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Abstract. In this paper we study the dynamics of a single species population subjected to a migratory
phenomenon and whose initial distribution is unknown. The aim of this paper is to use the sentinel
method to control the migration.
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1 Introduction

We consider the model describing the dynamics of population with age dependence, spatial structure
and incomplete data. More precisely, let Ω be an open and bounded domain of RN , N ∈ {1, 2, 3},
with boundary Γ of class C∞. For the time T > 0 and the life expectancy A > 0 of an individual, set
U = (0, T )× (0, A), Q = U ×Ω, QA = (0, A)×Ω, QT = (0, T )×Ω, Σ = U ×Γ, Σ1 = U ×Γ1,
where Γ1 is a non-empty open subset of Γ. Then, consider the following two time scales varying
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equation: 

∂y

∂t
+
∂y

∂a
−∆y + µy = 0 in Q,

y(0, a, x) = y0 + τ ŷ0 in QA,

y(t, 0, x) =

∫ A

0
β(t, a, x)y(t, a, x) da in QT ,

∂y

∂ν
= ξ +

M∑
i=1

λiξ̂i on Σ1,

∂y

∂ν
= 0 on Σ \ Σ1,

(1.1)

where:

• y(t, a, x) is the distribution of a-year-old individuals at time t at the point x ∈ Ω,

• ∂y
∂ν is the derivative of y with respect to ν; here, ν is the unit exterior normal to Γ,

• β(t, a, x) and µ(t, a, x) are, respectively, the natural fertility and the natural death rates of age
a at time t and position x ∈ Ω,

• the boundary condition is unknown on the part Σ1 of the boundary and represents a pollution
with the structure of the form ξ +

∑M
i=1 λiξ̂i. In this structure, the functions ξ and ξi, i =

1, . . . ,M , are known whereas the real numbers λi, i = 1, . . . ,M , are unknown,

• the initial distribution of individuals is unknown and its structure is of the form y0 + τ ŷ0,
where the function y0 is known and the term τ ŷ0 is unknown.

System (1.1) describes the migratory phenomenon of single species population with age dependence
and spatial structure. We say that it is a system with incomplete data because the information on the
boundary condition as well as on the initial condition are partially or completely unknown. Here, the
pollution is isolated on the boundary Γ1 and we do not know with certainty the number of individuals
leaving the boundary Γ1. The missing term in the initial conditions expresses the fact that we do not
know when the migratory phenomenon begins. In what follows, we assume as in [6] that:

(H1)


β ∈ L∞(Q) and β(t, a, x) ≥ 0 a.e. in Q,

sup
(t,x)∈(0,T )×Ω

∫
(0,A)

(
|β2(t, a, x)|+ |∇β|2(t, a, x)

)
da <∞,

there exists δ ∈ (0, A) such that β(a, ., .) = 0 for a ∈ (δ, A),

(H2) µ ∈ C([0, T ]× [0, A]× Ω) and µ(t, a, x) ≥ 0 a.e. in Q,

(H3)


lim
a→A

∫ t

0
µ(τ, a− t+ τ, x) dτ = +∞ for each 0 < t < A and x ∈ Ω

lim
a→A

∫ a

0
µ(t− a+ α, α, x) dα = +∞ for each A < t < T and x ∈ Ω

∇µ ∈ [L∞(Q)]n.
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We also assume that:

• y0 and ŷ0 belong to L2(QA), ξ and ξ̂i belong to L2(Σ),

• the real numbers τ , λi, 1 ≤ i ≤ M , are sufficiently small and ‖ŷ0‖L2(QA) ≤ 1, and we set
λ = (λ1, . . . , λM ).

Under the above assumptions on the data, one can prove as in [12] that problem (1.1) has a unique
solution y = y(λ, τ) ∈ L2(U ;H1(Ω)) which satisfies

(i) for all φ ∈ L2(U ;H1(Ω)),∫
U

〈
φ,
∂y

∂t
+
∂y

∂a

〉
H1(Ω),(H1(Ω))′

dtda+

∫
Q

(∇y∇φ+ µyφ) dtdadx

=

∫
Σ1

(
ξ +

M∑
i=1

λiξ̂i

)
φ dtdadx,

(ii) y(0, a, x) = y0 + τ ŷ0 a.e. in QA,

(iii) y(t, 0, x) =
∫ A

0 β(t, a, x)y(t, a, x) da a.e. in QT .

Moreover, if we denote by I ⊂ R a neighbourhood of zero, the maps

τ 7−→ y(λ, τ) and λi 7−→ y(λ, τ) (1 ≤ i ≤M)

are in C1(I, L2(U ;H1(Ω))). From now on, we denote by W (U) the space

W (U) =

{
ρ ∈ L2(U ;H1(Ω)) :

∂ρ

∂t
+
∂ρ

∂a
∈ L2(U ; (H1(Ω))′)

}
, (1.2)

where (H1(Ω))′ is the dual of H1(Ω).

Remark 1 Notice that if µ satisfies (H2) and if ρ ∈ L2(U ;H1(Ω)) is such that ∂ρ∂t + ∂ρ
∂a−∆ρ+µρ ∈

L2(Q), then we have

∆ρ ∈ L2(U ;H−1(Ω)), µρ ∈ L2(Q) ⊂ L2(U ;H−1(Ω))

and
∂ρ

∂t
+
∂ρ

∂a
∈ L2(U ;H−1(Ω)) ⊂ L2(U ; (H1(Ω))′).

This implies that ρ ∈W (U).

Remark 2 Note that if a function ρ belongs to W (U), then (ρ(0, ., .), ρ(., 0, .)) and
(ρ(T, ., .), ρ(., A, .)) exist and belong to L2((0, A);L2(Ω))× L2((0, T );L2(Ω)) (see [6]).
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For more literature on the model describing the dynamics of population with age dependence
and spatial structure as well as for some existence results on such problems, we refer for instance
to [3, 4, 6, 12] and the references therein. For the model (1.1), we are interested in identifying the
parameters λi without any attempt at computing τ ŷ0. To identify these parameters, we use the theory
of sentinel in a general framework. More precisely, let O be a non-empty open subset of Ω and let
y = y(t, a, x;λ, τ) = y(λ, τ) be the solution of (1.1). Then, for any non-empty open subset ω of Ω
such that O ∩ ω 6= 0, we build a function S(λ, τ) which depends on the solution of the following
problem: Given h0 ∈ L2(U ×O), find w ∈ L2(U × ω) such that

(i) the function S defined by

S(λ, τ) =

∫
U

∫
O
h0y(t, a, x;λ, τ) dtdadx+

∫
U

∫
ω
wy(t, a, x;λ, τ) dtdadx (1.3)

satisfies

• S is stationary to the first order with respect to the missing term τ ŷ0:

∂S

∂τ
(0, 0) = 0 for all ŷ0, (1.4)

• S is sensitive to the first order with respect to the pollution terms λiξ̂i:

∂S

∂λi
(0, 0) = ci, 1 ≤ i ≤M, (1.5)

where ci, 1 ≤ i ≤M , are given constants not all identically zero,

(ii) the control w is of minimum norm in L2(U × ω) among “the admissible controls,” i.e.,

‖w‖L2(U×ω) = min
w∈E
‖w‖L2(U×ω), (1.6)

where E = {w ∈ L2(U × ω) : (w, S(w)) satisfies (1.3), (1.4), (1.5)}.

Remark 3 To estimate the parameters λi, one proceeds as in [14]: Assume that the solution of (1.1)
when λ = 0 and τ = 0 is known. Then, one has the following information

S(λ, τ)− S(0, 0) ≈
M∑
i=1

λi
∂S

∂λi
(0, 0).

Therefore, fixing i ∈ {1, . . . ,M} and choosing

∂S

∂λj
(0, 0) = 0 for j 6= i, and

∂S

∂λi
(0, 0) = ci,

one obtains the following estimate of the parameter λi:

λi ≈
1

ci
(S(λ, τ)− S(0, 0)).

Remark 4 J. L. Lions [7] refers to the function S as a sentinel with given sensitivity ci. In (1.5), the
numbers ci are chosen according to the importance which is conferred to the component ξi of the
pollution.
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Remark 5 Notice that for the J. L. Lions’ sentinels theory, the observatoryO ⊂ Ω is also the support
of the control function w.

For more information on the theory of sentinel, we refer to [7, 8, 9, 10, 11, 13] and the references
therein. By y0 = y(0, 0) ∈ W (U) we denote the solution of (1.1) when λ = 0 and τ = 0, and
moreover by yτ and yλi we denote the derivatives of y at (0, 0) with respect to τ and λi, respectively,
i.e.,

yτ =
∂

∂τ
y(λ, τ)|τ = 0, λi = 0

and

yλi =
∂

∂λi
y(λ, τ)|τ = 0, λi = 0.

Then, yτ and yλi are, respectively, solutions of

∂yτ
∂t

+
∂yτ
∂a
−∆yτ + µyτ = 0 in Q,

yτ (0, a, x) = ŷ0 in QA,

yτ (t, 0, x) =

∫ A

0
β(t, a, x)yτ (t, a, x) da in QT ,

∂yτ
∂ν

= 0 on Σ,

(1.7)

and 

∂yλi
∂t

+
∂yλi
∂a
−∆yλi + µyλi = 0 in Q,

yλi(0, a, x) = 0 in QA,

yλi(t, 0, x) =

∫ A

0
β(t, a, x)yλi(t, a, x) da in QT ,

∂yλi
∂ν

= ξ̂iχΣ1 on Σ,

(1.8)

where by χX we denote (here and in the sequel) the characteristic function of the set X . Under the as-
sumptions (H1)–(H3), we have on the one hand that (1.7) has a unique solution yτ ∈ L2(U ;H1(Ω))
because ŷ0 ∈ L2(QA) and, on the other hand, because ξ̂i ∈ L2(Σ1), that (1.8) admits a unique
solution yλi ∈ L2(U ;H1(Ω)) (see [6, 12, 3]). From now on, we assume that

the functions ξ̂iχΣ1 , 1 ≤ i ≤M , are linearly independent (1.9)

and we set
Y = Span{yλ1χω, . . . , yλMχω}, (1.10)

that is, Y is the vector subspace of L2(U × ω) generated by the M functions {yλiχω}
M
i=1. Further,

Yθ = 1
θY is the vector subspace of L2(U × ω) generated by the M functions

{
1
θyλiχω

}M
i=1

, where
θ is a positive function precisely defined later on (see (3.6)).

Remark 6 We will prove in Lemma 1 that the functions {yλiχω}
M
i=1 and

{
1
θyλiχω

}M
i=1

are linearly
independent.
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We denote by Y ⊥ the orthogonal of Y in L2(U × ω). Assume that
any function k ∈ Y such that
∂k
∂t + ∂k

∂a −∆k + µk = 0 in U × Ω and k = 0 in U × ω
is identically zero in U × Ω.

(1.11)

We now consider the following controllability problem: Given h0 ∈ L2(U × O), w0 ∈ Yθ, find
v ∈ L2(U × ω) such that

v ∈ Y ⊥, (1.12)

and if q = q(t, a, x, v) is a solution of

−∂q
∂t
− ∂q

∂a
−∆q + µq = βq(t, 0, x) + h0χO + (w0 − v)χω in Q,

∂q

∂ν
= 0 on Σ,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(1.13)

q satisfies
q(0, a, x, v) = 0 in QA. (1.14)

Remark 7 Let us notice that if v exists, the set

E =
{
v ∈ Y ⊥ : (v, q = q(t, a, x, v)) satisfies (1.13)–(1.14)

}
is a non-empty, closed, and convex subset of L2(U × ω). Therefore, there exists v ∈ E of minimal
norm.

The problem (1.12)–(1.14) is a null-controllability problem with constraint on the control. When
Y ⊥ = L2(U × ω), this problem becomes a null-controllability problem without constraint on the
control. This kind of problems has been studied by many authors with various methods [1, 2]. In this
paper we solve the null internal controllability problem with constraint on the control (1.12)–(1.14).
This allows us to prove the existence of the sentinel for given sensitivity (1.3)–(1.6). More precisely,
we have the following result.

Theorem 1 Let Ω be a bounded open subset of RN with boundary Γ of class C∞. Let Γ1 be a non-
empty open subset of Γ. Let alsoO and ω be two non-empty subsets of Ω such thatO∩ω 6= ∅. Assume
that the assumptions of the data of the system (1.1) are satisfied. Assume also that (1.9) and (1.11)
hold. Then, the existence of sentinel (1.3)–(1.6) holds if and only if the internal null-controllability
problem with constraints on the control (1.12)–(1.14) has a solution.

To prove the internal null-controllability problem with constraints on the control (1.12)–(1.14),
we use an inequality of Carleman adapted to the constraints that we establish by means of a global
Carleman inequality. More precisely we prove the following result.
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Theorem 2 Assume that the hypotheses of Theorem 1 are satisfied. Then, there exists a positive
real weight function θ (a precise definition of θ will be given later on) such that for any function
h0 ∈ L2(U × O) with θh0 ∈ L2(U × O) there exists a unique control v̂ ∈ L2(U × ω) such that
(v̂, q̂) with q̂ = q(v̂) is a solution of the null internal controllability problem with constraint on the
control (1.12)–(1.14) and provides a control ŵ = w0χω − v̂ of the sentinel problem satisfying (1.6).
Moreover, the control ŵ is given by

ŵ = P (w0) + (I − P )(ρ̂χω), (1.15)

where P is the orthogonal projection operator from L2(U × ω) into Y, w0 ∈ Yθ depends on h0 and
ci, i ∈ {1, . . . ,M}, and will be precisely determined in (2.7), and ρ̂ satisfies

∂ρ̂

∂t
+
∂ρ̂

∂a
−∆ρ̂+ µρ̂ = 0 in Q,

∂ρ̂

∂ν
= 0 on Σ,

ρ̂(t, 0, x) =

∫ A

0
β(t, a, x)ρ̂(t, a, x) da in QT .

(1.16)

The rest of the paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.
In Section 3, we study the internal null-controllability problem with constraint on the control
(1.12)–(1.14) and prove Theorem 2.

2 Equivalence between the sentinel problem and the controllability
problem with constraint on the control

In this section we prove Theorem 1. But before going further, we need the following result.

Lemma 1 Assume that (1.9) and (1.11) hold. Then, the functions yλiχω, 1 ≤ i ≤M , are linearly
independent. Moreover, the functions 1

θyλiχω, 1 ≤ i ≤M , are also linearly independent.

Proof. Let αi ∈ R, 1 ≤ i ≤ M , be such that
∑M

i=1 αiyλiχω = 0. Set k =
∑M

i=1 αiyλiχω. Then,
using (1.8), k is such that

∂k

∂t
+
∂k

∂a
−∆k + µk = 0 in Q,

k(0, a, x) = 0 in QA,

k(t, 0, x) =

∫ A

0
β(t, a, x)k(t, a, x) da in QT ,

∂k

∂ν
=

M∑
i=1

αiξ̂iχΣ1 on Σ,

k = 0 in U × ω.

(2.1)

Assumption (1.11) allows us to say that k = 0 in Q. Therefore, we deduce that
∑M

i=1 αiξ̂iχΣ1 = 0
on Σ, and it follows from (1.9) that αi = 0, 1 ≤ i ≤M . The second assertion of the lemma follows
immediately. �
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Now, let us prove Theorem 1. To this end, we interpret (1.4) and (1.5). Actually, in view of (1.3),
the stationary condition (1.4) and, respectively, the sensitivity conditions (1.5) hold if and only if∫

U

∫
O
h0yτ dtdadx+

∫
U

∫
ω
wyτ dtdadx = 0 for all ŷ0 with

∥∥ŷ0
∥∥
L2(QA)

≤ 1. (2.2)

and ∫
U

∫
O
h0yλi dtdadx+

∫
U

∫
ω
wyλi dtdadx = ci, 1 ≤ i ≤M. (2.3)

Therefore, in order to transform equation (2.2), we consider the following linear adjoint problem:

−∂q
∂t
− ∂q

∂a
−∆q + µq = βq(t, 0, x) + h0χO + wχω in Q,

∂q

∂ν
= 0 on Σ,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT .

(2.4)

Since h0χO + wχω ∈ L2(Q), and the assumptions (H1)–(H3) hold, we can prove that the problem
(2.4) has a unique solution q ∈ L2(U,H1(Ω)). Therefore, q ∈ W (U) and, in view of Remark 2,
(q(0, ., .), q(., 0, .)) and (q(T, ., .), q(., A, .)) exist and belong to L2(QA)× L2(QT ).

Now multiplying both sides of the differential equation in (2.4) by yτ , that is, the solution of
(1.7), and integrating by parts in Q, we get for all ŷ0 ∈ L2(QA) that∫

U

∫
O
h0yτ dtdadx+

∫
U

∫
ω
wyτ dtdadx =

∫ A

0

∫
Ω
q(0, a, x)ŷ0 dadx.

Thus, the condition (1.4) (or (2.2)) holds if and only if

q(0, a, x) = 0 in QA. (2.5)

Then, multiplying both sides of the differential equation in (2.4) by yλi , that is, the solution of (1.8),
and integrating by parts in Q, we have∫

U

∫
O
h0yλi dtdadx+

∫
U

∫
ω
wyλi dtdadx =

∫
Σ1

qξ̂i dtdadx, 1 ≤ i ≤M.

Thus, the condition (1.5) (or (2.3)) is equivalent to∫
Σ1

qξ̂i dtdadx = ci, 1 ≤ i ≤M. (2.6)

Now, consider the matrix (∫
U

∫
ω

1

θ
yλiyλj dtdadx

)
1≤i,j≤M

.

Since this matrix is symmetric positive definite, there exists a unique w0 ∈ Yθ such that

ci −
∫
U

∫
O
h0yλi dtdadx =

∫
U

∫
ω
w0yλi dtdadx, 1 ≤ i ≤M. (2.7)

Consequently, combining (2.3) with (2.7), we observe that condition (1.5) (or the constraints (2.6))
holds if and only if

w − w0 = −v ∈ Y ⊥,
where Y is given by (1.10). Replacingw byw0−v in the second expression of (2.4), we obtain (1.13).
We have just proved that the sentinel problem (1.3)–(1.6) holds if and only if null-controllability
problem with constraints on the control (1.12)–(1.14) has a solution.
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Remark 8 If E is the set of admissible controls v ∈ L2(U × ω) such that (1.12)–(1.14) are satisfied,
then E is a closed convex subset of L2(U × ω). Since w0 − E is also a closed convex subset of
L2(U × ω), we can obtain w to be of minimum norm in L2(U × ω) by minimizing the norm of
w0 − v when v ∈ E . Then, the pair (v, q(v)) satisfying (1.12)–(1.14) necessarily provides a control
w satisfying (1.6).

3 Study of the internal null-controllability problem with constraints
on the control

3.1 An adapted observability inequality

The observability inequality we are looking for is a consequence of Carleman’s inequality. We
consider an auxiliary function ψ ∈ C2(Ω) which satisfies the following conditions:

ψ(x) > 0 for every x ∈ Ω, ψ(x) = 0 for every x ∈ Γ, |∇ψ(x)| 6= 0 for every x ∈ Ω \ ω0, (3.1)

where ω0 denotes any open set such that ω0 b ω. Such a function ψ exists according to A. Fursikov
and O. Yu. Imanuvilov [5].

For any positive parameter λ we define the following weight functions:

ϕ(t, a, x) =
eλψ(x)

at(T − t)
, (3.2)

ϕ̃(t, a, x) =
e−λψ(x)

at(T − t)
, (3.3)

η(t, a, x) =
e2λ‖ψ‖∞ − eλψ(x)

at(T − t)
, (3.4)

η̃(t, a, x) =
e2λ‖ψ‖∞ − e−λψ(x)

at(T − t)
. (3.5)

Since ϕ does not vanish on Q, we set

1

θ2
= min

[(
e−2sη

ϕ
+ e−2sη̃ϕ̃

)
, (ϕe−2sη + ϕ̃e−2sη̃), (ϕ3e−2sη + ϕ̃3e−2sη̃)

]
(3.6)

and we adopt the following notation

L =
∂

∂t
+

∂

∂a
−∆ + µI,

L∗ = − ∂

∂t
− ∂

∂a
−∆ + µI,

V =

{
ρ ∈ C∞(Q) :

∂ρ

∂ν
= 0 on Σ

}
.

(3.7)

Using the introduced notations and the definition of θ given by (3.6), we obtain the following
Carleman inequality.
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Proposition 1 (Global Carleman inequality) Let ψ, ϕ, ϕ̃, η and η̃ be defined respectively by (3.1),
(3.2)–(3.5). Then, there exist λo > 1, so > 1 and C > 0 such that for any λ ≥ λo, for any s ≥ so
and for any ρ ∈ V the following inequality holds:∫

Q

(
e−2sη

sϕ
+
e−2sη̃

sϕ̃

)(∣∣∣∣∂ρ∂t +
∂ρ

∂a

∣∣∣∣2 + |∆ρ|2
)

dtdadx

+ sλ2

∫
Q

(ϕe−2sη + ϕ̃e−2sη̃) |∇ρ|2 dtdadx

+ s3λ4

∫
Q

(ϕ3e−2sη + ϕ̃3e−2sη̃) |ρ|2 dtdadx

≤ C
(∫

Q
(e−2sη + e−2sη̃) |Lρ|2 dtdadx

)
+ C

(
s3λ4

∫
U

∫
ω
(ϕ3e−2sη + ϕ̃3e−2sη̃) |ρ|2 dtdadx

)
.

(3.8)

Proof. See [15]. �

Since e−2sη, e−2sη̃, ϕke−2sη and ϕ̃ke−2sη̃ with k > 0 are bounded, it is immediate that 1
θ2

,
e−2sη + e−2sη̃ and ϕ3e−2sη + ϕ̃3e−2sη̃ are also bounded in Q. Hence, from Proposition 1, we obtain
the following result.

Proposition 2 Let θ be defined by (3.6). Then, there exist λo > 1, so > 1 and C > 0 such that for
any λ ≥ λo, for any s ≥ so and for any ρ ∈ V ,∫

Q

1

θ2

(∣∣∣∣∂ρ∂t +
∂ρ

∂a

∣∣∣∣2 + |∆ρ|2
)

dtdadx+

∫
Q

1

θ2
|∇ρ|2 dtdadx+

∫
Q

1

θ2
|ρ|2 dtdadx

≤ C
(∫

Q
|Lρ|2 dtdadx+

∫
U

∫
ω
|ρ|2 dtdadx

)
.

(3.9)

Lemma 2 Assume that (1.9) holds. Let Y be the real vector subspace of L2(U × ω) of finite
dimensions defined in (1.10). Then, any function ρ such that

∂ρ

∂t
+
∂ρ

∂a
−∆ρ+ µρ = 0 in Q,

∂ρ

∂ν
= 0 on Σ,

ρχω ∈ Y,

(3.10)

is identically zero.

Proof. For any ρ satysfying (3.10), there exist αi, 1 ≤ i ≤M , such that ρ =
∑M

i=1 αiyλi in U × ω.
We set z = ρ−

∑M
i=1 yλi . Then, in view of (1.8), we have

∂z

∂t
+
∂z

∂a
−∆z + µz = 0 in Q,

∂z

∂ν
= 0 on Σ,

z = 0 in U × ω.

(3.11)
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Then, it follows from (1.11) that z = 0 in Q. Consequently, ρ =
∑M

i=1 αiyλi . Since ∂z
∂ν = 0 on Σ,

we deduce from (1.8) that
∑M

i=1 αiξ̂i = 0 in Σ1. Therefore, assumption (1.9) allows us to conclude
that αi = 0 for 1 ≤ i ≤M . This means that ρ = 0 in Q. �

Proposition 3 (Adapted Carleman inequality) Assume that (1.9) holds. Let Y be the real vector
subspace of L2(U × ω) of finite dimensions defined in (1.10) and let P be the orthogonal projection
operator from L2(U × ω) into Y. Let also θ be the function defined by (3.6). Then, there exist
numbers λ0 > 1, s0 > 1, C > 0 such that for fixed λ ≥ λ0 and s ≥ s0 and for any ρ ∈ V ,

∫
U

∫
Ω

1

θ2
|ρ|2 dtdadx ≤ C

(∫
U

∫
Ω
|Lρ|2 dtdadx+

∫
U

∫
ω
|ρχω − Pρ|2 dtdadx

)
. (3.12)

Proof. As in [8], we use a well-known compactness-uniqueness argument and the inequality (3.9).
Indeed, suppose that (3.12) does not hold. Then, for any j ∈ N∗ there exists ρj ∈ V such that

∫
U

∫
Ω

1

θ2
|ρj |2 dtdadx = 1, (3.13)∫

U

∫
Ω
|Lρj |2 dtdadx ≤ 1

j
, (3.14)∫

U

∫
ω
|ρj − Pρj |2 dtdadx ≤ 1

j
. (3.15)

In what follows, we prove in three steps that (3.13)–(3.15) yield a contradiction.

Step 1. We have∫
U

∫
ω

1

θ2
|Pρj |2 dtdadx ≤ 2

∫
U

∫
ω

1

θ2
|ρj |2 dtdadx+ 2

∫
U

∫
ω

1

θ2
|ρj − Pρj |2 dtdadx.

Since 1
θ2

is bounded, using (3.13) and (3.15), it follows that there exists a positive constant C such
that ∫

U

∫
ω

1

θ2
|Pρj |2 dtdadx ≤ C. (3.16)

Therefore, because Y is a finite dimensional vector subspace of L2(U × ω), we deduce that

∫
U

∫
ω
|Pρj |2 dtdadx ≤ C. (3.17)

As ρχω = Pρχω + (ρχω − Pρχω), using (3.15) and (3.17), we obtain

‖ρj‖2L2(U×ω) ≤ C. (3.18)
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Step 2. Let

L2

(
1

θ2
, U × ω

)
=

{
ρ ∈ L2(U × ω) :

∫
U

∫
ω

1

θ2
|ρ|2 dtdadx <∞

}
.

Then, in view of (3.13) and (3.18), we deduce from (3.9) that
(∂ρj
∂t +

∂ρj
∂a

)
, (ρj), (∇ρj) and (∆ρj)

are bounded in L2
(

1
θ2
, U × ω

)
. Let us take a subsequence still denoted by (ρj) such that

ρj ⇀ ρ weakly in L2

(
1

θ2
, U × ω

)
. (3.19)

Then, it follows from (3.2)–(3.5) and the definition of 1
θ given by (3.6) that (ρj) is bounded in

L2((β, T − β)× (γ,A− γ);H2(Ω)) for any β > 0 and any γ > 0. In particular, for all β > 0 and
γ > 0, we have ρj ⇀ ρ weakly in L2((β, T − β) × (γ,A − γ) × Ω), which implies that ρj ⇀ ρ
weakly in D′(Q). Therefore, we get from (3.14) and (3.18) that

Lρj → Lρ = 0 strongly in L2(U × Ω), (3.20)

ρj ⇀ ρ weakly in L2(U × ω). (3.21)

And, since P is a compact operator, it follows from (3.21) that

Pρj → Pρ strongly in L2(U × ω). (3.22)

In view of (3.15), we also have

ρjχω − Pρj → 0 strongly in L2(U × ω). (3.23)

Thus, combining (3.22) and (3.23), we get

ρj → Pρ strongly in L2(U × ω). (3.24)

Thanks to the uniqueness of the limit in L2(U × ω), the convergence relations (3.21) and (3.24)
imply that Pρ = ρχω . This means that ρχω ∈ Y . We thus have proved that ρ satisfies (3.10).
Hence, thanks to Lemma 2, ρ is identically zero. Therefore, (3.24) becomes

ρj → 0 strongly in L2(U × ω). (3.25)

Step 3. Since ρj ∈ V , it follows from the observability inequality (3.9) that∫
U

∫
Ω

1

θ2
|ρj |2 dtdadx ≤ C

(∫
U

∫
Ω
|Lρj |2 dtdadx+

∫
U

∫
ω
|ρj |2 dtdadx

)
.

Therefore, passing in this latter inequality to the limit while using (3.20)–(3.25), we obtain

lim
j→∞

∫
U

∫
ω

1

θ2
|ρj |2 dtdadx = 0.

This contradicts (3.13). �
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3.2 Proof of Theorem 2

In this subsection, we are concerned with the proof of Theorem 2, that is, the optimality system for
the control v̂ such that the pair (v̂; q̂) satisfies (1.12)–(1.14). A classical way to derive this optimality
system is the method of penalization due to J. L. Lions [7]. The proof of Theorem 2 will be divided
in three steps.

Step 1. Let w0 be defined by (2.7). If v ∈ Y ⊥ and q is solution of (1.13), then q(0, ., .) ∈ L2(QA)
and we can define the functional

Jε(v) =
1

2
‖w0− v‖2L2(U×ω) +

1

2ε
‖q(0, ., .)‖2L2(QA) . (3.26)

We consider the optimal control problem: Find vε ∈ Y ⊥ such that

Jε(vε) = min
v∈Y ⊥

Jε(v). (3.27)

Since Y ⊥ is a closed and convex subset of L2(U × ω), it is classical to prove that there exists a
unique solution to (3.27). If by qε we denote the solution of (1.13) corresponding to vε, using an
adjoint state ρε, we have that the triplet (qε, ρε, vε) is a solution of the first order optimality system:



L∗qε = βqε(t, 0, x) + h0χO + (w0 − vε)χω in Q,
∂qε
∂ν

= 0 on Σ,

qε(T, a, x) = 0 in QA,

qε(t, A, x) = 0 in QT ,

(3.28)



Lρε = 0 in Q,
∂ρε
∂ν

= 0 on Σ,

ρε(0, a, x) =
1

ε
qε(0, a, x) in QA,

ρε(t, 0, x) =

∫ A

0
β(t, a, x)ρε(t, a, x) dtdadx in QT ,

(3.29)

vε = (w0χω + ρεχω)− P (w0χω + ρεχω) ∈ Y ⊥. (3.30)

Step 2. Multiplying the state equation (3.28) by ρε and integrating by parts over Q, we get

1

ε
‖qε(0, ., .)‖2L2(QA) =

∫
U

∫
O
h0ρε dtdadx+

∫
U

∫
ω
(w0 − vε)ρε dtdadx,
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which in view of (3.30) and the fact that vε ∈ Y ⊥ gives

1

ε
‖qε(0, ., .)‖2L2(QA) =

∫
U

∫
O
h0ρε dtdadx

+

∫
U

∫
ω
(w0 − vε)(vε − w0 + P (w0χω + ρεχω)) dtdadx

=

∫
U

∫
O
h0ρε dtdadx

− ‖w0 − vε‖L2(U×ω) + ‖Pw0χω‖L2(U×ω)

+

∫
U

∫
ω
w0ρε dtdadx.

As on U × ω,
vε − w0 = (I − P )ρεχε − P (w0χω),

we have that

‖vε − w0‖2L2(U×ω) = ‖(I − P )ρεχω‖2L2(U×ω) + ‖P (w0χω)‖2L2(U×ω),

so that

1

ε
‖qε(0, ., .)‖2L2(QA) + ‖(I − P )ρεχω‖2L2(U×ω) =

∫
U

∫
O
h0ρε dtdadx+

∫
U

∫
ω
w0ρε dtdadx.

This implies that

1

ε
‖qε(0, ., .)‖2L2(QA) + ‖(I − P )ρεχω‖2L2(U×ω)

≤
(∫

U

∫
O

(θh0)2

)1/2(∫
U

∫
ω

1

θ2
ρ2
ε

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2(∫
U

∫
ω

1

θ2
ρ2
ε

)1/2

.

(3.31)

If we apply the adapted Carleman inequality (3.12) to ρε, we obtain∫
U

∫
Ω

1

θ2
|ρε|2 dtdadx ≤ C

∫
U

∫
ω
|ρεχω − Pρε|2 dtdadx, (3.32)

where C > 0 is independent of ε. From (3.31), the choice of w0 ∈ Yθ and hypothesis on h0, we
deduce that

‖(I − P )ρεχω‖L2(U×ω) ≤ C
[(∫

U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2 ]
, (3.33)

and then

1

ε
‖qε(0, ., .)‖L2(QA) ≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2 ]
, (3.34)

‖vε‖2L2(U×ω) ≤ C
[(∫

U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2 ]
. (3.35)
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Since qε satisfies (3.28), we can prove that

‖qεχω‖2L2(U ;H1(Ω)) ≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2
]
. (3.36)

In view of (3.32) and (3.33), we get∥∥∥∥1

θ
ρε

∥∥∥∥
L2(U×Ω)

≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2
]
. (3.37)

Using again (3.33) and the fact that 1
θ is bounded, we obtain∥∥∥∥1

θ
Pρεχω

∥∥∥∥
L2(U×ω)

≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2
]
. (3.38)

Therefore, since Y is a finite dimensional vector subspace of L2(U × ω), we deduce that

‖Pρεχω‖L2(U×ω) ≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2
]
, (3.39)

from which we deduce by using (3.33) that

‖ρε‖L2(U×ω) ≤ C

[(∫
U

∫
O

(θh0)2

)1/2

+

(∫
U

∫
ω
(θw0)2

)1/2
]
. (3.40)

Using (3.9), we have that∫
Q

1

θ2

(∣∣∣∣∂ρε∂t +
∂ρε
∂a

∣∣∣∣2 + |∆ρε|2
)

dtdadx+

∫
Q

1

θ2
|∇ρε|2 dtdadx

+

∫
Q

1

θ2
|ρε|2 dtdadx ≤ C

∫
U

∫
ω
|ρε|2 dtdadx.

(3.41)

Step 3. We prove the convergence of (vε, qε)ε and (ρε)ε towards (v̂, q̂) and ρ̂ as ε→ 0. According to
(3.35), (3.36) and (3.37) we can extract subsequences of (vε, qε)ε (still called (vε, qε)ε) such that

vε ⇀ ṽ weakly in L2(U × ω), (3.42)

qε ⇀ q̃ weakly in L2(U ;H1(Ω)), (3.43)

1

θ
ρε ⇀ weakly in L2

(
1

θ
,Q

)
. (3.44)

As vε belongs to Y ⊥, which is a closed vector subspace of L2(U × ω), we have

ṽ ∈ Y ⊥. (3.45)

From (3.43) and Remark 1 we have that q̃ ∈ W (U). Hence, in view of Remark 2, we know that
the traces (q̃(0, ., .), q̃(., 0, .)) and (q̃(T, ., .), q̃(., A, .)) exist and belong to L2(QA)× L2(QT ). So,
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using (3.43) and (3.42) while passing (3.28) to the limit as ε→ 0, we can prove that q̃ is a solution of

−∂q̃
∂t
− ∂q̃

∂a
−∆q̃ + µq̃ = βq̃(t, 0, x) + h0χO + (w0 − ṽ)χω in Q,

∂q̃

∂ν
= 0 on Σ,

q̃(T, a, x) = 0 in QA,

q̃(t, A, x) = 0 in QT ,

(3.46)

and it follows from (3.34) that

qε(0, ., .) ⇀ q̃(0, ., .) = 0 weakly in L2(QA). (3.47)

In view of (3.45), (3.46) and (3.47), (ṽ, q̃) satisfies the null-controllability (1.12)–(1.14). From
(3.44),

ρε ⇀ ρ̃ weakly in D′(Q).

Consequently, using (3.29) and (3.41), we can prove that ρ̃ satisfies

Lρ̃ = 0 in Q,

∂ρ̃

∂ν
= 0 on Σ,

ρ̃(t, 0, x) =

∫ A

0
β(t, a, x)ρ̃(t, a, x) dtdadx in QT .

(3.48)

From (3.40), we see that
ρε ⇀ ρ̃ weakly in L2(U × ω), (3.49)

and therefore
vε ⇀ ṽ = (I − P )(w0χω + (̃ρ)χω) weakly in L2(U × ω). (3.50)

We know on the one hand that (ṽ, q̃) is a solution to null-controllability (1.12)–(1.14), and on the
other hand that there exists a unique v̂ ∈ E such that w0− v is of minimal norm in L2(U ×ω). If we
denote by q̂ the corresponding solution to (1.13), we have q̂(0, ., .) = 0 and, as ṽ ∈ E ,

1

2
‖w0 − vε‖2L2(U×ω) ≤ Jε(vε) ≤ Jε(v̂) =

1

2
‖w0 − v̂‖2L2(U×ω)

and
1

2
‖w0 − v̂‖L2(U×ω) ≤

1

2
‖w0 − vε‖L2(U×ω) .

Using (3.42),
1

2
‖w0 − ṽ‖L2(U×ω) ≤ lim inf

ε→0

1

2
‖w0 − vε‖L2(U×ω) .

Hence,
ṽ = v̂

and
vε → v̂ strongly in L2(U × ω).

Writing ρ̃ = ρ̂, we have
v̂ = (I − P )(w0χω + ρ̂χω).

This end the proof of Theorem 2.
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espace, Comptes Rendus de l’Académie des Sciences de Paris Série I 323 (1996), 269–274.

[5] A. Fursikov, O. Imanualov, Controllability of evolution equation, Lecture Notes Series 34,
Seoul National University, Research Institute of Mathematics, Global Analysis Research Center,
Korea, 1996.

[6] M. G. Garroni, M. Langlais, Age-dependent population diffusion with external constraint,
Journal of Mathematical Biology 14 (1982), 77–94.
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