+α (Ω), we obtain(∫

Ω
|v|(

N
N−2+α

)k+1 2N
N−2+α dx

)N−2+α
N

= ‖v( N
N−2+α

)k+1

‖2
L

2N
N−2+α (Ω)

≤ C ‖∇v( N
N−2+α

)k+1

‖
2

L2(Ω) . (3.14)
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Combining (3.13) and (3.14), we deduce (Bk+1) immediately. Since N
N−2+α > 1 (N ≥ 2),

we have r ≤ 2 ( N
N−2+α)k provided that k ≤ log N

N−2+α

r
2 .

�

Lemma 3.4 For any ε > 0 and any bounded subset B ⊂ L2(Ω), there exist T ≥ 0 and nε ∈ N,
such that ∫

Ω
|v2|2 dx ≤ Cε for any u0 ∈ B,

provided that t ≥ T and m ≥ nε, where v2 = (I − Pm) v = (I − Pm)ut and the constant C is
independent of B and ε.

Proof. Multiplying (3.10) by v2 and integrating over Ω, we have

1

2

d

dt
‖v2‖2L2(Ω) + ‖v2‖2D1

0(Ω,σ) ≤
∫

Ω
|f ′(u)v| |v2| dx .

Hence,
1

2

d

dt
‖v2‖2L2(Ω) + λm‖v2‖2L2(Ω) ≤

∫
Ω
|f ′(u)v| |v2|dx , (3.15)

where λm is the mth eigenvalue of the operator Au := −div(σ(x)∇u) in Ω. From (F), Lemmas
3.2 and 3.3, we have∫

Ω
|f ′(u)v|2 dx ≤

(∫
Ω
|f ′(u)|2( p−1

p−2
)
) p−2
p−1
(∫

Ω
|v|2(p−1)

) 1
p−1 ≤M0 (3.16)

for any u0 ∈ B provided that t ≥ T , where the constant M0 is independent of B and the constant
T depends only on B and p. Therefore, we infer from (3.15) that

d

dt
‖v2‖2L2(Ω) + λm ‖v2‖2L2(Ω) ≤ C .

If t ≥ T , the last inequality shows that

‖v2(t)‖2L2(Ω) ≤ ‖v2(T )‖2L2(Ω) e
−λm(t−T ) +

C

λm
(1− e−λm(t−T )) .

This implies that the conclusion of the lemma is true provided that t and m are large enough. �

Choosing Y = L2(Ω), X = L2p−2(Ω), by Proposition 2.5, we see that the semigroup
{S(t)}t≥0 is norm-to-weak continuous on L2p−2(Ω). Thus, by Theorem 2.6, to prove the exis-
tence of a global attractor in L2p−2(Ω), we only need to prove the following

Lemma 3.5 For any ε > 0 and any bounded subset B ⊂ L2(Ω), there exist positive constants
M = M(B, ε) and T = T (B, ε) such that∫

Ω(|u(t)|≥M)
|u(t)|2p−2 dx ≤ Cε for any u0 ∈ B as t ≥ T,

where the constant C is independent of B and ε.
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Proof. For any fixed ε > 0, by Lemma 2.3 and (F), there exist M1 = M1(B, ε) > 0 and T1 =
T1(B, ε) > 0, such that the following estimates are valid for any u0 ∈ B and t ≥ T1:∫

Ω(|u(t)|≥M1)
|g|2 dx < ε and meas((Ω|u(t)| ≥M1)) < ε,∫

Ω(|u(s)|≥M1)
|ut(s)|2 dx < Cε for s ≥ T1,

(3.17)

and f(s) ≥ 0 for any s ≥ M1, f(s) ≤ 0 for any s ≤ −M1. Denote ΩM1 = Ω(u(t) ≥ M1) and
Ω2M1 = Ω(u(t) ≥ 2M1). Multiplying (1.1) by (u−M1)p−2

+ (u−M1)+, where

(u−M1)+ =

{
u−M1 , u ≥M1 ,

0 , u ≤M1 ,

we have∫
ΩM1

(u−M1)p−1
+ ut dx+ (p− 1)

∫
ΩM1

σ(x)(u−M1)p−2
+ |∇u|2 dx+

∫
ΩM1

f(u)(u−M1)p−1
+ dx

≤
∫

ΩM1

|g|2 dx

∫
ΩM1

(u−M1)2p−2
+ dx .

Hence and using (3.17), we have∫
ΩM1

f(u)(u−M1)p−1 dx ≤ Cε.

Therefore, we have∫
Ω2M1

f(u)up−1 1

2p−1
dx ≤

∫
Ω2M1

f(u)up−2
(

1− M1

u

)p−1
dx

≤
∫

ΩM1

f(u)(u−M1)p−1 dx ≤ Cε.

Noticing that meas(Ω2M1) ≤ ε and (F), the above inequality implies that∫
Ω2M1

u2p−2 dx ≤ Cε as t ≥ T1. (3.18)

Now taking |(u+M1)−|p−2(u+M1)− as a test function, where

(u+M1)− =

{
u+M1, u ≥ −M1

0, u ≤ −M1,

we have in the same in fashion as above that∫
Ω(u(t)≤−2M1)

|u(t)|2p−2 dx ≤ Cε, as t ≥ T1. (3.19)

Combining (3.18) and (3.19), we have∫
Ω(|u(t)|≥2M1)

|u(t)|2p−2 dx ≤ Cε, for any u0 ∈ B, t ≥ T1.

This completes the proof. �
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Therefore, by Theorem 2.6, we have

Theorem 3.6 Under the conditions (Hα), (F) and (G), the semigroup {S(t)}t≥0 generated by
problem (1.1) has a global attractor AL2p−2 in L2p−2(Ω), that is, AL2p−2 is compact, invariant
in L2p−2(Ω) and attracts every bounded set of L2(Ω) in the topology of L2p−2(Ω).

3.2 Existence of a global attractor in D2
0(Ω, σ)

First, we show the existence of a bounded absorbing set in D2
0(Ω, σ).

Lemma 3.7 The semigroup {S(t)}t≥0 has a bounded absorbing set in D2
0(Ω, σ), i.e., there exists a

constant ρA > 0 such that for any bounded subset B ⊂ L2(Ω), there is a TB > 0 such that

‖div(σ(x)∇u(t))‖L2(Ω) ≤ ρA, for any t ≥ TB, u0 ∈ B.

Proof. Taking the L2-inner product of (1.1) with −div(σ(x)∇u), we have

‖ div(σ(x)∇u)‖2L2(Ω)

≤
∫

Ω
ut div(σ(x)∇u) dx+

∫
Ω
f ′(u)σ(x)|∇u|2 dx−

∫
Ω
g(x) div(σ(x)∇u) dx.

By the Hölder inequality and assumption (F) we have

‖ div(σ(x)∇u)‖2L2(Ω) ≤ C(‖ut‖2L2(Ω) + ‖u‖2D1
0(Ω,σ) + ‖g‖2L2(Ω)). (3.20)

Hence, from Lemma 3.1 and the fact that {S(t)}t≥0 has a bounded absorbing set in D1
0(Ω, σ), we

have
‖div(σ(x)∇u(t))‖L2(Ω) ≤ ρA

for t large enough. This completes the proof. �

Let K(A) be the Kuratowski measure of noncompactness in L2(Ω) of A defined by

K(A) = inf{δ > 0 | A has a finite open cover of sets of diameter < δ}.

We have the following lemma in [12].

Lemma 3.8 Assume f(.) satisfies conditions (F). Then for any subset A ⊂ L2p−2(Ω), if K(A) < ε
in L2p−2(Ω), then we have

K(f(A)) < C ε in L2(Ω),

where f(A) = {f(u) | u ∈ A} and the constant C depends on the L2p−2-norm of A, the Lebesgue
measure of Ω and the coefficients C0, C1, C2 in (F).

Let Hm = span{e1, e2, ..., em} in L2(Ω), where {ej}∞j=1 are eigenvectors of the operator Au =

−div(σ(x)∇u) with the homogeneous Dirichlet boundary condition in Ω and Pm : L2(Ω)→ Hm

be the orthogonal projection. We now verify that {S(t)}t≥0 satisfies Condition (C) in D2
0(Ω, σ).
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Lemma 3.9 For any ε > 0 and any bounded subset B ⊂ L2(Ω), there exist T = T (ε, B) ≥ 0 and
nε ∈ N, such that ∫

Ω
|(I − Pm) div(σ(x)∇u)|2 dx ≤ ε for any u0 ∈ B,

provided that t ≥ T and m ≥ nε.

Proof. Denoting u2 = (I − Pm)u, and multiplying (1.1) by −div(σ(x)∇u2), we have∫
Ω
|(I − Pm) div(σ(x)∇u)|2 dx

≤
∫

Ω
ut div(σ(x)∇u2) dx+

∫
Ω
f(u) div(σ(x)∇u2) dx−

∫
Ω
g(x) div(σ(x)∇u2) dx .

By Cauchy’s inequality, we have∫
Ω
|(I−Pm) div(σ(x)∇u)|2 dx ≤ 1

2

∫
Ω
|(I−Pm)ut|2 dx+

∫
Ω
|f(u)|2 dx+

1

2

∫
Ω
|(I−Pm) g|2 dx .

From Lemmas 3.4 and 3.8, we have∫
Ω
|(I − Pm) div(σ(x)∇u)|2 dx ≤ ε for any u0 ∈ B, t ≥ T, m ≥ nε .

�

From Lemmas 3.7, 3.9 and Theorem 2.8, we obtain the following result.

Theorem 3.10 Assume conditions (Hα), (F) and (G) hold. Then the semigroup {S(t)}t≥0 gener-
ated by problem (1.1) has a global attractorAD2

0
in D2

0(Ω, σ), that is, AD2
0

is compact, invariant in
D2

0(Ω, σ) and attracts every bounded set of L2(Ω) in the topology of D2
0(Ω, σ).

Remark 3.11 The global attractors AL2p−2 and AD2
0

obtained in Theorems 3.6 and 3.10 are of
course the same object and are equal to the global attractor AL2 obtained in [1]. From now on, we
will denote byA the global attractor of the semigroup associated to problem (1.1). In particular, we
have thatA is a compact set in L2p−2(Ω)∩D2

0(Ω, σ) and is connected in L2p−2(Ω) and D2
0(Ω, σ).

4 Fractal dimension estimates of the global attractor

In this section, instead of (G), we assume the external force g satisfies a stronger condition:

(G′) g ∈ L∞(Ω).

Lemma 4.1 Under conditions (F) and (G′), the global attractor A is uniformly bounded in
L∞(Ω).
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Proof. We multiply the first equation in (1.1) by (u−M)+ and integrate over Ω, we get

1

2

d

dt

∫
Ω

(u−M)2
+ dx+

∫
Ω

σ(x)|∇(u−M)+|2 dx+

∫
Ω

f(u)(u−M)+ dx

=

∫
Ω

g(u−M)+ dx.

Using the embedding D1
0(Ω, σ) ⊂ L2(Ω), we deduce that

1

2

d

dt

∫
Ω

(u−M)2
+ dx+ λ

∫
Ω

(u−M)2
+ dx ≤

∫
Ω

(g − f(u))(u−M)+ dx.

By hypothesis (F), f(u) → +∞ as u → +∞, so we can choose M large enough such that
f(u) ≥ ‖g‖L∞(Ω) when u ≥M . Then

d

dt

∫
Ω

(u−M)2
+ dx+ 2λ

∫
Ω

(u−M)2
+ dx ≤ 0.

By Gronwall’s inequality, we have∫
Ω

(u−M)2
+ dx ≤ e−2λt

∫
Ω

(u0 −M)2 dx→ 0 as t→ +∞.

Since the attractor is bounded in L2(Ω) and for any v ∈ A there exists a u0 such that v = S(t)u0,
we have ∫

Ω

(u−M)2
+ dx = 0 (4.1)

for all u ∈ A. Repeating the same step above, just taking (u + M)− instead of (u −M)+, we
deduce that ∫

Ω

(u+M)2
− dx = 0. (4.2)

Taking into account the definitions of (u −M)+ and (u + M)− (see the proof of Lemma 3.5), it
follows from (4.1) and (4.2) that |u(x)| ≤M for a.e. x ∈ Ω, that is, ‖u‖L∞(Ω) ≤M. �

Theorem 4.2 Assume that assumptions (Hα), (F) and (G) hold. Then the global attractorA of the
semigroup associated to problem (1.1) possesses a finite fractal dimension in L2(Ω), specifically,

dimfA ≤ m ln
9 eC3

1− δ

(
ln

2

1 + δ

)−1
,

where δ = e−2λm + C
C3+λm

for some C > 0 and m is large enough such that δ < 1.

Proof. Let u01, u02 ∈ A arbitrary, and let u1(t) = S(t)u01 and u2(t) = S(t)u02 be solutions to
problem (1.1) with initial data u01, u02. Since S(t)A = A for all t ≥ 0 and, by Lemma 4.1, A is a
bounded set in L∞(Ω), there exists M > 0 such that

‖ui(t)‖L∞(Ω) ≤M, i = 1, 2, for all t ≥ 0. (4.3)
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Putting w(t) = u1(t)− u2(t), from (1.1) we have

wt − div(σ(x)∇w) + f(u1)− f(u2) = 0. (4.4)

Taking the inner product of (4.4) with w(t) in L2(Ω), we get

1

2

d

dt
‖w‖2L2(Ω) + ‖w‖2D1

0(Ω,σ) + (f(u1)− f(u2), w) = 0.

Using hypothesis (F), in particular, we get

d

dt
‖w‖2L2(Ω) ≤ 2C3‖w‖2L2(Ω),

hence,
‖w(t)‖2L2(Ω) ≤ e

2C3t‖w(0)‖2L2(Ω).

Let w(t) = w1(t) + w2(t), where w1(t) is the projection of w(t) in PmL2(Ω), then

‖w1(t)‖2L2(Ω) ≤ e
2C3t‖w(0)‖2L2(Ω). (4.5)

On the other hand, taking the inner product of (4.4) with w2(t) in L2(Ω), we have

1

2

d

dt
‖w2‖2L2(Ω) + ‖w2‖2D1

0(Ω,σ) + (f(u1)− f(u2), w2) = 0 .

Since∣∣∣ ∫
Ω

(f(u1)− f(u2))w2 dx
∣∣∣ ≤ ∫

Ω
|f ′(u1 + θ(u2 − u1))| |w| |w2| dx

≤ C
∫

Ω
(1 + |u1|p−2 + |u2|p−2) |w| |w2| dx

≤ C ‖w2‖L2(Ω) ‖w‖L2(Ω)

(
1 + ‖u1‖p−2

L∞(Ω) + ‖u2‖p−2
L∞(Ω)

)
,

≤ C ‖w‖2L2(Ω) because ‖ui‖L∞(Ω) ≤M, i = 1, 2 ,

and ‖w2‖2D1
0(Ω,σ)

≥ λm ‖w2‖2L2(Ω), we have

d

dt
‖w2‖2L2(Ω) + 2λm ‖w2‖2L2(Ω) ≤ C ‖w‖

2
L2(Ω).

Hence, using Gronwall’s inequality we have

‖w2(t)‖2L2(Ω) ≤ e
−2λm t‖w2(0)‖2L2(Ω) + C e−2λm t

∫ t

0
e2λm s ‖w(s)‖2L2(Ω) ds

≤ e−2λmt‖w2(0)‖2L2(Ω) + C e−2λmt

∫ t

0
e2λm se2C3 s‖w(0)‖2L2(Ω) ds

≤
(
e−2λmt +

Ce2C3 t

λm + C3

)
‖w(0)‖2L2(Ω) . (4.6)

From (4.5) and (4.6), in particular, we have

‖w1(1)‖2L2(Ω) ≤ e
2C3 ‖w(0) ‖2L2(Ω), ‖w2(1)‖2L2(Ω) ≤ δ ‖w(0)‖2L2(Ω) ,

where δ = e−2λm+ C
λm+C3

< 1 ifm is sufficiently large. Now, applying Theorem 2.8 withM = A,
V = S(1), l = e2C3 , and δ as above, we get the desired result. �
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