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1 Introduction

Consider the nonlinear boundary Cauchy problem for arbitrary τ ∈ R+ = [0,∞)
d
dtu(t) = Amax(t)u(t), t ∈ [τ,∞),

L(t)u(t) = f(t, u(t)), t ∈ [τ,∞),

u(τ) = x,

(1.1)

where Amax(t) is a closed operator on a Banach space X endowed with a maximal domain
D(Amax(t)), and L(t) : D(Amax(t)) → ∂X , with a ‘boundary space’ ∂X and a function
f : R+ × X → ∂X , the solution u : [τ,∞) → X takes the initial value x ∈ X at time τ .
This type of equation has recently been suggested and investigated as a model class with various
applications like population equations, retarded differential (difference) equations, heat equations
and boundary control problems (see e.g. [1, 3] and the references therein). The corresponding linear
boundary Cauchy problem of (1.1) is given by

d
dtu(t) = Amax(t)u(t), t ∈ [τ,∞),

L(t)u(t) = 0, t ∈ [τ,∞),

u(τ) = x.

(1.2)

In the autonomous case these abstract Cauchy problems were first studied by Greiner [6, 7, 8] and
Thieme [13], e.g. by using perturbation results for the domains of semigroups.

The homogeneous boundary Cauchy problem (1.2) has been investigated by Kellermann [9] and
Nguyen Lan [10]. In these papers, the authors proved the existence of solutions to these problems
and generation of an evolution family.

In [4] the authors have studied the boundary Cauchy problem in the case that the first equation in
(1.1) is replaced by an inhomogeneous equation d

dtu(t) = Amax(t)u(t) + g(t) and f in the second
equation is replaced by f(t, u(t)) ≡ f(t). For this type of equation they established a variation of
constants formula which can be easily extended to a variation of constants formula for (1.1) using
the contraction fixed point theorem. Utilizing the variation of constants formula we will follow the
Lyapunov-Perron approach to develop an invariant manifold theory for the class of equations (1.1).

The structure of the paper is as follows: In Section 2 we list natural assumptions for well-
posedness of equation (1.1), the concepts of mild solution and exponential splitting. Moreover, we
cite two examples illustrating our abstract problem and general assumptions. Section 3 is devoted
to an invariant manifold theorem for (1.1) which yields sufficient conditions for the existence of e.g.
a stable or unstable manifold.

To conclude the introductory section, we collect notation used in this paper. For Banach spaces
X,Y , let L(X,Y ) denote the space of all linear bounded operators from X to Y , define L(X) :=
L(X,X). We denote by idX the identity map defined on X .

By Cb(R+, X) we denote the space of all continuous and bounded functions from R+ into X .

Let A : D(A) ⊂ X → X be a closed linear operator, we denote by

ρ(A) := {λ ∈ C | λ idX −A : D(A)→ X is bijective}

the resolvent set ofA. For λ ∈ ρ(A), the operatorR(λ,A) := (λ idX −A)−1 is called the resolvent
of A.
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Finally, for a measurable set Ω ⊂ Rn and 1 ≤ p < ∞, let Lp(Ω) denote the space of all
measurable functions from Ω to Rn satisfying that

‖u‖p :=

(∫
Ω
|u(x)|p dx

) 1
p

<∞.

Let L∞(Ω) denote the space of all essentially bounded measurable functions. The Sobolev space
W 1,1(Ω) is given by

W 1,1(Ω) =
{
u ∈ L1(Ω) | u′ ∈ L1(Ω)

}
,

where the derivative u′ is defined in the weak sense. Let W 1,1(Ω) be endowed with the norm

‖u‖W 1,1 := ‖u‖1 + ‖u′‖1.

2 Preliminaries

In this section we recall some definitions and results, formulate assumptions and discuss some
examples.

2.1 Linear nonautonomous boundary Cauchy problems

A family of linear (unbounded) operators (A(t))0≤t≤T defined on a Banach space X is called a
stable family if there are constantsM ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(A(t)) for all 0 ≤ t ≤ T
and ∥∥∥ k∏

i=1

R(λ,A(ti))
∥∥∥ ≤M(λ− ω)−k

for λ > ω and any finite sequence 0 ≤ t1 ≤ · · · ≤ tk ≤ T .

Remark 1 In the autonomous case (A(t) = A), suppose that A generates a strongly continuous
semigroup. Then, by the Hille-Yosida Theorem (see [5, Theorem II.3.8]) A is stable.

A family of linear bounded operators (U(t, s))t≥s∈J , J := R+ or R, on a Banach space X is
called evolution family if

(1) U(t, s) = U(t, r)U(r, s) and U(s, s) = idX for all t ≥ r ≥ s ∈ J ,

(2) the mapping {(t, s) ∈ J × J : t ≥ s} 3 (t, s) 7→ U(t, s) ∈ L(X) is strongly continuous.

The growth bound of (U(t, s))t≥s≥0 is defined by

ω(U) := inf
{
ω ∈ R : ∃Mω ≥ 1 with ‖U(t, s)‖ ≤Mωe

ω(t−s) ∀ t ≥ s ∈ J
}
.

The evolution family (U(t, s))t≥s≥0 is called exponentially bounded provided that ω(U) <∞. We
now turn to the notion of exponential splitting for an evolution family.
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Definition 2 (Exponential Splitting) An evolution family (U(t, s))t≥s≥0 on a Banach space X
has an exponential splitting with exponents α < β, if there exist projections P (t), t ∈ R+, being
uniformly bounded and strongly continuous and a constant N ≥ 1 such that

(1) P (t)U(t, s) = U(t, s)P (s) for all t ≥ s ≥ 0,

(2) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for t ≥ s ≥ 0 and we set U(s, t) :=
[UQ(t, s)]−1, where Q(t) := idX − P (t).

(3) ‖U(t, s)P (s)‖ ≤ Neα(t−s) and ‖[UQ(t, s)Q(s)]−1‖ ≤ Ne−β(t−s) for all t ≥ s ≥ 0.

Let X,D, ∂X be Banach spaces such that D is dense and continuously embedded in X . On
these spaces, the operators Amax(t) ∈ L(D,X), L(t) ∈ L(D, ∂X), for t ≥ 0, are supposed to
satisfy the following hypotheses:

(H1) There are positive constants C1, C2 such that

C1‖x‖D ≤ ‖x‖+ ‖Amax(t)x‖ ≤ C2‖x‖D

for all x ∈ D and t ≥ 0;

(H2) for each x ∈ D the mapping R+ 3 t 7→ Amax(t)x ∈ X is continuously differentiable;

(H3) the operators L(t) : D → ∂X, t ≥ 0, are surjective;

(H4) for each x ∈ D the mapping R+ 3 t 7→ L(t)x ∈ ∂X is continuously differentiable;

(H5) there exist constants γ > 0 and ω ∈ R such that

||L(t)x||∂X ≥ γ
−1(λ− ω)||x||X ,

for x ∈ ker(λ idX −Amax(t)), λ > ω and t ≥ 0;

(H6) the family of operators (A(t))t≥0, A(t) := Amax(t)|kerL(t), generates an evolution family
(U(t, s))t≥s≥0.

In the following lemma, we cite consequences of the above assumptions from [6, Lemma 1.2] which
will be needed below.

Lemma 3 The restriction L(t)|ker(λ idX−Amax(t)) is an isomorphism from ker(λ idX − Amax(t))

into ∂X and its inverse Lλ,t := [L(t)|ker(λ idX−Amax(t))]
−1 : ∂X → ker(λ idX −Amax(t)) satisfies

‖Lλ,t‖ ≤ γ(λ− ω)−1 for λ > ω and t ≥ 0.

To illustrate sufficient and natural conditions which imply the assumptions (H1)–(H6) for
application-relevant classes of boundary Cauchy problems we discuss examples of a nonau-
tonomous structured population equation and a nonautonomous functional differential equation.
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Example 4 (Nonautonomous Structured Population Equation) Consider a nonautonomous
population equation

∂

∂t
u(t, a, x) = − ∂

∂a
u(t, a, x)− µ(a, x)u(t, a, x) +A(a, x)u(t, a, x),

t ≥ s, a ≥ 0, x ∈ Ω,

u(t, 0, x) =

∫ ∞
0

β(t, a, x)u(t, a, x) da, t ≥ s, x ∈ Ω,

u(s, a, x) = f(a, x), a ≥ 0, x ∈ Ω.

(2.1)

Here Ω is a bounded domain in Rn, the function u(t, a, x) represents the density of individuals of
the population of age a and size x at time t. The functions µ and β correspond to the aging and
the birth rates, respectively. Finally, we note that this equation is a special case of the very general
nonautonomous population equation with diffusion treated by Rhandi and Schnaubelt in [12].

We impose the following conditions:

(i) A(a, ·) ∈ L∞(Ω) for all a ≥ 0 and A(·, ·) ∈ Cb(R+, L
∞(Ω)). Moreover, (A(a, ·))a≥0 is a

family of operators generating an exponentially bounded evolution family U(a, r)a≥r≥0 on
the Banach space L1(Ω).

(ii) 0 ≤ µ ∈ Cb(R+, L
∞(Ω)).

(iii) 0 ≤ β ∈ C1(R+, L
∞(R+ × Ω) ∩ L1(R+ × Ω)) the space of continuously differentiable

functions from R+ into L∞(R+ × Ω) ∩ L1(R+ × Ω).

Our aim is to write equation (2.1) as a boundary Cauchy problem of the form (1.2) satisfying the
hypotheses (H1)–(H6). For this purpose, we define the Banach spaces

∂X := L1(Ω), X := L1(R+, ∂X) ' L1(R+ × Ω) and D := W 1,1(R+, ∂X),

and for each t ≥ 0 the operator Amax(t) : X → X by D(Amax(t)) = D and

(Amax(t)ϕ)(a) = − ∂

∂a
ϕ(a, ·) +B(a, ·)ϕ(a, ·) (2.2)

for all ϕ ∈ D, where

B(a, ·)ϕ(a, ·) := A(a, ·)ϕ(a, ·)− µ(a, ·)ϕ(a, ·). (2.3)

For each t ≥ 0, we define L(t) : D −→ ∂X by

L(t)ϕ = ϕ(0, ·)− Φ(t)ϕ for all ϕ ∈ D, (2.4)

where Φ(t) : X → ∂X given by

Φ(t)ϕ :=

∫ ∞
0

β(t, a, ·)ϕ(a, ·) da.

It is obvious to see that Φ(t) ∈ L(X, ∂X). We show now that the hypotheses (H1)–(H6) are
satisfied:
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Verification of (H1): Since A(·) ∈ Cb(R+, L
∞(Ω)) and µ(·) ∈ Cb(R+, L

∞(Ω)) it follows that

A∞ := sup
a≥0
‖A(a)‖∞ <∞ and µ∞ := sup

a≥0
‖µ(a)‖∞ <∞.

Let ϕ ∈ D be arbitrary. From the definition of ‖ · ‖D, we have

‖ϕ‖D =

∫ ∞
0
‖ϕ(a)‖1 da+

∫ ∞
0
‖ϕ′(a)‖1 da

≤ ‖ϕ‖X + ‖Amax(t)ϕ‖X +

∫ +∞

0
‖A(a)ϕ(a)− µ(a)ϕ(a)‖1 da

≤ (1 +A∞ + µ∞)(‖ϕ‖X + ‖Amax(t)ϕ‖X).

On the other hand,

‖ϕ‖X + ‖Amax(t)ϕ‖X = ‖ϕ‖X + ‖ϕ′ +A(·)ϕ− µ(·)ϕ‖X
≤ (1 +A∞ + µ∞)‖ϕ‖D.

This shows the assumption (H1) with C1 = (1 +A∞ + µ∞)−1 and C2 = (1 +A∞ + µ∞).

Verification of (H2): From (2.2), we derive that Amax(t) is independent of t. Therefore, the map
t 7→ Amax(t)ϕ is continuously differentiable for each fixed ϕ ∈ X .

Verification of (H3): See Appendix, Lemma 11.

Verification of (H4): From continuous differentiability of β, we derive that for each ϕ ∈ D the
mapping from R+ → ∂X, t 7→ L(t)ϕ defined as in (2.4) is also continuously differentiable.

Verification of (H5): Define a family of linear operators (C(a))a≥0 on ∂X by

C(a)ϕ := −µ(a, ·)ϕ.

From (ii), we have µ ∈ Cb(R+, L
∞(Ω)) and therefore

sup
a∈R+

‖C(a)‖1 ≤ sup
a∈R+

‖µ(a, ·)‖∞ <∞,

which together with (i) implies that the family of operators (B(a, ·))a≥0, given by (2.4), generates
on ∂X an exponentially bounded evolution family (V (t, s))t≥s≥0 given by

V (t, s)ϕ = U(t, s)ϕ+

∫ t

s
U(t, σ)C(σ)V (σ, s) dσ,

for all t ≥ s ≥ 0 and ϕ ∈ ∂X. Then (H5) is an application of Appendix, Lemma 12.

Verification of (H6): The corresponding evolution semigroup (T (t))t≥0 of the evolution family
(V (a, r))a≥r≥0 is given by

(T (t)ϕ)(a) =

{
V (a, a− t)ϕ(a− t) a ≥ t,
0, a < t,

(2.5)

for ϕ ∈ X . One can show that (T (t))t≥0 is a strongly continuous semigroup. Its generator denoted
by A0 is a restriction of Amax(t) with

D(A0) = {ϕ ∈ D| ϕ(0) = 0}.
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Thus, according to Remark 1 we obtain that A0 is stable. Since A(t) := Amax(t)|kerL(t) is a
bounded perturbation of A0 with

A(t)ϕ = A0ϕ, D(A(t)) = {ϕ ∈ D| ϕ(0) = Φ(t)ϕ}

it follows together with [10, Theorem 2.3] that A(t) generates an evolution family. Hence, (H6) is
satisfied.

Example 5 (Nonautonomous functional differential equation){
d
dtx(t) = B(t)x(t), t ≥ s ≥ 0,

xs = ϕ ∈ C([−r, 0], E).
(2.6)

Here B(t) is defined on a Banach space E. Furthermore, r ≥ 0, ϕ ∈ C([−r, 0], E) and the
retarded function xs is defined as xs(τ) := x(s + τ) for τ ∈ [−r, 0]. We assume the following
conditions:

(i) The family of linear operators B(t), t ≥ 0, is stable and generates an evolution family
(U(t, s))t≥s≥0 satisfying

‖U(t, s)‖ ≤Meω(t−s), t ≥ s ≥ 0;

(ii) the domain D(B(t)) := DB is independent of t, B(0) is a closed operator in E and the
function t 7→ B(t)x is continuously differentiable for all x ∈ E.

Define the Banach spaces

X := C([−r, 0], E), ∂X := E

and

D :=
{
ϕ ∈ C1([−r, 0], E) such that ϕ(0) ∈ DB

}
endowed with the norm |ϕ| := ‖ϕ‖C1([−r,0],E]) + ‖B(0)ϕ(0)‖.

For each t ≥ 0, we define the operator Amax(t) : X → X with D(Amax) = D by

Amax(t)ϕ =
∂

∂x
ϕ for all ϕ ∈ D,

and the operator L(t) : D(Amax(t)) −→ ∂X by

L(t)ϕ = ϕ′(0)−B(t)ϕ(0) for all ϕ ∈ D.

Then, the above retarded differential equation (2.6) can be written as a linear boundary Cauchy
problem (1.2). For more details, we refer the reader to [10].
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2.2 Nonlinear boundary Cauchy problems

In case f ≡ 0 the boundary Cauchy problem (1.1) reduces to the linear boundary Cauchy problem
(1.2) which was studied in the last subsection under the assumptions (H1)–(H6). In particular, let
(U(t, s))t≥s≥0 denote the evolution family from (H6). We want to study nonlinear perturbations
(1.1) of (1.2) and therefore assume that the nonlinearity f is not too far away from 0:

(H7) The nonlinear part f : R+×X → ∂X is assumed to be continuous, satisfies that f(t, 0) =
0 for all t ∈ R+ and there exists a positive constant ` such that one has the global Lipschitz estimate

‖f(t, x)− f(t, x̄)‖ ≤ `‖x− x̄‖ for all x, x̄ ∈ X, t ∈ R+.

Under the assumptions (H1)–(H7) the semilinear boundary Cauchy problem (1.1) admits a
unique mild solution. For τ ∈ R+, x ∈ X , a function u = u(·, τ, x) : [τ,∞) → X is called
mild solution of (1.1) if it satisfies the integral equation

u(t, τ, x) = U(t, τ)x+ lim
λ→∞

∫ ∞
τ

U(t, σ)λLλ,σf(σ, u(σ, τ, x)) dσ, t ≥ τ. (2.7)

The unique existence follows with the usual contraction arguments (see e.g. [3, 7, 11]) and uses the
variation of constants formula from [4] for solutions v : [τ,∞)→ X of inhomogeneous boundary
Cauchy problems, i.e. systems (1.1) with f(t, u(t)) ≡ g(t) independent of u(t)

v(t) = U(t, τ)x+ lim
λ→∞

∫ ∞
τ

U(t, σ)λLλ,σg(σ) dσ, t ≥ τ,

where Lλ,σ is defined as in Lemma 3.

3 Integral Manifolds of Nonlinear Boundary Cauchy Problems

In this section, we consider the following system{
d
dtu(t) = Amax(t)u(t), t ∈ [0,∞),

L(t)u(t) = f(t, u(t)), t ∈ [0,∞),
(3.1)

where Amax(t), L(t), f(t, x) are assumed to satisfy assumptions (H1)–(H6). For τ ∈ R+ and
x ∈ X let u(·, τ, x) denote the mild solution of (3.1) satisfying that u(τ) = x. In case the evolution
family (U(t, s))t≥s≥0 of the corresponding linear boundary Cauchy problem has an exponential
splitting with exponents α < β, projections P (·), Q(·) = I − P (·) and constant N then for all
ζ ∈ (α, β) the two sets

Ms
ζ =

{
(τ, ξ) ∈ R+ ×X : τ ∈ R+, ξ ∈ P (τ)X

}
,

Mu
ζ =

{
(τ, ξ) ∈ R+ ×X : τ ∈ R+, ξ ∈ Q(τ)X

}
,

are called (pseudo)-stable and (pseudo)-unstable vector bundles or manifolds, they consist of solu-
tions which are exponentially bounded from above and below, respectively, in the sense of Definition
2. In case α < 0 < β they are called stable and unstable, respectively.

Our aim in this section is to construct nonlinear analogues of Ms
ζ and Mu

ζ by using the
Lyapunov-Perron approach as e.g. in [2]. Since solution curves are sometimes also called inte-
gral curves and becauseMs

ζ andMu
ζ are invariant manifolds, i.e. consist of solution curves, they

are also called integral manifolds.
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3.1 Pseudo-Stable Manifolds

Consider the nonlinear boundary Cauchy problem (3.1) which satisfies additionally assumption
(H7). By (H7) equation (3.1) has the zero solution. We show that for each fixed τ ∈ R+ the set
of mild solutions ϕ ∈ C([τ,∞), X) of (3.1) which converge to zero exponentially fast as t → ∞
forms a so-called stable manifold which is the graph of a Lipschitz-continuous chart. In fact, we
prove more generally, that sets of solutions which are exponentially bounded by Neζ(t−τ) for t ≥ τ
form manifolds, so-called ζ-pseudo-stable manifolds. To this end choose ζ ∈ R, τ ∈ R+. Then the
set

X+
τ,ζ(X) :=

{
ϕ ∈ C([τ,∞), X) : sup

t≥τ
eζ(τ−t)‖ϕ(t)‖ <∞

}
is a Banach space with respect to the norm

‖ϕ‖τ,ζ := sup
t≥τ

eζ(τ−t)‖ϕ(t)‖.

Our overall approach is to characterize stable manifolds as a fixed point problem in X+
τ,ζ(X).

Thereto we define the Lyapunov-Perron Operators T+ : X+
τ,ζ(X)×X → X+

τ,ζ(X) by

T+(ϕ, x)(t) := U(t, τ)P (τ)x+ lim
λ→∞

∫ ∞
τ

G(t, σ)λLλ,σf(σ, ϕ(σ)) dσ, (3.2)

where the Green’s function G is defined by

G(t, s) :=

{
U(t, s)P (s) for t ≥ s,
−U(t, s)Q(s) for t ≤ s.

We also write T+(t, ϕ, x) = T+(ϕ, x)(t) for all (t, x) ∈ [τ,∞)×X . Some fundamental properties
of the operator T+ are established in the following proposition.

Proposition 6 Suppose that the evolution family (U(t, s))t≥s≥0 has an exponential splitting with
exponents α < β, projections P (·) and constantN . Then for all τ ∈ [0,∞) the following assertions
hold:

(i) For any ζ ∈ (α, β), the Lyapunov-Perron operator T+ : X+
ζ,τ (X) × X → X+

ζ,τ (X) defined
as in (3.2) is well-defined.

(ii) For any ζ ∈ (α, β), let ϕ ∈ X+
τ,ζ(X) and ξ ∈ imP (τ). Then, the following statements are

equivalent:

(a) ϕ is the mild solution of (3.1) with P (τ)ϕ(τ) = ξ,

(b) ϕ is the fixed point of the Lyapunov-Perron operator T+(·, ξ) : X+
τ,ζ(X) → X+

τ,ζ(X)
defined as in (3.2).

(iii) Suppose thatN`γ < β−α
2 and choose and fix η ∈ (N`γ2 , β−α2 ). Then, for any ζ ∈ [α+η, β−η]

the Lyapunov-Perron operator is uniformly contractive in the first component. More precisely,
for all ϕ1, ϕ2 ∈ X+

τ,ζ(X) and ξ1, ξ2 ∈ X we have

‖T+(·, ϕ1, ξ1)− T+(·, ϕ2, ξ2)‖τ,ζ ≤ N‖P (τ)(ξ1 − ξ2)‖+
2N`γ

η
‖ϕ1 − ϕ2‖τ,ζ . (3.3)
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Proof. (i) Let ϕ ∈ X+
τ,ζ(X) and ξ ∈ X . An elementary computation yields that for all t ≥ τ

e−ζ(t−τ)‖T+(t, ϕ, ξ)‖ ≤ N‖P (τ)ξ‖+N`γ

(
1

ζ − α
+

1

β − ζ

)
‖ϕ‖τ,ζ ,

where we use the fact that lim
λ→∞

‖λLλ,σ‖ ≤ γ, see Lemma 3. Therefore, the operator T+ is well-

defined.

(ii) (a)⇒ (b): Since ϕ is a mild solution of (3.1) it follows that

ϕ(t) = U(t, τ)ϕ(τ) + lim
λ→∞

∫ ∞
τ

U(t, σ)λLλ,σf(σ, ϕ(σ)) dσ.

Together with P (τ)ϕ(τ) = ξ we get

ϕ(t) = U(t, τ)ξ + lim
λ→∞

∫ t

τ
U(t, σ)P (σ)λLλ,σf(σ, ϕ(σ)) dσ +

U(t, τ)Q(τ)

(
ϕ(τ) + lim

λ→∞

∫ t

τ
U(τ, σ)Q(σ)λLλ,σf(σ, ϕ(σ)) dσ

)
.

Hence, ϕ ∈ X+
τ,ζ with ζ ∈ (α, β) implies that

ϕ(τ) + lim
λ→∞

∫ ∞
τ

U(τ, σ)Q(σ)λLλ,σf(σ, ϕ(σ)) dσ = 0,

which concludes that ϕ = T+(ϕ, ξ) and the first implication is proved.

(b)⇒ (a): Since ϕ is the fixed point of T+(·, ξ) it follows that

ϕ(t) = U(t, τ)P (τ)ξ + lim
λ→∞

∫ ∞
τ

G(t, σ)λLλ,σf(σ, ϕ(σ)) dσ.

Replacing t by τ in the above equality yields that

ϕ(τ) = ξ − lim
λ→∞

∫ ∞
τ

U(τ, σ)Q(σ)λLλ,σf(σ, ϕ(σ)) dσ.

Therefore, we get

ϕ(t) = U(t, τ)ϕ(τ) + lim
λ→∞

∫ t

τ
U(t, σ)λLλ,σf(σ, ϕ(σ)) dσ,

which completes the proof of this part.

(iii) From (3.2), we derive that

T+(t, ϕ1, ξ1)− T+(t, ϕ2, ξ2) = U(t, τ)P (τ)(ξ1 − ξ2) +

+ lim
λ→∞

∫ ∞
τ

G(t, σ)λLλ,σ(f(σ, ϕ1(σ))− f(σ, ϕ2(σ))) dσ.

This together with the fact that the evolution family (U(t, s))t≥s≥0 has an exponential splitting with
exponents α < β, projections P (·) and constant N and the Lipschitz continuity of f implies that

eζ(τ−t)‖T+(t, ϕ1, ξ)− T+(t, ϕ2, ξ)‖ ≤ N‖P (τ)(ξ1 − ξ2)‖+

+N`γ

[∫ t

τ
eη(σ−t) dσ +

∫ ∞
t

eη(t−σ) dσ

]
‖ϕ1 − ϕ2‖τ,ξ.
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Therefore,

sup
t≥τ

eζ(τ−t)‖T+(t, ϕ1, ξ)− T+(t, ϕ2, ξ)‖ ≤ N‖P (τ)(ξ1 − ξ2)‖+
2N`γ

η
‖ϕ1 − ϕ2‖τ,ξ,

which completes the proof. �

Definition 7 (Pseudo-Stable Manifolds) For any ζ ∈ R, the ζ-pseudo stable manifold is defined
as

Ws
ζ :=

{
(τ, x) ∈ R+ ×X : ϕ ∈ X+

τ,ζ(X) is mild sol. of (3.1) and P (τ)ϕ(τ) = x
}
.

We are now ready to state the main result on the existence of pseudo-stable manifolds for nonlinear
boundary Cauchy problems.

Theorem 8 (Pseudo-stable Manifold Theorem) Assume that (3.1) satisfies the assumptions
(H1)–(H7) and suppose that the corresponding evolution family (U(t, s))t≥s≥0 has an exponen-
tial splitting with exponents α < β, projections P (·) and constant N . Furthermore, we assume that
N`γ < β − α. Choose and fix η ∈ (N`γ2 , β−α2 ). Then for any ζ ∈ [α + η, β − η], the ζ-pseudo
stable manifoldWs

ζ has the following representation

Ws
ζ =

{
(τ, ξ + s+(τ, ξ)) ∈ R+ ×X : τ ∈ R+, ξ ∈ P (τ)X

}
, (3.4)

with for each τ ∈ R+ the uniquely determined continuous mapping s+(τ, ·) : P (τ)X → X given
by

s+(τ, ξ) = lim
λ→∞

∫ ∞
τ

G(τ, σ)λLλ,σf(σ, ϕ(σ)) dσ, (3.5)

where ϕ is the unique fixed point of T+(·, ξ). Furthermore, for each τ ∈ R+ the function s+(τ, ·)
satisfies

s+(τ, 0) ≡ 0 and Lip(s+(τ, ·)) ≤ N2`γ

η − 2N`γ
.

Proof. Let (τ, x) ∈ Ws
ζ , where τ ∈ R+ and x ∈ X . Define ξ = P (τ)x. According to Definition 7

and Proposition 6(ii), we obtain that the mild solution ϕ of (3.1) with P (τ)ϕ(τ) = x is the unique
fixed point of the Lyapunov-Perron operator T+(·, ξ). Therefore,

x = ξ + lim
λ→∞

∫ ∞
τ

G(τ, σ)λLλ,σf(σ, ϕ(σ)) dσ.

Then, x = ξ + s+(τ, ξ). Conversely, let ξ ∈ P (τ)X , where τ ∈ R+. We will show that ξ +
s+(τ, ξ) ∈ Ws

ζ . In light of Proposition 6 (iii), the Lyapunov-Perron operator T+(·, ξ) is contractive
and thus has a unique fixed point in X+

τ,ξ(X) denoted by ϕ. This together with Proposition 6 (ii)
implies that ϕ is a solution of (3.1) and therefore

ϕ(τ) = ξ + lim
λ→∞

∫ ∞
τ

G(τ, σ)λLλ,σf(σ, ϕ(σ)) dσ = ξ + s+(τ, ξ),

which proves (3.4). Since 0 is the fixed point of T+(·, 0) it follows that s+(τ, 0) = 0 for all
τ ∈ R+. To conclude the proof, we prove the Lipschitz continuity of s with respect to the second
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argument. Let ξ1, ξ2 ∈ P (τ)(X) for a τ ∈ R+. Let ϕ1, ϕ2 ∈ X+
τ,ζ(X) denote the fixed point of

T+(·, ξ1),T+(·, ξ2), respectively. Using (3.3), we obtain that

‖ϕ1 − ϕ2‖τ,ζ ≤ N‖ξ1 − ξ2‖+
2N`γ

η
‖ϕ1 − ϕ2‖τ,ζ .

Therefore,

‖ϕ1 − ϕ2‖τ,ζ ≤
Nη

η − 2N`γ
‖ξ1 − ξ2‖.

This together with (3.5) implies that

‖s+(τ, ξ1)− s+(τ, ξ2)‖ ≤ N2`γ

η − 2N`γ
‖ξ1 − ξ2‖,

which completes the proof. �

3.2 Pseudo-Unstable Manifolds

In order to provide the definition of pseudo-unstable manifolds, we introduce the following space:
for a given ζ ∈ R, τ ∈ R+, the set

X−τ,ζ(X) :=

{
ϕ ∈ C((−∞, τ ], X) : sup

t≤τ
eζ(τ−t)‖ϕ(t)‖ <∞

}
is a Banach space with respect to the norm

‖ϕ‖τ,ζ := sup
t≤τ

eζ(τ−t)‖ϕ(t)‖.

Definition 9 (Pseudo-unstable Manifolds) For any ζ ∈ R, the ζ-pseudo unstable manifoldWu
ζ is

the set of all (τ, x) ∈ R+ ×X satisfying the following conditions:

(i) For any t ≤ τ , there exists a y ∈ X (and hence unique due to uniqueness of solution) which
is denoted by u(t, τ, x) such that u(τ, t, y) = x.

(ii) u(·, τ, x) ∈ X−τ,ζ(X).

The existence of pseudo-unstable manifold for nonlinear boundary Cauchy problem is stated and
proved in the following theorem.

Theorem 10 (Pseudo-unstable Manifold Theorem) Suppose that the evolution family
(U(t, s))t≥s≥0 associated with the corresponding linear system of (3.1) has an exponential
splitting with exponents α < β, projections P (·) and constant N and the nonlinear part satisfies
(H7). Furthermore, we assume that N`γ < β − α. Choose and fix η ∈ (N`γ2 , β−α2 ). Then for any
ζ ∈ [α+ η, β − η], the ζ-pseudo unstable manifoldWu

ζ has the following presentation

Wu
ζ =

{
(τ, ξ + s−(τ, ξ)) ∈ R+ ×X : τ ∈ R+, ξ ∈ Q(τ)X

}
,
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with for each τ ∈ R+ the uniquely determined continuous mapping s−(τ, ·) : Q(τ)X → X given
by

s−(τ, ξ) = lim
λ→∞

∫ τ

−∞
G(τ, σ)λLλ,σf(σ, ϕ(σ)) dσ,

where ϕ is the unique fixed point of T−(·, ξ). Furthermore, for each τ ∈ R+ the function s−(τ, ·)
satisfies

s−(τ, 0) ≡ 0 and Lip(s−(τ, ·)) ≤ N2`γ

η − 2N`γ
.

Proof. Analog to the proof of Theorem 8. �

4 Appendix

Let Ω be a bounded set of Rn and β : R+ × Ω→ R+ satisfying that

esssup
(a,x)∈R+×Ω

β(a, x) <∞ and
∫
R+×Ω

β(a, x) da dx <∞. (4.1)

Set
∂X := L1(Ω), X := L1(R+, ∂X) and D := W 1,1(R+, ∂X).

Define the linear operator L : D → ∂X by

Lu(x) := u(0, x)−
∫ ∞

0
β(a, x)u(a, x) da for all x ∈ Ω. (4.2)

In the following lemma, we state and prove some fundamental properties of the operator L.

Lemma 11 The operator L defined as in (4.2) is bounded and surjective.

Proof. We first show the boundedness of L. Since ϕ(0, ·) = −
∫ ∞

0

∂

∂a
ϕ(a, ·) da for all ϕ ∈ D it

follows that

‖L(t)ϕ‖1 =

∥∥∥∥ϕ(0, ·)−
∫ ∞

0
β(a, ·)ϕ(a, ·) da

∥∥∥∥
1

≤ ‖ϕ(0, ·)‖1 +

∥∥∥∥∫ ∞
0

β(a, ·)ϕ(a, ·) da

∥∥∥∥
1

≤ (1 + ‖β‖∞)‖ϕ‖W 1,1 .

To prove the surjectivity of L, let f ∈ ∂X be arbitrary. Define

u(a, x) :=
2f(x)

1 + e−2
∫∞
0 β(t,x) dt

e−2
∫ a
0 β(t,x) dt for all (a, x) ∈ R+ × Ω.

We have u ∈ D. Furthermore, from (4.2) it is easy to see that Lu = f and therefore L is surjective.
�
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Lemma 12 Let (B(a))a≥0 be a family of operators on ∂X which generates an evolution family
(V (a, r))a≥r≥0 with a growth bound ω(V ) < +∞. Define an operator Amax : X → X by

(Amaxϕ)(a) = − ∂

∂a
ϕ(a) +B(a)ϕ(a) (4.3)

with the domain

D(Amax) = {ϕ ∈ D : ϕ(a) ∈ D(B(a)) for a.e. a ∈ R+, B(·)ϕ(·) ∈ X}.

Then, the following statements hold:

(i) For all λ ∈ C with <λ > ω(V ), we have

ker(λ idX −Amax) =
{
e−λ·V (·, 0)f | f ∈ ∂X

}
.

(ii) There exist constants γ > 0 and ω̃ ∈ R such that for λ ∈ C with <λ > ω̃ we have

||Lϕ||∂X ≥ γ
−1(<λ− ω̃)||ϕ||X for all ϕ ∈ ker(λ idX −Amax).

Proof. (i) See [12].

(ii) Since the evolution family (V (a, r))a≥r≥0 is exponentially bounded with the growth bound
ω(V ), it follows that for each ω > ω(V ) there exists Mω ≥ 1 such that

‖V (a, r)‖ ≤Mωe
ω(a−r) for all a ≥ r ≥ 0. (4.4)

Take λ ∈ C such that <λ > ω +Mω‖β‖∞ and ϕ ∈ ker(λ idX − Amax). From part (i), we get
that ϕ(·) = e−λ·V (·, 0)ϕ(0). This together with (4.4) implies that

‖ϕ‖X =

∫ ∞
0
‖e−λaV (a, 0)ϕ(0)‖∂X da

≤
∫ ∞

0
Mωe

(ω−<λ)a‖ϕ(0)‖∂X da

=
Mω

<λ− ω
‖ϕ(0)‖∂X . (4.5)

On the other hand, we have

‖ϕ(0)‖∂X ≤
∥∥∥∥ϕ(0)−

∫ ∞
0

β(a, ·)ϕ(a) da

∥∥∥∥
∂X

+

∥∥∥∥∫ ∞
0

β(a, ·)ϕ(a) da

∥∥∥∥
∂X

≤ ‖Lϕ‖∂X + ‖β‖∞‖ϕ‖X ,

which together with (4.5) implies that

‖ϕ‖X ≤
Mω

<λ− (ω +Mω‖β‖∞)
‖Lϕ‖∂X ,

which proves the lemma with γ = Mω and ω̃ = ω +Mω‖β‖∞. �
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