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Abstract. This paper deals with the study of a quasistatic problem of friction contact between
two thermo-viscoelastic piezoelectric bodies with long-term memory. The contact is modelled with
a version of normal compliance condition and the associated Coulomb’s law of friction in which
the adhesion of contact surfaces is taken into account. We derive variational formulation for the
model and prove an existence and uniqueness result of the weak solution. The proof is based
on arguments of evolutionary variational equalities, a classical existence and uniqueness result on
parabolic equalities, differential equations and a fixed point theorem.
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1 Introduction

Considerable progress has been achieved recently in modeling, mathematical analysis and numer-
ical simulations of various contact processes and, as a result, a general Mathematical Theory of
Contact Mechanics is currently maturing. It is concerned with the mathematical structures which
underlie general contact problems with different constitutive laws (i.e., different materials), var-
ied geometries and settings, and different contact conditions, see for instance [9, 19, 20] and the
references therein. The theory’s aim is to provide a sound, clear and rigorous background for the
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constructions of models for contact between deformable bodies; proving existence, uniqueness and
regularity results; assigning precise meaning to solutions; and the necessary setting for finite ele-
ment approximations of the solutions. There is a considerable interest in frictional or frictionless
contact problems involving piezoelectric materials, see for instance [2, 5, 6, 8, 15, 17] and the refer-
ences therein. The constitutive laws with internal variables have been used in various publications
in order to model the effect of internal variables in the behavior of real bodies like metal and rocks
polymers. Some of the internal state variables considered by many authors are the spatial display
of dislocation, the work-hardening of materials, the absolute temperature and the damage field. See
for examples [1, 14] for the case of hardening, temperature and other internal state variables and
the references [4, 7] for the case adhesion field which is denoted in this paper by β, it describes
the point wise fractional density of adhesion of active bonds on the contact surface, and some times
referred to as the intensity of adhesion. General models for piezoelectric materials can be found
in [10]. Frictional contact problems for piezoelectric materials were studied in [8, 20], under the
assumption that the foundation is insulated. Part of these results were extended recently in [15, 16]
in the case of an electrically conductive foundation. There, the material behavior was described
with an electro-viscoelastic constitutive law and the process was assumed to be quasistatic. The
unique solvability of the corresponding problems was obtained by using arguments of hemivaria-
tional inequalities. A quasistatic problem with normal compliance for electro-viscoelastic materials
in frictional contact with a conductive foundation was investigated in [11]. There, the variational
formulation of the corresponding problem was derived and the existence of a unique weak solution
was obtained, under a smallness assumption on the data. The proof was based on arguments of
evolutionary variational inequalities with monotone operators and a fixed point theorem.

Quasistatic friction contact problems for viscoelastic materials with temperature can be found
in [1]. Electro-viscoelastic friction contact problems can be found in [15]. Contact problems for
electro-viscoelastic materials with long-term memory and friction can be found in [8]. Contact
problems for viscoelastic materials with friction and normal compliance can be found in [3]. Contact
problems for viscoelastic materials with adhesion can be found in [4]. The recent paper extends the
above mentioned works as the contact is modelled with a version of normal compliance, friction
and adhesion between two thermo-electro-viscoelastic bodies with long-term memory.

The aim of this paper is to study a quasistatic frictional contact problem with adhesion between
two thermo-viscoelastic piezoelectric bodies with long-term memory. We use a thermo-viscoelastic
piezoelectric constitutive law with long-term memory given by

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ` +

∫ t

0
F `
(
t− s, ε(u`(s)), θ`(s)

)
ds, (1.1)

where u` represents the displacement field, σ` and ε(u`) represent the stress and the linearized
strain tensor, respectively, θ` represents the absolute temperature. Here A` is a given nonlinear
operator, F ` is the relaxation operator, and G` represents the elasticity operator. E(ϕ`) = −∇ϕ` is
the electric field, E` represents the third order piezoelectric tensor, (E`)∗ is its transposition. In (1.1)
and everywhere in this paper the dot above a variable represents the derivative with respect to the
time variable t. It follows from (1.1) that at each time moment, the stress tensor σ`(t) is split into
three parts: σ`(t) = σ`V (t) + σ`E(t) + σ`R(t), where σ`V (t) = A`ε(u̇`(t)) represents the purely
viscous part of the stress, σ`E(t) = (E`)∗∇ϕ`(t) represents the electric part of the stress and σ`R(t)
satisfies a rate-type thermoelastic relation

σ`R(t) = G`ε(u`(t)) +

∫ t

0
F `
(
t− s, ε(u`(s)), θ`(s)

)
ds.
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Note also that whenF ` = 0 the constitutive law (1.1) becomes the Kelvin-Voigt electro-viscoelastic
constitutive relation. The normal compliance contact condition was first considered in [13] in the
study of problems with linearly elastic and viscoelastic materials and then it was used in various
references, see e.g. [3, 7, 16]. This condition allows the interpenetration between bodies and it was
justified by considering the interpenetration and deformation of surface asperities.

The paper is organized as follows. In Sect.2 we describe the mathematical models for the fric-
tional contact problem between two thermo-viscoelastic piezoelectric bodies with long-term mem-
ory. The contact is modelled with normal compliance and adhesion. In Sect.3 we introduce some
notation, list the assumptions on the problem’s data, and derive the variational formulation of the
model. We state our main result, the existence of a unique weak solution to the model in Theo-
rem 4.1. The proof of the theorem is provided in Sect.4, where it is carried out in several steps and
is based on arguments of evolutionary variational equalities, a classical existence and uniqueness
result on parabolic equalities, differential equations and Banach fixed point theorem.

2 Problem Statement

The physical setting is as follows. Let us consider two electro-thermo-viscoelastic bodies with
long-term memory, occupying two bounded domains Ω1, Ω2 of the space Rd(d = 2, 3). For each
domain Ω`, the boundary Γ` is assumed to be Lipschitz continuous, and is partitioned into three
disjoint measurable parts Γ`1, Γ`2 and Γ`3, on one hand, and on two measurable parts Γ`a and Γ`b, on
the other hand, such that measΓ`1 > 0, measΓ`a > 0. Let T > 0 and let [0, T ] be the time interval
of interest. The Ω` body is submitted to f `0 forces and volume electric charges of density q`0. The
bodies are assumed to be clamped on Γ`1 × (0, T ). The surface tractions f `2 act on Γ`2 × (0, T ).
We also assume that the electrical potential vanishes on Γ`a × (0, T ) and a surface electric charge
of density q`2 is prescribed on Γ`b × (0, T ). The two bodies can enter in contact along the common
part Γ1

3 = Γ2
3 = Γ3. The bodies is in adhesive contact with an obstacle, over the contact surface Γ3.

With the assumption above, the classical formulation of the friction contact problem with adhesion
between two electro-thermo-viscoelastic bodies with long-term memory is given by.

Problem P. For ` = 1, 2, find a displacement field u` : Ω` × [0, T ] −→ Rd, a stress field
σ` : Ω` × [0, T ] −→ Sd, an electric potential field ϕ` : Ω` × [0, T ] −→ R, a temperature θ` :
Ω` × [0, T ] −→ R, a bonding field β : Γ3 × [0, T ] −→ R and a electric displacement field
D` : Ω` × [0, T ] −→ Rd such that

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ` +

∫ t

0
F `
(
t− s, ε(u`(s)), θ`(s)

)
ds in Ω` × (0, T ), (2.1)

D` = E`ε(u`)− B`∇ϕ` in Ω` × (0, T ), (2.2)

θ̇` − κ`0∆θ` = Θ`
(
σ` −A`ε(u̇`), ε(u`), θ`

)
+ ρ` in Ω` × (0, T ), (2.3)

Divσ` + f `0 = 0 in Ω` × (0, T ), (2.4)

divD` − q`0 = 0 in Ω` × (0, T ), (2.5)

u` = 0 on Γ`1 × (0, T ), (2.6)

σ`ν` = f `2 on Γ`2 × (0, T ), (2.7){
σ1
ν = σ2

ν ≡ σν ,
σν = −pν([uν ]) + γνβ

2Rν([uν ])
on Γ3 × (0, T ), (2.8)
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σ1
τ = −σ2

τ ≡ στ ,∥∥στ + γτβ
2Rτ ([uτ ])

∥∥ ≤ µpν([uν ]),∥∥στ + γτβ
2Rτ ([uτ ])

∥∥ < µpν([uν ])⇒ [uτ ] = 0,∥∥στ + γτβ
2Rτ ([uτ ])

∥∥ = µpν([uν ])⇒ ∃λ ≥ 0

such that στ + γτβ
2Rτ ([uτ ]) = −λ[uτ ]

on Γ3 × (0, T ), (2.9)

β̇ = −
(
β
(
γν(Rν([uν ]))2 + γτ |Rτ ([uτ ])|2

)
− εa

)
+

on Γ3 × (0, T ), (2.10)

ϕ` = 0 on Γ`a × (0, T ), (2.11)

D`.ν` = q`2 on Γ`b × (0, T ), (2.12)

κ`0
∂`θ`

∂ν`
+ α`θ` = 0 on Γ` × (0, T ), (2.13)

u`(0) = u`0, θ
`(0) = θ`0 in Ω`, (2.14)

β(0) = β0 on Γ3. (2.15)

First, equations (2.1) and (2.2) represent the electro-viscoelastic constitutive law with long-term
memory and thermal effects. Equation (2.3) represents the energy conservation, where Θ` is a non-
linear constitutive function which represents the heat generated by the work of internal forces and
ρ` is a given volume heat source. Equations (2.4) and (2.5) are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which ”Div” and ”div” denote the diver-
gence operator for tensor and vector valued functions, respectively. Next, the equations (2.6) and
(2.7) represent the displacement and traction boundary condition, respectively. Condition (2.8) rep-
resents the normal compliance conditions with adhesion, where γν is a given adhesion coefficient,
pν is a given positive function which will be described below, and [uν ] = u1

ν + u2
ν stands for the

displacements in normal direction, in this condition the interpenetrability between two bodies, that
is [uν ] can be positive on Γ3. The contribution of the adhesive to the normal traction is represented
by the term γνβ

2Rν([uν ]), the adhesive traction is tensile and is proportional, with proportionality
coefficient γν , to the square of the intensity of adhesion and to the normal displacement, but as long
as it does not exceed the bond length L. The maximal tensile traction is γνβ2L. Rν is the truncation
operator defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any additional
traction. The introduction of the operator Rν , together with the operator Rτ defined below, is
motivated by mathematical arguments but it is not restrictive for physical point of view, since no
restriction on the size of the parameter L is made in what follows. Condition (2.9) is a non local
Coulomb’s friction law conditions coupled with adhesive, where [uτ ] = u1

τ − u2
τ stands for the

jump of the displacements in tangential direction. Rτ is the truncation operator given by

Rτ (v) =

{
v if |v| ≤ L,
L v
|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the bonding field and on the
tangential displacement, but as long as it does not exceed the bond length L.
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Next, the equation (2.10) represents the ordinary differential equation which describes the evo-
lution of the bonding field and it was already used in [4], see also [20] for more details. Here,
besides γν , two new adhesion coefficients are involved, γτ and εa. Notice that in this model once
debonding occurs bonding cannot be reestablished since, as it follows from (2.10), β̇ ≤ 0. (2.11) and
(2.12) represent the electric boundary conditions. The relation (2.13) represents a Fourier bound-
ary condition for the temperature on Γ`. (2.14) represents the initial displacement field, the initial
temperature. Finally, (2.15) represents the initial condition in which β0 is the given initial bonding
field.

3 Variational formulation and the main result

In this section, we list the assumptions on the data and derive a variational formulation for the
contact problem. To this end, we need to introduce some notation and preliminary material. Here
and below, Sd represents the space of second-order symmetric tensors on Rd. We recall that the
inner products and the corresponding norms on Sd and Rd are given by

u`.v` = u`i .v
`
i ,

∣∣∣v`∣∣∣ = (v`.v`)
1
2 , ∀u`,v` ∈ Rd,

σ`.τ ` = σ`ij .τ
`
ij ,

∣∣∣τ `∣∣∣ = (τ `.τ `)
1
2 , ∀σ`, τ ` ∈ Sd.

Here and below, the indices i and j run between 1 and d and the summation convention over repeated
indices is adopted. Now, to proceed with the variational formulation, we need the following function
spaces:

H` = {v` = (v`i ); v
`
i ∈ L2(Ω`)}, H`

1 = {v` = (v`i ); v
`
i ∈ H1(Ω`)},

H` = {τ ` = (τ `ij); τ
`
ij = τ `ji ∈ L2(Ω`)}, H`1 = {τ ` = (τ `ij) ∈ H`; divτ ` ∈ H`}.

The spaces H`, H`
1, H` and H`1 are real Hilbert spaces endowed with the canonical inner products

given by

(u`,v`)H` =

∫
Ω`

u`.v` dx, (u`,v`)H`
1

=

∫
Ω`

u`.v` dx+

∫
Ω`

∇u`.∇v` dx,

(σ`, τ `)H` =

∫
Ω`

σ`.τ ` dx, (σ`, τ `)H`
1

=

∫
Ω`

σ`.τ ` dx+

∫
Ω`

divσ`.Div τ ` dx

and the associated norms ‖.‖H` , ‖.‖H`
1
, ‖.‖H` , and ‖.‖H`

1
respectively. For every element v` ∈ H`

1,
we also use the notation v` for the trace of v` on Γ` and we denote by v`ν and v`τ the normal and the
tangential components of v` on the boundary Γ` given by

v`ν = v`.ν`, v`τ = v` − v`νν`.

Denote by σ`ν and σ`τ the normal and the tangential traces of σ` ∈ H`1, respectively. If σ` is
continuously differentiable on Ω` ∪ Γ`, then

σ`ν = (σ`ν`).ν`, σ`τ = σ`ν` − σ`νν`,

(σ`ν`,v`)− 1
2
, 1
2
,Γ` =

∫
Γ`

σ`ν`.v` da
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for all v` ∈ H`
1, where da is the surface measure element.

To obtain the variational formulation of the problem (2.1)–(2.15), we introduce for the bonding
field the set

Z =
{
ς ∈ L∞

(
0, T ;L2(Γ3)

)
; 0 ≤ ς ≤ 1 a.e. on Γ3

}
,

and for the displacement field we need the closed subspace of H`
1 defined by

V ` =
{
v` ∈ H`

1; v` = 0 on Γ`1

}
.

Since measΓ`1 > 0, the following Korn’s inequality holds :

‖ε(v`)‖H` ≥ cK‖v`‖H`
1
, ∀v` ∈ V `, (3.1)

where the constant cK denotes a positive constant which may depends only on Ω`, Γ`1 (see [18]).
Over the space V ` we consider the inner product given by

(u`,v`)V ` = (ε(u`), ε(v`))H` , ∀u`,v` ∈ V `, (3.2)

and let ‖.‖V ` be the associated norm. It follows from Korn’s inequality (3.1) that the norms ‖.‖H`
1

and ‖.‖V ` are equivalent on V `. Then (V `, ‖.‖V `) is a real Hilbert space. Moreover, by the Sobolev
trace theorem and (3.2), there exists a constant c0 > 0, depending only on Ω`, Γ`1 and Γ3 such that

‖v`‖L2(Γ3)d ≤ c0‖v`‖V ` , ∀v` ∈ V `. (3.3)

We also introduce the spaces

E`0 = L2(Ω`), E`1 = H1(Ω`), W ` =
{
ψ` ∈ E`1; ψ` = 0 on Γ`a

}
,

W` =
{
D` = (D`

i ); D
`
i ∈ L2(Ω`), divD` ∈ L2(Ω`)

}
.

Since measΓ`a > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ`‖W ` ≥ cF ‖ψ`‖H1(Ω`), ∀ψ` ∈W `, (3.4)

where cF > 0 is a constant which depends only on Ω`, Γ`a.
Over the space W `, we consider the inner product given by

(ϕ`, ψ`)W ` =

∫
Ω`

∇ϕ`.∇ψ` dx (3.5)

and let ‖.‖W ` be the associated norm. It follows from (3.4) that ‖.‖H1(Ω`) and ‖.‖W ` are equivalent
norms on W ` and therefore (W `, ‖.‖W `) is a real Hilbert space. Moreover, by the Sobolev trace
theorem, there exists a constant c0, depending only on Ω`, Γ`a and Γ3, such that

‖ζ`‖L2(Γ3) ≤ c0‖ζ`‖W ` , ∀ζ` ∈W `. (3.6)

The spaceW` is a real Hilbert space with the inner product

(D`,Φ`)W` =

∫
Ω`

D`.Φ` dx+

∫
Ω`

divD`.div Φ` dx,
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where divD` = (D`
i,i), and the associated norm ‖.‖W` .

In order to simplify the notations, we define the product spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H2

1 , H = H1 ×H2,

H1 = H1
1 ×H2

1, E0 = E1
0 × E2

0 , E1 = E1
1 × E2

1 , W = W 1 ×W 2, W =W1 ×W2.

The spaces V , E1, W and W are real Hilbert spaces endowed with the canonical inner products
denoted by (., .)V , (., .)E1 , (., .)W and (., .)W . The associate norms will be denoted by ‖.‖V , ‖.‖E1 ,
‖.‖W and ‖.‖W , respectively.

In the study of the Problem P, we consider the following assumptions:
The viscosity function A` : Ω` × Sd → Sd satisfies:

(a) There exists LA` > 0 such that
|A`(x, ξ1)−A`(x, ξ2)| ≤ LA` |ξ1 − ξ2|, ∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.

(b) There exists mA` > 0 such that
(A`(x, ξ1)−A`(x, ξ2))·(ξ1 − ξ2) ≥ mA` |ξ1 − ξ2|2, ∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.

(c) The mapping x 7→ A`(x, ξ) is Lebesgue measurable on Ω`, for any ξ ∈ Sd.
(d) The mapping x 7→ A`(x,0) is continuous on Sd, a.e. x ∈ Ω`.

(3.7)
The elasticity operator G` : Ω` × Sd → Sd satisfies:

(a) There exists LG` > 0 such that
|G`(x, ξ1)− G`(x, ξ2)| ≤ LG` |ξ1 − ξ2|, ∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.

(b) The mapping x 7→ G`(x, ξ) is Lebesgue measurable on Ω`, for any ξ ∈ Sd.
(c) The mapping x 7→ G`(x,0) belongs toH`.

(3.8)

The relaxation function F ` : Ω` × (0, T )× Sd × R→ Sd satisfies:

(a) There exists LF` > 0 such that
|F `(x, t, ξ1, r1)−F `(x, t, ξ2, r2)| ≤ LF`

(
|ξ1 − ξ2|+ |r1 − r2|

)
,

for all t ∈ (0, T ), ξ1, ξ2 ∈ Sd, r1, r2 ∈ R, a.e. x ∈ Ω`.
(b) The mapping x 7→ F `(x, t, ξ, r) is Lebesgue measurable in Ω`,

for any t ∈ (0, T ), ξ ∈ Sd, r ∈ R.
(c) The mapping t 7→ F `(x, t, ξ, r) is continuous in (0, T ),

for any ξ ∈ Sd, r ∈ R, a.e. x ∈ Ω`.
(d) The mapping x 7→ F `(x, t,0, 0) belongs toH`, for all t ∈ (0, T ).

(3.9)

The energy function Θ` : Ω` × Sd × Sd × R→ R satisfies:

(a) There exists LΘ` > 0 such that
|Θ`(x,η1, ξ1, α1)−Θ`(x,η2, ξ2, α2)| ≤ LΘ`

(
|η1 − η2|+ |ξ1 − ξ2|+ |α1 − α2|

)
,

∀η1,η2, ξ1, ξ2 ∈ Sd and α1, α2 ∈ R, a.e. x ∈ Ω`.
(b) The mapping x 7→ Θ`(x,η, ξ, α) is Lebesgue measurable on Ω`,

for any η, ξ ∈ Sd and α ∈ R.
(c) The mapping x 7→ Θ`(x,0,0, 0) belongs to L2(Ω`).
(d) Θ`(x,η, ξ, α) is bounded for all η, ξ ∈ Sd, α ∈ R, a.e. x ∈ Ω`.

(3.10)

The piezoelectric tensor E` : Ω` × Sd → Rd satisfies:{
(a) E`(x, τ) = (e`ijk(x)τjk), ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω`.

(b) e`ijk = e`ikj ∈ L∞(Ω`), 1 ≤ i, j, k ≤ d. (3.11)
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Recall also that the transposed operator (E`)∗ is given by (E`)∗ = (e`,∗ijk), where e`,∗ijk = e`kij and the
following equality holds

E`σ.v = σ.(E`)∗v, ∀σ ∈ Sd, ∀v ∈ Rd.

The electric permittivity operator B` = (b`ij) : Ω` × Rd → Rd verifies:
(a) B`(x,E) = (b`ij(x)Ej), ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(b) b`ij = b`ji, b
`
ij ∈ L∞(Ω`), 1 ≤ i, j ≤ d.

(c) There exists mB` > 0 such that B`E.E ≥ mB` |E|2, ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(3.12)

The normal compliance function pν : Γ3 × R→ R+ satisfies:
(a) ∃Lν > 0 such that |pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2|, ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0, ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.
(c) The mapping x 7→ pν(x, r) is measurable on Γ3, ∀r ∈ R.
(d) pν(x, r) = 0, for all r ≤ 0, a.e. x ∈ Γ3.

(3.13)

The following regularity is assumed on the density of volume forces, traction, volume electric
charges and surface electric charges:

f `0 ∈ C(0, T ;L2(Ω`)d), f `2 ∈ C(0, T ;L2(Γ`2)d),

q`0 ∈ C(0, T ;L2(Ω`)), q`2 ∈ C(0, T ;L2(Γ`b)), (3.14)

ρ` ∈ C(0, T ;L2(Ω`)).

The adhesion coefficients γν , γτ and εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0, a.e. on Γ3. (3.15)

The energy coefficient κ`0 satisfies
κ`0 > 0. (3.16)

Finally, the friction coefficient and the initial data satisfy

µ ∈ L∞(Γ3), µ(x) ≥ 0, a.e. on Γ3 (3.17)

u`0 ∈ V `, θ`0 ∈ E`1, β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3. (3.18)

Using the Riesz representation theorem, we define the linear mappings f = (f1, f2) : [0, T ] → V
and q = (q1, q2) : [0, T ]→W as follows:

(f(t),v)V =
2∑
`=1

∫
Ω`

f `0(t) · v` dx+
2∑
`=1

∫
Γ`
2

f `2(t) · v` da, ∀v ∈ V , (3.19)

(q(t), ζ)W =

2∑
`=1

∫
Ω`

q`0(t)ζ` dx−
2∑
`=1

∫
Γ`
b

q`2(t)ζ` da, ∀ζ ∈W. (3.20)

Next, we define the mappings a0 : E1 ×E1 → R, jad : L2(Γ3)×V ×V → R, jνc : V ×V → R
and jfr : V × V → R, respectively, by
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a0(ζ, ξ) =

2∑
`=1

κ`0

∫
Ω`

∇ζ`.∇ξ` dx+

2∑
`=1

α`
∫

Γ`

ζ`ξ` da, (3.21)

jad(β,u,v) =

∫
Γ3

(
− γνβ2Rν([uν ])[vν ] + γτβ

2Rτ ([uτ ]).[vτ ]
)

da, (3.22)

jνc(u,v) =

∫
Γ3

pν([uν ])[vν ] da, (3.23)

jfr(u,v) =

∫
Γ3

µpν([uν ])
∥∥[vτ ]

∥∥da (3.24)

for all u,v ∈ V and t ∈ [0, T ]. We note that conditions (3.14) imply

f ∈ C(0, T ;V ), q ∈ C(0, T ;W ). (3.25)

We now turn to derive a variational formulation of the mechanical problem P. To that end we
assume that {u`,σ`, ϕ`, θ`, β,D`} are sufficiently smooth functions satisfying (2.1)–(2.15) and let
v = (v1, v2) ∈ V, and t ∈ [0, T ]. First, using Green’s formula and (2.4) we have

2∑
`=1

(σ`, ε(v`)− ε(u̇`(t)))H`

=

2∑
`=1

∫
Ω`

f `0(t).(v` − u̇`(t)) dx+

2∑
`=1

∫
Γ`

σ`ν`.(v` − u̇`(t)) da, (3.26)

and by (2.6), (2.7) and (3.19) we find

2∑
`=1

(σ`, ε(v`)− ε(u̇`(t)))H` = (f(t),v − u̇`(t))V +
2∑
`=1

∫
Γ3

σ`ν`.(v` − u̇`(t)) da. (3.27)

Using now (2.8) and (2.9), it follows that

2∑
`=1

σ`ν`.(v` − u̇`(t)) =

2∑
`=1

σ`ν(v`ν − u̇`ν(t)) +

2∑
`=1

σ`τ .(v
`
τ − u̇`τ (t))

= σν([vν ]− [u̇ν(t))]) + στ .([vτ ]− [u̇τ (t)])

= −pν([uν ])([vν ]− [u̇ν(t))]) + γνβ
2Rν([uν ])([vν ]− [u̇ν(t))])

+ (στ + γτβ
2Rτ ([uτ ])).([vτ ]− [u̇τ (t)])− γτβ2Rτ ([uτ ]).([vτ ]− [u̇τ (t)])

and use (3.22) and (3.23) to obtain

2∑
`=1

∫
Γ3

σ`ν`.(v` − u̇`(t)) da ≥ −jad(β(t),u(t),v − u̇(t))− jνc(u(t),v − u̇(t))

−
∫

Γ3

‖στ + γτβ
2Rτ ([uτ ])‖(‖[vτ ]‖ − ‖[u̇τ (t)]‖) da. (3.28)
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Finally, we combine (2.9), (3.27) and (3.28) and use the definition (3.24) to deduce that
2∑
`=1

(σ`, ε(v`)− ε(u̇`(t)))H` + jad(β(t),u(t),v − u̇(t))

+ jνc(u(t),v − u̇(t)) + jfr(u(t),v)− jfr(u(t), u̇(t)) ≥ (f(t),v − u̇(t))V . (3.29)

On the other hand, applying Green’s formula, (2.3) and (2.13), with ξ = (ξ1, ξ2) ∈ E1, it follows
that

2∑
`=1

(
Θ`
(
σ`(t) +A`ε(u̇`(t)), ε(u`(t)), θ`(t)

)
+ ρ`(t), ξ`

)
L2(Ω`)

=

2∑
`=1

(θ̇`(t), ξ`)L2(Ω`) −
2∑
`=1

∫
Ω`

κ`0∆θ`(t)ξ` dx

=

2∑
`=1

(θ̇`(t), ξ`)L2(Ω`) +

2∑
`=1

∫
Ω`

κ`0∇θ`(t)∇ξ` dx−
2∑
`=1

∫
Γ`

κ`0
∂`θ`(t)

∂ν`
ξ` da

=
2∑
`=1

(θ̇`(t), ξ`)L2(Ω`) +
2∑
`=1

∫
Ω`

κ`0∇θ`(t)∇ξ` dx+
2∑
`=1

∫
Γ`

α`θ`(t)ξ` da.

We use now (3.21) in the previous equality to obtain
2∑
`=1

(θ̇`(t), ξ`)L2(Ω`) + a0(θ(t), ξ)

=

2∑
`=1

(
Θ`
(
σ`(t)−A`ε(u̇`(t)), ε(u`(t)), θ`(t)

)
, ξ`
)
L2(Ω`)

+
2∑
`=1

(ρ`(t), ξ`)L2(Ω`). (3.30)

By similar arguments, from (2.2) and (3.20), with φ = (φ1, φ2) ∈W, it follows that
2∑
`=1

(B`∇ϕ`(t),∇φ`)H`−
2∑
`=1

(E`ε(u`(t)),∇φ`)H` = (q(t), φ)W . (3.31)

We now gather the constitutive laws (2.1)-(2.2), the boundary condition (2.10), the initial condi-
tion (2.14), inequality (3.29) and equalities (3.30), (3.31) to obtain the following variational formu-
lation of the mechanical problem P.

Problem PV. Find a displacement field u = (u1,u2) : [0, T ] → V , a stress field σ =
(σ1,σ2) : [0, T ] → H, an electric potential field ϕ = (ϕ1, ϕ2) : [0, T ] → W, a temperature
θ = (θ1, θ2) : [0, T ] → E1, a bonding field β : [0, T ] → L∞(Γ3) and an electric displacement
field D = (D1,D2) : [0, T ]→W such that

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ` +

∫ t

0
F `
(
t− s, ε(u`(s)), θ`(s)

)
ds, in Ω` × (0, T ), (3.32)

D` = E`ε(u`)− B`∇ϕ` in Ω` × (0, T ), (3.33)

2∑
`=1

(σ`, ε(v`)− ε(u̇`(t)))H` + jad(β(t),u(t),v − u̇(t))

+ jνc(u(t),v − u̇(t)) + jfr(u(t),v)− jfr(u(t), u̇(t)) (3.34)

≥ (f(t),v − u̇(t))V , ∀v ∈ V , a.e. t ∈ (0, T ),
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2∑
`=1

(θ̇`(t), ξ`)L2(Ω`) + a0(θ(t), ξ) =
2∑
`=1

(
Θ`
(
σ`(t)−A`ε(u̇`(t)), ε(u`(t)), θ`(t)

)
, ξ`
)
L2(Ω`)

+

2∑
`=1

(ρ`(t), ξ`)L2(Ω`), ∀ξ ∈ E1, a.e. t ∈ (0, T ), (3.35)

2∑
`=1

(B`∇ϕ`(t),∇φ`)H`−
2∑
`=1

(E`ε(u`(t)),∇φ`)H` = (q(t), φ)W , ∀φ ∈W, a.e. t ∈ (0, T ), (3.36)

β̇(t) = −
(
β(t)

(
γν(Rν([uν(t)]))2 + γτ |Rτ ([uτ (t)])|2

)
− εa

)
+
, a.e. (0, T ), (3.37)

u(0) = u0, θ(0) = θ0, ζ(0) = ζ0, β(0) = β0. (3.38)

We notice that the variational Problem PV is formulated in terms of a displacement field, a stress
field, an electrical potential field, a temperature, a bonding field and an electric displacement field.
The existence of the unique solution of Problem PV is stated and proved in the next section.

Remark 3.1 We note that, in Problem P and in Problem PV, we do not need to impose explicitly
the restriction 0 ≤ β ≤ 1. Indeed, equation (3.37) guarantees that β(x, t) ≤ β0(x) and, therefore,
assumption (3.18) shows that β(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On the other hand, if β(x, t0) = 0
at time t0, then it follows from (3.37) that β̇(x, t) = 0 for all t ≥ t0 and therefore, β(x, t) = 0 for
all t ≥ t0, a.e. x ∈ Γ3. We conclude that 0 ≤ β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

Below in this section β, β1, β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. x ∈ Γ3,
u1, u2 and v represent elements of V and C > 0 represents generic constants which may depend
on Ω`, Γ3, pν , γν , γτ and L. First, we note that the functional jad and jνc are linear with respect to
the last argument and, therefore,

jad(β,u,−v) = −jad(β,u,v), jνc(u,−v) = −jνc(u,v). (3.39)

Next, (3.23) and (3.13)(b) imply

jνc(u1,v2)− jνc(u1,v1) + jνc(u2,v1)− jνc(u2,v2) ≤ 0, ∀u1,u2,v1,v2 ∈ V , (3.40)

and using (3.24), (3.13)(a), keeping in mind (3.3), we obtain

jfr(u1,v2)− jfr(u1,v1) + jfr(u2,v1)− jfr(u2,v2)

≤ c2
0Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V , ∀u1,u2,v1,v2 ∈ V . (3.41)

Inequalities (3.39)–(3.41) will be used in various places in the rest of the paper. Our main
existence and uniqueness result that we state now and prove in the next section is the following.

Theorem 3.2 (Existence and uniqueness) Assume that (3.7)–(3.18) hold. Then there exists a
unique solution of Problem PV. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), (3.42)

σ ∈ C(0, T ;H1), (3.43)

ϕ ∈ C(0, T ;W ), (3.44)

θ ∈ L2(0, T ;E1) ∩H1(0, T ;E0), (3.45)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z, (3.46)

D ∈ C(0, T ;W). (3.47)
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The functions u, σ, ϕ, θ, β and D which satisfy (3.32)-(3.38) are called a weak solution of the
contact Problem P. We conclude that, under the assumptions (3.7)– (3.18), the mechanical prob-
lem (2.1)–(2.15) has a unique weak solution satisfying (3.42)–(3.47).

4 Proof of Theorem 3.2

The proof of Theorem 3.2 is carried out in several steps and is based on the following abstract result
for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (., .)X and the associated norm ‖.‖X , and
consider the problem of finding u : [0, T ]→ X such that

(Au̇(t),v − u̇(t))X +(Bu(t),v − u̇(t))X + j(u(t),v)− j(u(t), u̇(t))
≥ (f(t),v − u̇(t))X , ∀v ∈ X, t ∈ [0, T ],
u(0) = u0.

(4.1)

To study problem (4.1) we need the following assumptions: The operator A : X → X is Lipschitz
continuous and strongly monotone, i.e.,

(a) There exists LA > 0 such that
‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X , ∀u1,u2 ∈ X,

(b) There exists mA > 0 such that
(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖X , ∀u1,u2 ∈ X.

(4.2)

The nonlinear operator B : X → X is Lipschitz continuous, i.e., there exists LB > 0 such that

‖Bu1 −Bu2‖X ≤ LB‖u1 − u2‖X , ∀u1,u2 ∈ X. (4.3)

The functional j : X ×X → R satisfies:
(a) j(u, .) is convex and I.S.C. on X for all u ∈ X.
(b) There exists mj > 0 such that

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)
≤ mj‖u1 − u2‖X‖v1 − v2‖X , ∀u1,u2,v1,v2 ∈ X.

(4.4)

Finally, we assume that
f ∈ C(0, T ;X) (4.5)

and
u0 ∈ X. (4.6)

The following existence, uniqueness result and regularity was proved in [9, Theorem 11.3].

Theorem 4.1 Let (4.2)–(4.6) hold. Then:

1. There exists a unique solution u ∈ C1(0, T ;X) of Problem (4.1).

2. If, moreover, u1 and u2 are two solutions of (4.1) corresponding to the data f1, f2 ∈
C(0, T ;X), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖X ≤ c
(
‖f1(t)− f2(t)‖X + ‖u1(t)− u2(t)‖X

)
, (4.7)

for all t ∈ [0, T ].
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We turn now to the proof of Theorem 3.2 which will be carried out in several steps and is based
on arguments of nonlinear equations with monotone operators, a classical existence and uniqueness
result on parabolic inequalities and fixed-point arguments. To this end, we assume in what follows
that (3.7)–(3.18) hold, and we consider that C is a generic positive constant which depends on
Ω`, Γ`1, Γ`1, Γ3, pν , pτ , A`, B`, G`, F `, E`, γν , γτ , Θ`, κ`0, and T with ` = 1, 2, but does not
depend on t nor of the rest of input data, and whose value may change from place to place. Let
η = (η1, η2) ∈ C(0, T ;V ) be given. In the first step we consider the following variational problem.

Problem PVu
η . Find a displacement field uη = (u1

η,u
2
η) : [0, T ]→ V such that

2∑
`=1

(A`ε(u̇`η), ε(v`)− ε(u̇`η(t)))H` +
2∑
`=1

(G`ε(u`η), ε(v`)− ε(u̇`η(t)))H`

+ jνc(uη(t),v − u̇η(t)) + jfr(uη(t),v)− jfr(uη(t), u̇η(t)) (4.8)

+ (η(t),v − u̇η(t))V ≥ (f(t),v − u̇η(t))V , ∀v ∈ V , t ∈ (0, T ),

uη(0) = u0. (4.9)

We have the following result for the problem PVu
η .

Lemma 4.2 (1) There exists a unique solution uη ∈ C1(0, T ;V ) to the problem (4.8) and (4.9).

(2) If u1 and u2 are two solutions of (4.8) and (4.9) corresponding to the data η1, η2 ∈
C(0, T ;V ), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖V + ‖u1(t)− u2(t)‖V

)
, ∀ t ∈ [0, T ]. (4.10)

Proof. We apply Theorem 4.1 where X = V , with the inner product (·, ·)V and the associated
norm ‖ · ‖V . We use the Riesz representation theorem to define the operators A : V → V , and
B : V → V by

(Au,v)V =

2∑
`=1

(A`ε(u`), ε(v`))H` , (4.11)

(Bu,v)V =
2∑
`=1

(G`ε(u`), ε(v`))H` , (4.12)

for all u,v ∈ V , and define the functions fη : [0, T ]→ V , j : V × V → R by

fη(t) = f(t)− η(t), ∀t ∈ [0, T ], (4.13)

j(u,v) = jνc(u,v) + jfr(u,v), ∀u,v ∈ V . (4.14)

Assumptions (3.7) and (3.8) imply that the operators A and B satisfy conditions (4.2) and (4.3),
respectively.

It follows from (3.13), (3.17), (3.23) and (3.24) that the functional j, (4.14), satisfies condi-
tion (4.4)(a). We use again (3.40), (3.41) and (4.14) to find

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

≤ c2
0Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V , ∀u1,u2,v1,v2 ∈ V , (4.15)



108 Tedjani Hadj Ammar, J. Nonl. Evol. Equ. Appl. 2020 (2020) 95–115

which shows that the functional j satisfies condition (4.4)(b) on X = V . Moreover, using (3.25)
and, keeping in mind that η ∈ C(0, T ;V ), we deduce from (4.13) that fη ∈ C(0, T ;V ), i.e.,
fη satisfies (4.5). Finally, we note that (3.18) shows that condition (4.6) is satisfied. Using now
(4.11)–(4.14) we find that Lemma 4.2 is a direct consequence of Theorem 4.1. �

In the second step, we use the displacement field uη obtained in Lemma 4.2 and we consider the
following variational problem.

Problem PVϕ
η . Find the electric potential field ϕη : [0, T ]→W such that

2∑
`=1

(B`∇ϕ`η(t),∇φ`)H`−
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` = (q(t), φ)W , ∀φ ∈W, a.e. t ∈ (0, T ). (4.16)

We have the following result.

Lemma 4.3 Problem PVϕη has a unique solution ϕη which satisfies the regularity (3.44).

Proof. We define a bilinear form: b(., .) : W ×W → R such that

b(ϕ, φ) =

2∑
`=1

(B`∇ϕ`,∇φ`)H` , ∀ϕ, φ ∈W. (4.17)

We use (3.4), (3.5), (3.12) and (4.17) to show that the bilinear form b(., .) is continuous, symmetric
and coercive on W, moreover using (3.20) and the Riesz representation theorem we may define an
element qη : [0, T ]→W such that

(qη(t), φ)W = (q(t), φ)W +
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` , ∀φ ∈W, t ∈ (0, T ).

We apply the Lax-Milgram Theorem to deduce that there exists a unique element ϕη(t) ∈ W such
that

b(ϕη(t), φ) = (qη(t), φ)W , ∀φ ∈W. (4.18)

We conclude that ϕη is a solution of Problem PVϕ
η . Let t1, t2 ∈ [0, T ], it follows from (4.16) that

‖ϕη(t1)− ϕη(t2)‖W ≤ C
(
‖uη(t1)− uη(t2)‖V + ‖q(t1)− q(t2)‖W

)
. (4.19)

We also note that assumptions (3.25) and uη ∈ C1(0, T ;V ), inequality (4.19) implies that ϕη ∈
C(0, T ;W ). �

In the third step, we use the displacement field uη obtained in Lemma4.2 and we consider the
following initial-value problem.

Problem PVβ
η . Find the adhesion field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −
(
βη(t)

(
γν(Rν([uην(t)]))2 + γτ |Rτ ([uητ (t)])|2

)
− εa

)
+
, a.e. t ∈ (0, T ), (4.20)

βη(0) = β0. (4.21)

We have the following result.
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Lemma 4.4 There exists a unique solution βη ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z to Problem PVβη .

Proof. For the simplicity we suppress the dependence of various functions on Γ3, and note that the
equalities and inequalities below are valid a.e. on Γ3. Consider the mapping Fη : [0, T ]×L2(Γ3)→
L2(Γ3) defined by

Fη(t, β) = −
(
β
[
γν(Rν([uην(t)]))2 + γτ |Rτ ([uητ (t)])|2

]
− εa

)
+
,

for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the properties of the truncation operator Rν
and Rτ that Fη is Lipschitz continuous with respect to the second variable, uniformly in time.
Moreover, for all β ∈ L2(Γ3), the mapping t→ Fη(t, β) belongs to L∞(0, T ;L2(Γ3)). Thus using
the Cauchy-Lipschitz theorem (see, [20, p. 48]) we deduce that there exists a unique function βη ∈
W 1,∞(0, T ;L2(Γ3)) as a solution to the Problem PVβ

η . Also, the arguments used in Remark 3.1
show that 0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set Z,
we find that βη ∈ Z, which concludes the proof of the lemma. �

In the fourth step we let λ = (λ1, λ2) ∈ C(0, T ;E0) be given and consider the following initial-
value problem for the temperature.

Problem PVθ
λ. Find the temperature θλ = (θ1

λ, θ
2
λ) : [0, T ]→ E0 such that

2∑
`=1

(θ̇`λ(t), ξ`)L2(Ω`)+a0(θ`λ(t), ξ)=
2∑
`=1

(λ`(t)+ρ`(t), ξ`)L2(Ω`), ∀ξ ∈ E0, a.e. t ∈ (0, T ), (4.22)

θλ(0) = θ0. (4.23)

Lemma 4.5 There exists a unique solution θλ to the auxiliary problem PVθλ satisfying (3.45).

Proof. We observe that the expression (4.22) is uncoupled. By using some arguments of evolu-
tionary variational equations (see, e.g., [12]), it follows that there exists a unique solution to (4.22)
satisfying (4.23) and the regularity (3.45). �

Finally as a consequence of these results and using the properties of the operator E`, the operator
F `, the functional jad, and the functional Θ`, for t ∈ [0, T ], we consider the element

Λ(η, λ)(t) =
(
Λ1(η, λ)(t), Λ2(η, λ)(t)

)
∈ V × E0, (4.24)

defined by the equations

(Λ1(η, λ)(t),v)V =
2∑
`=1

(∫ t

0
F `
(
t− s, ε(u`η(s)), θ`λ(s)

)
ds, ε(v`)

)
H`

+

2∑
`=1

(
(E`)∗∇ϕ`η, ε(v`)

)
H` + jad(βη(t),uη(t),v), ∀v ∈ V , (4.25)

Λ2(η, λ)(t) =
(

Θ1
(
σ1
ηλ(t), ε(u1

η(t)), θ
1
λ(t)

)
, Θ2

(
σ2
ηλ(t), ε(u2

η(t)), θ
2
λ(t)

))
. (4.26)
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Here, for every (η, λ) ∈ C(0, T ;V × E0), uη, ϕη and βη, θλ represent the displacement field,
the potential electric field, the bonding field and the temperature field obtained in Lemmas 4.2, 4.3,
4.4 and 4.5 respectively, and σ`ηλ denotes by

σ`ηλ(t) = G`ε(u`η(t)) + (E`)∗∇ϕ`η +

∫ t

0
F `
(
t− s, ε(u`η(s)), θ`λ(s)

)
ds in Ω` × (0, T ). (4.27)

We have the following result.

Lemma 4.6 There exists a unique (η∗, λ∗) ∈ C(0, T ;V × E0), such that Λ(η∗, λ∗) = (η∗, λ∗).

Proof. Let (η1, λ1), (η2, λ2) ∈ C(0, T ;V ×E0) and denote by ui, ϕi, βi, θi and σi, the functions
obtained in Lemmas 4.2, 4.3, 4.4, 4.5 and the relation (4.27) respectively, for (η, λ) = (ηi, λi),
i = 1, 2. Let t ∈ [0, T ]. Using (3.9), (3.11), (3.22) and the definition of Rν ,Rτ , we have

‖Λ1(η1, λ1)(t)− Λ1(η2, λ2)(t)‖2V ≤
2∑
`=1

‖(E`)∗∇ϕ`1(t)− (E`)∗∇ϕ`2(t)‖2H`

+
2∑
`=1

∫ t

0

∥∥F `(t− s, ε(u`1(s)), θ`1(s)
)
−F `

(
t− s, ε(u`2(s)), θ`2(s)

)∥∥2

H` ds

+ C‖β2
1(t)Rν([u1ν(t)])− β2

2(t)Rν([u2ν(t)])‖2L2(Γ3)

+ C‖β2
1(t)Rτ ([u1τ (t)])− β2

2(t)Rτ ([u2τ (t)])‖2L2(Γ3).

Therefore,

‖Λ1(η1, λ1)(t)− Λ1(η2, λ2)(t)‖2V ≤ C
(∫ t

0
‖u1(s)− u2(s))‖2V ds

+

∫ t

0
‖θ1(s)− θ2(s))‖2E0

ds + ‖ϕ1(t)− ϕ2(t)‖2W + ‖β1(t)− β2(t)‖2L2(Γ3)

)
. (4.28)

Recall that above u`ην and u`ητ denote the normal and the tangential component of the function u`η
respectively. By similar arguments, from (4.26), (4.27) and (3.10) it follows that

‖Λ2(η1, λ1)(t)− Λ2(η2, λ2)(t)‖2E0

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0
‖u1(s)− u2(s))‖2V ds+ ‖θ1(t)− θ2(t))‖2E0

+

∫ t

0
‖θ1(s)− θ2(s))‖2E0

ds+ ‖ϕ1(t)− ϕ2(t)‖2W
)
. (4.29)

It follows now from (4.28) and (4.29) that

‖Λ(η1, λ1)(t)− Λ(η2, λ2)(t)‖2V ×E0

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0
‖u1(s)− u2(s)‖2V ds+ ‖θ1(t)− θ2(t)‖2E0

+

∫ t

0
‖θ1(s)− θ2(s)‖2E0

ds+ ‖ϕ1(t)− ϕ2(t)‖2W + ‖β1(t)− β2(t)‖2L2(Γ3)

)
. (4.30)
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Also, since

u`i(t) =

∫ t

0
u̇`i(s) ds+ u`0(t), t ∈ [0, T ], ` = 1, 2,

we have

‖u1(t)− u2(t)‖V ≤
∫ t

0
‖u̇1(s)− u̇2(s)‖V ds

and using this inequality in (4.10) yields

‖u1(t)− u2(t)‖V ≤ C
(∫ t

0
‖η1(s)− η2(s)‖V ds+

∫ t

0
‖u1(s)− u2(s)‖V ds

)
. (4.31)

Next, we apply Gronwall’s inequality to deduce

‖u1(t)− u2(t)‖V ≤ C
∫ t

0
‖η1(s)− η2(s)‖V ds, ∀t ∈ [0, T ]. (4.32)

On the other hand, from the Cauchy problem (4.20)–(4.21) we can write

βi(t)=β0−
∫ t

0

(
βi(s)

(
γν(Rν([uiν(s)]))2 + γτ |Rτ ([uiτ (s)])|2

)
− εa

)
+
ds

and then∥∥β1(t)−β2(t)
∥∥
L2(Γ3)

≤ C
∫ t

0

∥∥β1(s)Rν([u1ν(s)])2 − β2(s)Rν([u2ν(s)])2
∥∥
L2(Γ3)

ds

+ C

∫ t

0

∥∥β1(s) |Rτ ([u1τ (s)])|2 − β2(s) |Rτ ([u2τ (s)])|2
∥∥
L2(Γ3)

ds.

Using the definition of Rν andRτ and writing β1 = β1 − β2 + β2, we get∥∥β1(t)−β2(t)
∥∥
L2(Γ3)

≤ C
(∫ t

0
‖β1(s)−β2(s)‖L2(Γ3) ds+

∫ t

0

∥∥u1(s)−u2(s)
∥∥
L2(Γ3)d

ds
)
. (4.33)

Next, we apply Gronwall’s inequality to deduce

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
∫ t

0
‖u1(s)− u2(s)‖L2(Γ3)d ds,

and from the relation (3.3) we obtain

‖β1(t)− β2(t)‖2L2(Γ3) ≤ C
∫ t

0
‖u1(s)− u2(s)‖2V ds. (4.34)

We use now (4.16), (3.4), (3.11) and (3.12) to find

‖ϕ1(t)− ϕ2(t)‖2W ≤ C‖u1(t)− u2(t)‖2V . (4.35)

From (4.22) we deduce that

(θ̇1 − θ̇2, θ1 − θ2)E0 + a0(θ1 − θ2, θ1 − θ2) +
(
λ1 − λ2, θ1 − θ2

)
E0

= 0, a.e. t ∈ (0, T ).

We integrate this equality with respect to time, using the initial conditions θ1(0) = θ2(0) = θ0 and
inequality a0(θ1 − θ2, θ1 − θ2) ≥ 0, to find

1

2
‖θ1(t)− θ2(t)‖2E0

≤
∫ t

0

(
λ1(s)− λ2(s), θ1(s)− θ2(s)

)
E0

ds,
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which implies that

‖θ1(t)− θ2(t)‖2E0
≤
∫ t

0
‖λ1(s)− λ2(s)‖2E0

ds+

∫ t

0
‖θ1(s)− θ2(s)‖2E0

ds.

This inequality combined with Gronwall’s inequality leads to

‖θ1(t)− θ2(t)‖2E0
≤ C

∫ t

0
‖λ1(s)− λ2(s)‖2E0

ds, ∀t ∈ [0, T ]. (4.36)

We substitute (4.32), (4.34), (4.35) and (4.36) in (4.30) to obtain

‖Λ(η1, λ1)(t)− Λ(η2, λ2)(t)‖2V ×E0
≤ C

∫ t

0
‖(η1, λ1)(s)− (η2, λ2)(s)‖2V ×E0

ds.

Reiterating this inequality m times we obtain

‖Λm(η1, λ1)− Λm(η2, λ2)‖2C(0,T ;V ×E0) ≤
CmTm

m!
‖(η1, λ1)− (η2, λ2)‖2C(0,T ;V ×E0).

Thus, for m sufficiently large, Λm(., .) is a contraction on the Banach space C(0, T ;V × E0), and
so Λ(., .) has a unique fixed point. �

Now, we have all the ingredients to prove Theorem 3.2.

Proof. Existence. Let (η∗, λ∗) ∈ C(0, T ;V × E0) be the fixed point of Λ(., .) and denote

u∗ = uη∗ , ϕ∗ = ϕη∗ , β∗ = βη∗ , θ∗ = θλ∗ , (4.37)

σ`∗ = A`ε(u̇`∗) + G`ε(u`∗) + (E`)∗∇ϕ`∗ +

∫ t

0
F `
(
t− s, ε(u`∗(s)), θ`∗(s)

)
ds, (4.38)

D`
∗ = E`ε(u`∗)− B`∇ϕ`∗. (4.39)

We prove that {u∗,σ∗, ϕ∗, θ∗, β∗,D∗} satisfies (3.32)–(3.38) and the regularites (3.42)–(3.47). In-
deed, we write (4.8) for η = η∗ and use (4.37) to find

2∑
`=1

(A`ε(u̇`∗), ε(v`)− ε(u̇`∗(t)))H` +

2∑
`=1

(G`ε(u`∗), ε(v`)− ε(u̇`∗(t)))H`

+ jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)− jfr(u∗(t), u̇∗(t)) (4.40)

+ (η∗(t),v − u̇∗(t))V ≥ (f(t),v − u̇∗(t))V , ∀v ∈ V , a.e. t ∈ [0, T ].

We use equalities Λ1(η∗, λ∗) = η∗ and Λ2(η∗, λ∗) = λ∗, it follows from (4.25) and (4.26) that

(η∗(t),v)V =

2∑
`=1

(
(E`)∗∇ϕ`∗(t), ε(v`)

)
H` + jad(β∗(t),u∗(t),v)

+
2∑
`=1

(∫ t

0
F `
(
t− s, ε(u`∗(s)), θ`∗(s)

)
ds, ε(v`)

)
H`

, ∀v ∈ V , a.e. t ∈ (0, T ), (4.41)

λ`∗(t) = Θ`
(
σ`∗(t)−A`ε(u̇`∗(t)), ε(u`∗(t)), θ`∗(t)

)
, a.e. t ∈ (0, T ), ` = 1, 2. (4.42)
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We now substitute (4.41) in (4.40) to obtain

2∑
`=1

(A`ε(u̇`∗)(t), ε(v`)− ε(u̇`∗(t)))H` +
2∑
`=1

(G`ε(u`∗)(t), ε(v`)− ε(u̇`∗(t)))H`

+

2∑
`=1

(∫ t

0
F `
(
t− s, ε(u`∗(s)), θ`∗(s)

)
ds, ε(v`)− ε(u̇`∗(t))

)
H`

+ jad(β∗(t),u∗(t),v − u̇∗(t)) + jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)

− jfr(u∗(t), u̇∗(t)) +

2∑
`=1

(
(E`)∗∇ϕ`∗(t), ε(v`)− ε(u̇`∗(t))

)
H`

≥ (f(t),v − u̇∗(t))V , ∀v ∈ V , a.e. t ∈ [0, T ], (4.43)

and we substitute (4.42) in (4.22) to obtain

2∑
`=1

(θ̇`∗(t), ξ
`)L2(Ω`)+a0(θ`∗(t), ξ) =

2∑
`=1

(
λ`∗(t)+ρ

`(t), ξ`
)
L2(Ω`)

, ∀ξ ∈ E0, a.e. t ∈ (0, T ). (4.44)

We write now (4.16) for η = η∗ and use (4.37) to see that

2∑
`=1

(B`∇ϕ`∗(t),∇φ`)H` −
2∑
`=1

(E`ε(u`∗(t)),∇φ`)H` = (q(t), φ)W , ∀φ ∈W, t ∈ [0, T ]. (4.45)

Additionally, we use uη∗ in (4.20) and (4.37) to find

β̇∗(t) = −
(
β∗(t)

(
γν(Rν([u∗ν(t)]))2 + γτ |Rτ ([u∗τ (t)])|2

)
− εa

)
+
, a.e. t ∈ [0, T ]. (4.46)

The relations (4.37)-(4.46) allow us to conclude now that {u∗,σ∗, ϕ∗, θ∗, β∗,D∗} satisfies (3.32)–
(3.37). Next, (3.38) and the regularity (3.42), (3.44)–(3.46) follow from Lemmas 4.2, 4.3, 4.4, and
4.5. Since u∗, ϕ∗, β∗ and θ∗ satisfies (3.42), (3.44), (3.46) and (3.45) , respectively, it follows from
(4.38) that

σ∗ ∈ C(0, T ;H). (4.47)

For ` = 1, 2, we choose v = u̇ ± φ in (4.43), with φ = (φ1, φ2), φ` ∈ D(Ω`)d and φ3−` = 0, to
obtain

Divσ`∗(t) = −f `0(t), ∀t ∈ [0, T ], ` = 1, 2, (4.48)

where D(Ω`) is the space of infinitely differentiable real functions with a compact support in Ω`.
The regularity (3.43) follows from (3.14), (4.47) and (4.48). Let now t1, t2 ∈ [0, T ], by (3.11),
(3.12), (3.4) and (4.39), we deduce that

‖D∗(t1)−D∗(t2)‖H ≤ C (‖ϕ∗(t1)− ϕ∗(t2)‖W + ‖u∗(t1)− u∗(t2)‖V ) .

The regularity of u∗ and ϕ∗ given by (3.42) and (3.44) implies

D∗ ∈ C(0, T ;H). (4.49)

For ` = 1, 2, we choose φ = (φ1, φ2) with φ` ∈ D(Ω`)d and φ3−` = 0 in (4.45) and using (3.20)
we find

divD`
∗(t) = q`0(t), ∀t ∈ [0, T ], ` = 1, 2. (4.50)
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Property (3.47) follows from (3.14), (4.49) and (4.50).

Finally we conclude that the weak solution {u∗,σ∗, ϕ∗, θ∗, β∗,D∗} of the piezoelectric contact
Problem PV has the regularity (3.42)–(3.47), which concludes the existence part of Theorem 3.2.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the fixed point of
the operator Λ(., .) defined by (4.25)-(4.26) and the unique solvability of the Problems PVu

η , PVϕ
η ,

PVβ
η , and PVθ

λ. �
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