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Abstract. In this paper we study the dynamics of a single species population subjected to a migratory
phenomenon and whose initial distribution is unknown. The aim of this paper is to use the sentinel
method to control the migration.
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1 Introduction

We consider the model describing the dynamics of population with age dependence, spatial structure
and incomplete data. More precisely, let 2 be an open and bounded domain of RN, N € {1, 2, 3},
with boundary I" of class C*°. For the time 7' > 0 and the life expectancy A > 0 of an individual, set
U=(0,T)x(0,4),0 =UxQ,Qa=(0,4)xQ,Qr=(0,T)xQ,EX=UxT,% =UxTy,
where I'; is a non-empty open subset of I'. Then, consider the following two time scales varying
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equation:
oy Oy _ .
a—f—%—Ay—i-uy—O in @,
y(0,a,2) =y° +77° inQa,
A
y(t,0,x) :/ B(t,a,z)y(t,a,z)da in Qp, (1.1)
oy i Mo
5 =£+Z;Ai£i on Xy,
glgj =0 onX\ Xy,
where:

e y(t,a,x) is the distribution of a-year-old individuals at time ¢ at the point x € €2,

° % is the derivative of y with respect to v; here, v is the unit exterior normal to I,

e ((t,a,x) and u(t, a, x) are, respectively, the natural fertility and the natural death rates of age
a at time ¢t and position z € (),

e the boundary condition is unknown on the part 33; of the boundary and represents a pollution
with the structure of the form & + Zf\i 1 Ai&i- In this structure, the functions § and §;, 7 =
1,..., M, are known whereas the real numbers \;, i = 1, ..., M, are unknown,

e the initial distribution of individuals is unknown and its structure is of the form y° + 7°,
where the function ¢° is known and the term 77° is unknown.

System (1.1) describes the migratory phenomenon of single species population with age dependence
and spatial structure. We say that it is a system with incomplete data because the information on the
boundary condition as well as on the initial condition are partially or completely unknown. Here, the
pollution is isolated on the boundary I'; and we do not know with certainty the number of individuals
leaving the boundary I';. The missing term in the initial conditions expresses the fact that we do not
know when the migratory phenomenon begins. In what follows, we assume as in [6] that:

g€ L>®(Q)and B(t,a,z) > 0ae. inQ,

() sup / (182(t,a,2)| + [VB(t, a,2)) da < oo,
(t,2)€(0,T)x2 J (0,4)

there exists 0 € (0, A) such that 5(a, .,.) = 0 fora € (4, A),

(H2) pn€C([0,T] x [0,A] x Q) and pu(t,a,z) > 0ae. in Q,

t

lim [ p(r,a—t+7,2)dr = +ooforeach0 <t < Aandz € Q
a—A 0

a
(Hs) lini‘ u(t —a+ a,a,z)da = +ooforeach A <t <Tandz €2
a— 0

Vi e [L=(Q)]"
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We also assume that:

e 3% and 7° belong to L?(Q ), & and {Al belong to L?(X),

e the real numbers 7, \;, 1 < i < M, are sufficiently small and ||7°|| 12(Qa) < 1, and we set
A= (A1, ).

Under the above assumptions on the data, one can prove as in [12] that problem (1.1) has a unique
solution y = y(\,7) € L2(U; H*(£)) which satisfies

() forall ¢ € L2(U; HY(Q)),

oy 0
/ <¢, Yy y> dtda + / (VyVé + uye) dtdade
U 9a [ (@) (@) Q

M
:/ <§+Z)\ié>¢dtdadw,
! i=1

(i) y(0,a,2) =y + 7% ae. in Q 4,

(i) y(¢,0,x) fo B(t,a,z)y(t,a,r)da ae. in Qr.
Moreover, if we denote by I C R a neighbourhood of zero, the maps
T— y(A,7)and A, — y(A\, 1) (1 <i< M)

are in C*(I, L*(U; H(€2))). From now on, we denote by W (U) the space

W) = {p e @) %+ 3 e i@ ) 12

where (H'(Q))’ is the dual of H*(Q).

Remark 1 Notice that if 1 satisfies (Hs) and if p € L*(U; H'(Q)) is such that % + % —Ap+pp €
L?(Q), then we have

Ape LX(U; HY(Q)), wupeLl*(Q)c L*(U; H ()

and

dp | 9p - : ;
5 T 50 € LU HTH(Q)) € LX(U; (HY(Q)))-

This implies that p € W (U).

Remark 2 Note that if a function p belongs to W(U), then (p(O, ,.),p(.,0,.)) and
(p(T,.,.), p(., A,.)) exist and belong to L*((0, A); L?(2)) x L2((0,T); L?(2)) (see [6]).
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For more literature on the model describing the dynamics of population with age dependence
and spatial structure as well as for some existence results on such problems, we refer for instance
to [3, 4, 6, 12] and the references therein. For the model (1.1), we are interested in identifying the
parameters )\; without any attempt at computing 74°. To identify these parameters, we use the theory
of sentinel in a general framework. More precisely, let O be a non-empty open subset of (2 and let
y =1y(t,a,x; N\, 7) = y(A, 7) be the solution of (1.1). Then, for any non-empty open subset w of {2
such that O Nw # 0, we build a function S(\, 7) which depends on the solution of the following
problem: Given hg € L?(U x O), find w € L*(U x w) such that

(1) the function S defined by

S()\,T):// hoy(t,a,x; \, ) dtdad:):—l—//wy(t,a,x;)\,T)dtdad:U (1.3)
UJoO UJw

satisfies

e S is stationary to the first order with respect to the missing term 77°:

gf(o,()) = 0 forall °, (1.4)

e S is sensitive to the first order with respect to the pollution terms \;&;:

%(0,0) — e, 1<i< M, (1.5)

where c;, 1 <1 < M, are given constants not all identically zero,

(ii) the control w is of minimum norm in LQ(U X w) among “the admissible controls,” i.e.,
HwHLQ(UXw) :gléi%HEHLQ(UXw)? (16)

where E = {w € L*(U x w) : (w, S(w)) satisfies (1.3), (1.4), (1.5)}.

Remark 3 To estimate the parameters \;, one proceeds as in [14]: Assume that the solution of (1.1)
when A = 0 and 7 = 0 is known. Then, one has the following information

M o8
S(A 1) = 8(0,0) & Y Aizy(0,0).
i=1 t

Therefore, fixing i € {1,..., M} and choosing

oS ., 0S8
87)\]-(0’0) = 0forj # i, and 6—/\i(0,0) = ¢,

one obtains the following estimate of the parameter \;:

N~ (SO 7) — S(0,0)).

&

Remark 4 J. L. Lions [7] refers to the function S as a sentinel with given sensitivity c;. In (1.5), the
numbers c; are chosen according to the importance which is conferred to the component &; of the
pollution.
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Remark 5 Notice that for the J. L. Lions’ sentinels theory, the observatory O C () is also the support
of the control function w.

For more information on the theory of sentinel, we refer to [7, 8, 9, 10, 11, 13] and the references
therein. By yo = y(0,0) € W(U) we denote the solution of (1.1) when A = 0 and 7 = 0, and
moreover by y, and y,, we denote the derivatives of y at (0, 0) with respect to 7 and \;, respectively,
ie.,

= Ly = 0,0 =0
or

and

0
y;w = 8)\iy(/\,7')’7' = O,)\i =0.

Then, y and y,, are, respectively, solutions of

( Oy. | Oy, .
-A T r =0 )
ot + 94 Yr + 1y in Q)
yT(Ovaa $) = :UO in QA7
A (1.7)
yT(t,O,x) = B(taavx)yT(taavx) da in QT?
0
0
azj; =0 on X,
and
Oyx, , Oyx, .
7 1 A ) = O
% T a Yxn;, T 1Y, in Q,
Z//\i((),%iﬁ) =0 in QA7
A (1.3)
Yy, (t,0,z) = / B(t,a,z)yy,(t,a,x)da in Qr,
0
oy, »
(91/ = giXEl on 27

where by x x we denote (here and in the sequel) the characteristic function of the set X. Under the as-
sumptions (H;)—(H3), we have on the one hand that (1.7) has a unique solution 3, € L?(U; H'(Q2))
because 3° € L?(Q4) and, on the other hand, because & € L?(%4), that (1.8) admits a unique
solution yy, € L?(U; HY(Q)) (see [6, 12, 3]). From now on, we assume that

the functions gxgl, 1 < i < M, are linearly independent (1.9)
and we set

Y = Span{yx, Xw, - - - Yan Xew ) (1.10)

that is, Y is the vector subspace of L?(U x w) generated by the M functions {@/)\in}ij\i |- Further,

Yy = Y is the vector subspace of L?(U x w) generated by the M functions {%yAin}?ip where
0 is a positive function precisely defined later on (see (3.6)).

Remark 6 We will prove in Lemma 1 that the functions {yAin}?il and {%y;w Xw}?il are linearly
independent.
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We denote by Y+ the orthogonal of Y in L?(U x w). Assume that

any function k£ € Y such that
Ok + Ok _Ak+pk=0inU xQandk=0inU x w (1.11)

is identically zero in U x €.

We now consider the following controllability problem: Given hq € L*>(U x O), wg € Yy, find
v € L*(U x w) such that

veyvy"t, (1.12)
and if ¢ = q(t,a,x,v) is a solution of
(0 0 _
T2 A+ g = Ba(t,0,2) + hoxo + (wo — v)xw inQ,
at  Oa
9q
5 =0 on 2, (113)
q(T,a,z) =0 inQu4,
Q(tv Aa x) =0 in QT7
q satisfies
q(0,a,z,v) =01in Q 4. (1.14)

Remark 7 Let us notice that if v exists, the set
&= {@ eY't: (0,9 =q(t a x0)) satisfies (1.13)—(1.14)}

is a non-empty, closed, and convex subset of L*>(U x w). Therefore, there exists v € £ of minimal
norm.

The problem (1.12)—(1.14) is a null-controllability problem with constraint on the control. When
Y+ = L?(U x w), this problem becomes a null-controllability problem without constraint on the
control. This kind of problems has been studied by many authors with various methods [1, 2]. In this
paper we solve the null internal controllability problem with constraint on the control (1.12)—(1.14).
This allows us to prove the existence of the sentinel for given sensitivity (1.3)—(1.6). More precisely,
we have the following result.

Theorem 1 Let Q) be a bounded open subset of RN with boundary T of class C*°. Let T'1 be a non-
empty open subset of T'. Let also O and w be two non-empty subsets of 2 such that ONw # ). Assume
that the assumptions of the data of the system (1.1) are satisfied. Assume also that (1.9) and (1.11)
hold. Then, the existence of sentinel (1.3)—(1.6) holds if and only if the internal null-controllability
problem with constraints on the control (1.12)—(1.14) has a solution.

To prove the internal null-controllability problem with constraints on the control (1.12)—(1.14),
we use an inequality of Carleman adapted to the constraints that we establish by means of a global
Carleman inequality. More precisely we prove the following result.
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Theorem 2 Assume that the hypotheses of Theorem 1 are satisfied. Then, there exists a positive
real weight function 0 (a precise definition of 6 will be given later on) such that for any function
ho € L2(U x O) with Ohg € L*(U x O) there exists a unique control v € L*>(U x w) such that
(v, q) with ¢ = q(v) is a solution of the null internal controllability problem with constraint on the
control (1.12)—(1.14) and provides a control 0 = wgX., — U of the sentinel problem satisfying (1.6).
Moreover, the control W is given by

w = P(wo) + (I = P)(pxw), (1.15)

where P is the orthogonal projection operator from L?(U x w) into Y, wy € Yy depends on ho and
¢i, i € {1,..., M}, and will be precisely determined in (2.7), and p satisfies

(0p  Op PO

T — ;
N +8a p—I—gf 0 inQ,
875 = on X, (1.16)

A
At,0,2) = /O B(t,a,0)(t, a,x) da  in Qr.

\

The rest of the paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.
In Section 3, we study the internal null-controllability problem with constraint on the control
(1.12)—(1.14) and prove Theorem 2.

2 Equivalence between the sentinel problem and the controllability
problem with constraint on the control

In this section we prove Theorem 1. But before going further, we need the following result.

Lemma 1 Assume that (1.9) and (1.11) hold. Then, the functions yx,xw, 1 < 1 < M, are linearly
independent. Moreover, the functions %y/\in 1 <4 < M, are also linearly independent.

Proof. Leta; € R,1 < i < M, be such that > caiya. xw = 0. Set k = S iy, xw. Then,
using (1.8), k is such that

ok Ok

E—F%—Ak—i—ukzo in Q,
E(0,a,z) =0 inQa,
A
0.2) = [ Blta,o)k(ta.)da inQr, @1
0
M
ok ~
% - Z aigile on 2)
i=1
k=0 inU x w.

Assumption (1.11) allows us to say that £ = 0 in Q. Therefore, we deduce that Zf‘il aiéxgl =0
on X, and it follows from (1.9) that a; = 0, 1 < ¢ < M. The second assertion of the lemma follows
immediately. U
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Now, let us prove Theorem 1. To this end, we interpret (1.4) and (1.5). Actually, in view of (1.3),
the stationary condition (1.4) and, respectively, the sensitivity conditions (1.5) hold if and only if

// hodetdadx—F//wdetdadazzoforallgjowithH@OHLQ(Q <L Q2
uJo UJw A

and
/ / hoyy, dtdadz —|—/ / wyy, dtdadzr =¢;, 1 <7 < M. (2.3)
uJo UJw
Therefore, in order to transform equation (2.2), we consider the following linear adjoint problem:
0 0 .
_67:51 - (72 —Aq +gq = Bq(t,0,2) + hoxo + wxw in@Q,
7 _
5 =0 on E, (24)
q(T,a,z) =0 in Q 4,
q(t,A,z) =0 in Qr.

Since hoxo + wx. € L?(Q), and the assumptions (H;)—(H3) hold, we can prove that the problem
(2.4) has a unique solution ¢ € L%(U, H'(€2)). Therefore, ¢ € W(U) and, in view of Remark 2,
(a(0,.,.),4(-,0,.)) and (¢(T;, ., .),q(., A, .)) exist and belong to L*(Q) x L*(Qr).

Now multiplying both sides of the differential equation in (2.4) by y,, that is, the solution of
(1.7), and integrating by parts in @, we get for all 7 € L?(Q4) that

A
//hodetdadm—i—/ /wdetdadx:/ /q(O,a,a:)@Odad:c.
UJo UJw 0 Q

Thus, the condition (1.4) (or (2.2)) holds if and only if
q(0,a,z) =0in Q 4. (2.5)

Then, multiplying both sides of the differential equation in (2.4) by y,,, that is, the solution of (1.8),
and integrating by parts in (), we have

//howi dtdadx—i—/ /wy)\i dtdadm—/ g€ dtdadz, 1 <4 < M.
UJO UJw 31

Thus, the condition (1.5) (or (2.3)) is equivalent to

/ q@ dtdadr =¢;, 1 <i < M. (2.6)
P

1
</ / gUNIN dtdada:) N
UJw 1<i,j<M

Since this matrix is symmetric positive definite, there exists a unique wg € Yjy such that

C —/ / hoyy, dtdadz :/ /woyki dtdadz, 1 <1i < M. 2.7
UJO UJw

Consequently, combining (2.3) with (2.7), we observe that condition (1.5) (or the constraints (2.6))
holds if and only if

Now, consider the matrix

w—woz—veYL,

where Y is given by (1.10). Replacing w by wg—v in the second expression of (2.4), we obtain (1.13).
We have just proved that the sentinel problem (1.3)—(1.6) holds if and only if null-controllability
problem with constraints on the control (1.12)—(1.14) has a solution.
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Remark 8 If £ is the set of admissible controls v € LQ(U X w) such that (1.12)—(1.14) are satisfied,
then & is a closed convex subset of L*(U x w). Since wg — & is also a closed convex subset of
L*(U x w), we can obtain w to be of minimum norm in L*>(U x w) by minimizing the norm of
wo — v when v € E. Then, the pair (v, q(v)) satisfying (1.12)—(1.14) necessarily provides a control
w satisfying (1.6).

3 Study of the internal null-controllability problem with constraints
on the control

3.1 An adapted observability inequality

The observability inequality we are looking for is a consequence of Carleman’s inequality. We
consider an auxiliary function ¢ € C?(£2) which satisfies the following conditions:

P(x) > 0forevery x € Q,¢(z) = 0forevery x € I, |[Vi)(z)| # 0 forevery x € Q \ wp, (3.1)

where wq denotes any open set such that wy € w. Such a function ) exists according to A. Fursikov
and O. Yu. Imanuvilov [5].

For any positive parameter A we define the following weight functions:

() is
t = — .
¢ - .
SO( 70’71’.) at(T_t)7 ( )
e2AM Yl — oAU () 24
t = .
n(t, a,x) AT (3.4)
. 62/\H¢Hoo —_ 6_/\1/}(11) 3 5
t = .
n(t, a,z) T —1) 3.5)
Since ¢ does not vanish on (), we set
1 e > 27 ~ 2 ~ 927\ (, 3.—2 ~3 —2si
A K ;T %> (e 4 o), (P2 4 GPe=2T) | (3.6)
and we adopt the following notation
0 0
L=—+—-A I
ot " oa SR
. 0 0

V:{pGCOO(Q):Z’O:OOHE}.

v

Using the introduced notations and the definition of # given by (3.6), we obtain the following
Carleman inequality.
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Proposition 1 (Global Carleman inequality) Let 1), ¢, @, n and 1 be defined respectively by (3.1),
(3.2)—(3.5). Then, there exist A\, > 1, s, > 1 and C > 0 such that for any A\ > \,, for any s > s,
and for any p € V the following inequality holds:

8—2577 —2377
J( )5

+ s)\2/ (e~ 257 4 Fe=27) |Vp|2 dtdadz
Q

+ |Ap >dtdadx

+ 321 /Q(g03e_25” + @B 2M) |p|? dtdadz (3.8)

<C </ (€725 4 257 | Lp|? dtdadx)
Q

+C <s3)\4/ /(4,036_2877 + G2 |p|? dtdadx).
UJw
Proof. See [15]. O

Since €27, e7257, pFe~25M and @Fe =27 with k > 0 are bounded, it is immediate that g,
e 25 4 =25 and Be 25" 4 F3e 257 are also bounded in Q. Hence, from Proposition 1, we obtain
the following result.

Proposition 2 Let 6 be defined by (3.6). Then, there exist A\, > 1, s, > 1 and C' > 0 such that for
any A > X, for any s > s, and for any p € V),

1 1
L <’+ + |Ap| ) dtdadx+/Q€2|vp|2 dtdadx+/Qezp12 dtdadz

gc(/ |Lp|? dtdadx—l—/ / Ip)? dtdadx).
Q UJw

Lemma 2 Assume that (1.9) holds. Let Y be the real vector subspace of L*(U x w) of finite
dimensions defined in (1.10). Then, any function p such that

3.9

Op Op .

E—F;—Ap—i—up 0 inQ,
@:0 onyl, (3.10)
ov
PXw €Y,

is identically zero.

Proof. For any p satysfying (3.10), there exist a;, 1 < ¢ < M, such that p = sz\i1 oy, iInU X w.
Wesetz = p — Zf\il yx,. Then, in view of (1.8), we have

0z 0z .

a—&—a——Az—i—uz 0 inQ,
%:0 on X, (.10
ov

z2=0 inU X w.
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Then, it follows from (1.11) that z = 0 in ). Consequently, p = Ef\i 1 Yy, - Since % =0on X,

we deduce from (1.8) that Zf\i 1 aigi = 0in Y. Therefore, assumption (1.9) allows us to conclude
that o; = 0 for 1 < ¢ < M. This means that p = 0 in Q. O

Proposition 3 (Adapted Carleman inequality) Assume that (1.9) holds. Let Y be the real vector
subspace of L*(U x w) of finite dimensions defined in (1.10) and let P be the orthogonal projection
operator from L*(U x w) into Y. Let also 0 be the function defined by (3.6). Then, there exist
numbers \g > 1, sg > 1, C' > 0 such that for fixed A > \g and s > sg and for any p € V,

1
//QW dtdadx§c</ / |Lp|? dtdadx+//|,0Xw—Pp\2 dtdadx). (3.12)
vJalt vJa UJw

Proof. As in [8], we use a well-known compactness-uniqueness argument and the inequality (3.9).
Indeed, suppose that (3.12) does not hold. Then, for any j € N* there exists p; € V such that

1
/U/QHQW? dtdadz = 1, (3.13)
// |L,0j]2 dtdadz <
UJQ
//\pj—ijyQ dtdadz <
UJw

In what follows, we prove in three steps that (3.13)—(3.15) yield a contradiction.

) (3.14)

SR SR

(3.15)

Step 1. We have

1 1 1
/U/ ﬁ|ij|2 dtdadz 32/[]/ 9—2|p]-|2 dtdadm~|—2/U/ G, — Pp;|? dtdadz.

Since 9% is bounded, using (3.13) and (3.15), it follows that there exists a positive constant C' such
that

1
// 7 |Pp;|? dtdadz < C. (3.16)
UJw
Therefore, because Y is a finite dimensional vector subspace of L?(U x w), we deduce that
// |Pp;|? dtdadz < C. (3.17)
UJw

As pxw = Ppxw + (PXw — PpXw), using (3.15) and (3.17), we obtain

1931172 (1 ) < C- (3.18)
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1 1
12 <02,U ><w> = {peLQ(U X w): // §]p|2 ditdadz < oo}
UJw

Then, in view of (3.13) and (3.18), we deduce from (3.9) that (% + %), (pj)s (Vpj;) and (Ap;)
are bounded in L? (9%, U x w). Let us take a subsequence still denoted by (p;) such that

Step 2. Let

. 1
pj — p weakly in L2 <92, U x w>. (3.19)

Then, it follows from (3.2)—(3.5) and the definition of % given by (3.6) that (p;) is bounded in
L*((B,T — B) x (7, A —~); H*(Q2)) for any 3 > 0 and any y > 0. In particular, for all 3 > 0 and
v > 0, we have p; — p weakly in L*((3,T — 3) x (v, A —v) x ), which implies that p; — p
weakly in D'(Q). Therefore, we get from (3.14) and (3.18) that

Lp; — Lp = 0 strongly in L*(U x Q), (3.20)
p; — p weakly in L*(U x w). (3.21)

And, since P is a compact operator, it follows from (3.21) that

Pp; — Pp strongly in L*(U x w). (3.22)
In view of (3.15), we also have

piXw — Ppj — 0 strongly in L*(U x w). (3.23)

Thus, combining (3.22) and (3.23), we get

p; — Pp strongly in L*(U x w). (3.24)
Thanks to the uniqueness of the limit in LQ(U X w), the convergence relations (3.21) and (3.24)
imply that Pp = px,, . This means that px,, € Y. We thus have proved that p satisfies (3.10).

Hence, thanks to Lemma 2, p is identically zero. Therefore, (3.24) becomes

p; — 0 strongly in LA(U x w). (3.25)

Step 3. Since p; € V, it follows from the observability inequality (3.9) that

1
//2;)]-|2 dtdadxﬁC’(//\Lpﬂ2 dtdadw—l—//|pj]2 dtdadx).
vat vJa UJw

Therefore, passing in this latter inequality to the limit while using (3.20)—(3.25), we obtain

1
lim / — |p;|* dtdadz = 0.
UJw 62 !

Jj—00

This contradicts (3.13). t
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3.2 Proof of Theorem 2

In this subsection, we are concerned with the proof of Theorem 2, that is, the optimality system for
the control ¥ such that the pair (v} ¢) satisfies (1.12)—(1.14). A classical way to derive this optimality
system is the method of penalization due to J. L. Lions [7]. The proof of Theorem 2 will be divided
in three steps.

Step 1. Let wq be defined by (2.7). If v € Y and q is solution of (1.13), then ¢(0, .,.) € L?*(Q4)
and we can define the functional

1 1
Je(v) = 5 [lwd — VlZ2@sw) + 2¢ 1400, -, Wiz - (3.26)

We consider the optimal control problem: Find v, € YL such that

Je(ve) = min Je(v). (3.27)
veY+

Since Y is a closed and convex subset of L2(U x w), it is classical to prove that there exists a
unique solution to (3.27). If by g. we denote the solution of (1.13) corresponding to v, using an
adjoint state p., we have that the triplet (g, pe, v¢) is a solution of the first order optimality system:

L*QE = BQG(ta 07 l‘) + hOXO + (wo - U€)Xw in Q7

2 =0 on X,
o (3.28)
¢e(T,a,2) =0 in Qa,
¢(t, 4,2) =0 in Qr,
( LpE = O in Q,
Ope
apu - on X,
1
Pe(O,a,a:) = EQE(O,G,$) in QA7 (329)
A
pe(t,0,z) = / B(t,a,x)pc(t,a,x)dtdadz in Qp,
0
Ve = (wOXw + peXw) - P(IUOXW + pexw) = YJ‘, (3.30)

Step 2. Multiplying the state equation (3.28) by p. and integrating by parts over (), we get

1
*||Qe(07->-)||%2(QA) :/ / hgpedtdadm+/ /(wo—ve)pedtdadx,
€ UJo UJw
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which in view of (3.30) and the fact that v, € Y gives

1 2
6||q5(07-7-)||L2(QA)I/U/Ohopedtdadx

+ //(wg — V) (ve — wo + P(woXw + pexw)) dtdadx
UJw

:// hope dtdadz
UJO

= llwo = vell Lo wwy + 1PwoXw | L2 (1)
—i—//wopedtdad:v.
UJw

ve —wo = (I — P)pexe — P(woxw),

AsonU X w,

we have that

[[ve — w0||%2(wa) = |I(I - P)ﬂ&XWH%,?(wa) + ||P(w0Xw)”2Lz(wa)?

so that

1
100l + 10 = Phpoxeliry = | [ hopedtdada+ [ [ wopedtdada.

This implies that

1 9 2
p 9e (0, M z2(0.) + 1 = P)pexellz2(wxw)

(o) (L) (o) ()

If we apply the adapted Carleman inequality (3.12) to p., we obtain

1
// - lpe|? dtdada < C’// lpexw — Ppe|* dtdadz, (3.32)
vla 0 v

where C' > 0 is independent of €. From (3.31), the choice of wy € Yy and hypothesis on hg, we
deduce that

1= Pl <€ ([ [ (9h0)2>1/2+< L <ewo>2)1/2], (333)

L) (L for)) o
feden < €| ([ [ (9h0)2>1/2+< L/ <ewo>2)1/2]. (3.39)

and then

IN

1
E ||Q6(Oa ) ')HLQ(QA)
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Since ¢, satisfies (3.28), we can prove that

</U/O(9h0>2>1/2 + </U/w(9w0)2>1/2] . (3.36)

HQEXMH%Q(U;Hl(Q)) < C

In view of (3.32) and (3.33), we get

1
0™,

</ o )1/2 </ [ ow )1/2]- (3.37)

Using again (3.33) and the fact that % is bounded, we obtain

(/ / (Bho) >1/2+ ( /U /w (9w0)2>1/2]. (3.38)

Therefore, since Y is a finite dimensional vector subspace of L?(U x w), we deduce that

</U/O(9h0)2>1/2 + (/IJ/W(Hwo)Q)l/Z], (3.39)

from which we deduce by using (3.33) that

(/(1/0(9h0)2>1/2 + < /U /w (9w0)2>1/2]- (3.40)

U><Q)

1
*Pew
570

2(Uxw)

HPPeXme(wa) <C

1Pell L2 sy < €

Using (3.9), we have that

1 (|op e|?
/2 ’p+3p

1
+]Ape|2> dtdadx—k/QeszEF dtdadz

1
+/ ﬁlpf dtdadz < C// pe|* dtdadz.
Q UJw

Step 3. We prove the convergence of (v, g )e and (p¢). towards (v, g) and p as € — 0. According to
(3.35), (3.36) and (3.37) we can extract subsequences of (v, g ). (still called (v, g¢)) such that

(3.41)

ve — ¥ weakly in L*(U x w), (3.42)
ge — § weakly in L*(U; HY(2)), (3.43)

1 1

Ghe = weakly in L? (e’ Q). (3.44)

As v, belongs to Y+, which is a closed vector subspace of L?(U x w), we have
Tevt. (3.45)

From (3.43) and Remark 1 we have that ¢ € W (U). Hence, in view of Remark 2, we know that
the traces (¢(0, .,.),q(.,0,.)) and (¢(T, .,.),q(., A,.)) exist and belong to L?(Q 1) x L*(Qr). So,
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using (3.43) and (3.42) while passing (3.28) to the limit as ¢ — 0, we can prove that ¢ is a solution of

ST iUk u§=ﬁ§(ta0a$)+ho>{0+(wo—ﬁ)xw in @,
% =0 on 3, (3.46)
qT,a,x) =0 inQ4,
q(t,A,x) =0 in Qr,
and it follows from (3.34) that
qe(0,.,.) = §(0,.,.) = 0 weakly in L*(Q,). (3.47)

In view of (3.45), (3.46) and (3.47), (v, q) satisfies the null-controllability (1.12)—(1.14). From
(3.44),
pe — p weakly in D'(Q).

Consequently, using (3.29) and (3.41), we can prove that p satisfies

Lp=0 in @,
op
W 0 on X, (3.48)
A
p(t,0,z) = / B(t,a,z)p(t,a,z)dtdadz in Q.
0
From (3.40), we see that
pe — p weakly in L*(U x w), (3.49)
and therefore _
ve =0 = (I — P)(woxw + (p)Xw) Weakly in L*(U x w). (3.50)

We know on the one hand that (v, q) is a solution to null-controllability (1.12)—(1.14), and on the
other hand that there exists a unique ¥ € & such that wy — v is of minimal norm in L*(U x w). If we
denote by ¢ the corresponding solution to (1.13), we have ¢(0,.,.) = 0 and, as v € &,

1 2 o~ ]- ~112
5 ||w0 — U€||L2(U><w) < Je(Ue) < Je(v) = 5 HwO - /UHL2(U><UJ)

and

1 N 1

) [[wo — U|\L2(wa) < 9 [Jwo — Ue||L2(wa) :
Using (3.42),

~ .1
5 llwo =Pl 2wy < Himinf o flwo — vell 2 7o) -
Hence,
v="71

and

ve — 0 strongly in L*(U x w).

Writing p = p, we have
U= (I - P)(U}OXw + Z)\Xw)'
This end the proof of Theorem 2.
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