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Abstract. We prove the existence of a renormalized solution for a class of nonlinear parabolic
equations

∂b(x, u)

∂t
− div

(
a(x, t,∇u)

)
= µ,

where the right-hand side is a diffuse measure, b(x, u) is an unbounded function of u, and where
−div(a(x, t,∇u)) is a Leray–Lions type operator with growth |∇u|p−1 in ∇u.
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1 Introduction

Let Ω be a bounded open subset of RN , N ≥ 1, T > 0 and let Q := Ω × (0, T ). We prove the
existence of a renormalized solution for a class of nonlinear parabolic equations of the type:

∂b(x, u)

∂t
− div

(
a(x, t,∇u)

)
= µ in Q, (1.1)

b(x, u)(t = 0) = b(x, u0) in Ω, (1.2)
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u = 0 on ∂Ω× (0, T ). (1.3)

In the problem (1.1)–(1.3) the framework is as follows: the data µ is a measure and b(x, u0)
belongs to L1(Ω). The operator −div(a(x, t,∇u)) is a Leray–Lions operator which is coercive
and which grows like |∇u|p−1 with respect to ∇u (see the assumptions (3.4), (3.5) and (3.6) in
Section 3).

In this paper we use the framework of renormalized solutions. This notion was introduced by
P.-L. Lions and Di Perna [22] for the study of the Boltzmann equation (see also P.-L. Lions [16] for
a few applications to fluid mechanics models; see also [5, 17] for a nonlinear parabolic equation
with natural growth). A large number of papers was then devoted to the study of the existence of
renormalized solutions of parabolic problems with rough data under various assumptions and in
different contexts (for a review on classical results see [1, 2, 3, 5, 6, 7, 10, 11, 17, 18]).

Concerning the datum µ, we restrict ourselves to the space of measures with bounded total
variation over Q that do not charge the sets of zero p-capacity (see Section 2 for the definition), the
so-called diffuse measures or soft measures, and we will use the symbol µ ∈M0(Q) to denote them.
The existence and uniqueness of a renormalized solution of (1.1)–(1.3) was proved in [23] in the
case where b(x, u) = u, u0 ∈ L1(Ω) and for every measure µ which does not charge the sets of zero
p-capacity. In the case where µ is of bounded total variation over Q, b(x, u) = u and u0 ∈ L1(Ω),
the existence of a renormalized solution was proved in [19], and in the case where b(x, u) = b(u),
u0 ∈ L1(Ω) and µ ∈M0(Q) the existence and uniqueness of a renormalized solution was proved in
[8].

We organize the paper as follows. In Section 2 we give some preliminaries; in particular, we
provide the definition of a parabolic capacity and some its basic properties. Section 3 is devoted to
specifying the assumptions on b, a, u0 and µ and to giving the definition of a renormalized solution
of (1.1)–(1.3). In Section 4 we establish the existence of such a solution (Theorem 2). In Section 5
(Appendix), we prove Proposition 2 which states that the formulation of a renormalized solution
does not depend on the decomposition of µ.

2 Preliminaries on parabolic capacity

We recall the notion of a p-capacity associated to our problem (for further details see [20, 21, 23]).
For any fixed T > 0 let Q = Ω× (0, T ), and let us recall that V = W 1,p

0 (Ω) ∩ L2(Ω) is endowed
with its natural norm ‖.‖

W 1,p
0 (Ω)

+ ‖.‖L2(Ω) and

W =
{
u ∈ Lp(0, T ;V ) : ut ∈ Lp

′
(0, T ;V ′)

}
is endowed with its natural norm ‖.‖Lp(0,T ;V ) + ‖.‖Lp′ (0,T ;V ′). Let us also remark that W is
continuously embedded in C([0, T ], L2(Ω)), and if 1 < p < ∞, then C∞0 (Q) is dense in W . Let
U ⊆ Q be an open set. We define the parabolic p-capacity of U as

capp(U) = inf
{
‖u‖W : u ∈W,u ≥ χU a.e. in Q

}
,

where as usual we set inf{∅} = +∞. Then for any Borel set B ⊆ Q we set

capp(B) = inf
{

capp(U) : U open subset of Q,B ⊆ U
}
.
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ByMb(Q) we will denote the set of all Radon measures with bounded variation onQ. Moreover,
as we already mentioned, by M0(Q) we will denote the set of all measures with bounded total
variation over Q that do not charge the sets of zero p-capacity, that is, if µ ∈M0(Q), then µ(E) = 0
for all E ⊆ Q such that capp(E) = 0.

In [23] the authors proved the following decomposition theorem.

Theorem 1 Let µ be a bounded measure on Q. If µ ∈ M0(Q), then there exists (f, g1, g2) such
that f ∈ L1(Q), g1 ∈ Lp

′
(0, T ;W−1,p′(Ω)), g2 ∈ Lp(0, T ;V ) and∫

Q
φ dµ =

∫
Q
fφdx dt+

∫ T

0
〈g1, φ〉dt+

∫ T

0
〈φt, g2〉dt, φ ∈ C∞c (Q).

Such a triplet (f, g1, g2) will be called a decomposition of µ.

Note that the decomposition of µ is not uniquely determined.

In the proof of the existence result we will use the density argument, and so we need the following
preliminary result whose prove can be found, for instance, in [23].

Proposition 1 Let µ ∈M0(Q). Then there exists a decomposition (f, div(G), g) of µ in the sense
of Theorem 1 and an approximation µε of µ satisfying the following conditions:

µε ∈ C∞c (Q) : ‖µε‖L1(Q) ≤ C,∫
Q
φµε dx dt =

∫
Q
f εφ dx dt+

∫ T

0
〈div(Gε), φ〉 dt+

∫ T

0
〈φt, gε2〉dt for all φ ∈ C∞c (Q),

and

f ε ∈ C∞c (Q) : f ε → f in L1(Q) as ε→ 0,

Gε ∈ (C∞c (Q))N : Gε → G in (Lp
′
(Q))N as ε→ 0,

gε ∈ C∞c (Q) : gε → g in Lp(0, T ;W 1,p
0 (Ω) ∩ L2(Ω)) as ε→ 0.

Here are some notations we will use throughout this paper. For any non-negative real number k
by Tk(r) = min(k,max(r,−k)) we denote the truncation function at level k. By 〈., .〉 we mean
the duality between suitable spaces in which functions are involved. In particular, we will consider
both the duality between W 1,p

0 (Ω) and W−1,p′(Ω) and the duality between W 1,p
0 (Ω) ∩ L∞(Ω) and

W−1,p′(Ω) + L1(Ω).

3 Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true.

Suppose that Ω is a bounded open set on RN , N ≥ 1, T > 0 is given and we set Q = Ω× (0, T ).
Furthermore,

b,
∂b

∂s
: Ω× R→ R and ∇xb : Ω× R→ RN (3.1)
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are Carathéodory functions such that for almost every x ∈ Ω, b(x, s) is a strictly increasing C1-
function with b(x, 0) = 0. For every s ∈ R, the function b(x, s) is in W 1,p(Ω).

There exist λ, Λ > 0 such that

λ ≤ ∂b(x, s)

∂s
≤ Λ (3.2)

for almost every x ∈ Ω, for every s ∈ R. There exists a function B in Lp(Ω) such that∣∣∣∇xb(x, s)∣∣∣ ≤ B(x), (3.3)

for almost every x ∈ Ω, for every s ∈ R. We also assume that

a : Q× R× RN → RN is a Carathéodory function (3.4)

and

a(x, t, ξ).ξ ≥ α|ξ|p (3.5)

for almost every (x, t) ∈ Q, for every ξ ∈ RN , where α > 0 is a given real number. Moreover,

|a(x, t, ξ)| ≤ β
(
L(x, t) + |ξ|p−1

)
(3.6)

for almost every (x, t) ∈ Q, for every ξ ∈ RN , where β > 0 is a given real number, L is a
non-negative function in Lp

′
(Q). We also assume that

[a(x, t, ξ)− a(x, t, ξ′)][ξ − ξ′] > 0 (3.7)

for any (ξ, ξ′) ∈ R2N and for almost every (x, t) ∈ Q. Finally, we assume that

µ ∈M0(Q) (3.8)

and that

u0 is a measurable function defined on Ω such that b(x, u0) ∈ L1(Ω). (3.9)

The definition of a renormalized solution for the problem (1.1)–(1.3) is given below.

Definition 1 A measurable function u defined on Q (let v := b(x, u)− g) is a renormalized solution
of the problem (1.1)–(1.3) if

Tk(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all k ≥ 0 and v ∈ L∞(0, T ;L1(Ω)), (3.10)∫

{(t,x)∈Q : n≤|v|≤n+1}
a(x, t,∇u)∇udx dt −→ 0 as n→ +∞, (3.11)

and if for every function S in W 2,∞(R) which is piecewise C1(R) and such that S′ has a compact
support we have

∂S(v)

∂t
− div

(
S′(v)a(x, t,∇u)

)
+ S′′(v)a(x, t,∇u)∇v

= fS′(v)− div
(
GS′(v)

)
+ S′′(v)G∇v in D′(Q),

(3.12)

S(v)(t = 0) = S(b(x, u0)) in L1(Ω). (3.13)
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Remark 1 Note that all terms in (3.12) are well-defined. Indeed, let k > 0 be such that supp(S′) ⊂
[−k, k]. We have

∇S(v) = S′(Tk(v))∇Tk(v) ∈ (Lp(Q))N .

Then S(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) and ∂S(v)

∂t ∈ D
′(Q).

The term S′(v)a(x, t,∇u) can be identified with:

S′(Tk(v))a
(
x, t,

(∂b(x, s)
∂s

)−1
(∇Tk(v) + (∇g −∇xb(x, u))χ{|v|≤k})

)
a.e. in Q.

Using the assumption (3.6), we obtain

|S′(v)a(x, t,∇u)| ≤ β ‖S′‖L∞(R)

[
L(x, t)+

+
(∂b(x, u)

∂s

)−(p−1)∣∣∣∇Tk(v) +∇g −∇xb(x, u)
∣∣∣p−1

]
a.e. in Q.

(3.14)

Further, using (3.2), (3.3) and (3.10), we deduce that: S′(v)a(x, t,∇u) ∈ (Lp
′
(Q))N . The term

S′′(v)a(x, t,∇u)∇v can be identified with

S′′(Tk(v))a
(
x, t,

(∂b(x, u)

∂s

)−1
(∇Tk(v) + (∇g −∇xb(x, u))χ{|v|≤k})

)
∇Tk(v) a.e. in Q.

In view of (3.2), (3.3), (3.10), (3.14) and the Hölder inequality we obtain

S′′(v)a(x, t,∇u)∇v ∈ L1(Q).

Finally, fS′′(v) and S′′(v)G∇v ∈ L1(Q) and GS′(v) ∈ (Lp
′
(Q))N .

We also have ∂S(v)
∂t ∈ L

p′(0, T ;W−1,p′(Ω)) + L1(Q) and S(v) ∈ Lp(0, T ;W 1,p
0 (Ω)), which

implies that S(v) ∈ C0([0, T ], L1(Ω)) (see [17]) and (3.13) makes a weak sense.

It should be observed (see [23]) that since µ ∈M0(Q), then µ does not charge set at t = 0 and
in the weak sense we can suppose that g(x, 0) = 0 for a.e. x ∈ Ω.

Note that the formulation of a renormalized solution does not depend on the decomposition of µ.
The proof of this fact relies on the following result.

Lemma 1 Let µ ∈M0(Q), and let (f, div(G), g) and (f,div(G), g) to be two different decomposi-
tions of µ in the sense of Theorem 1. Then we have (g− g)t = f − f −div

(
G−G

)
in distributional

sense, g − g ∈ C([0, T ];L1(Ω)) and (g − g)(0) = 0.

Proof. See [23]. �

Proposition 2 Let u be a renormalized solution of (1.1)–(1.3). Then u satisfies (3.10)–(3.13) for
every decomposition (f,div(G), g) of µ.

Proof. See Appendix. �
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4 Existence result

This section is devoted to establishing the following existence theorem.

Theorem 2 Under the assumptions (3.1)–(3.9) there exists at least a renormalized solution u of the
problem (1.1)–(1.3).

Proof. The proof is divided into 6 steps. In Step 1 we introduce an approximate problem. Step 2 is
devoted to establishing a few a priori estimates. In Step 3 the limit u of the approximate solutions uε

is introduced and v := b(x, u)− g is shown to belong to L∞(0, T ;L1(Ω)) and to satisfy (3.10). In
Step 4 we define a time regularization of the field Tk(u) and we establish Lemma 2, which allows us
to control the parabolic contribution that arises in the monotonicity method when passing to the limit.
Step 5 is devoted to proving an energy estimate (Lemma 3). At last, Step 6 is devoted to proving that
u satisfies (3.11), (3.12) and (3.13) of the Definition 1.

Step 1. For a fixed ε > 0 let us introduce the following regularizations of the data:

bε(x, s) = b(x, T 1
ε
(s)) + εs a.e. in Ω, for every s ∈ R, (4.1)

uε0 ∈ C∞c (Ω) : bε(x, u
ε
0)→ b(x, u0) in L1(Ω) as ε→ 0. (4.2)

In view of Proposition 1 we can find

µε ∈ C∞c (Q) : ‖µε‖L1(Q) ≤ C and µε = f ε − div(Gε) +
∂gε

∂t
(4.3)

such that

f ε ∈ C∞c (Q) : f ε → f in L1(Q) as ε→ 0, (4.4)

Gε ∈ (C∞c (Q))N : Gε → G in (Lp
′
(Q))N as ε→ 0, (4.5)

gε ∈ C∞c (Q) : gε → g in Lp(0, T ;W 1,p
0 (Ω) ∩ L2(Ω)) as ε→ 0. (4.6)

Let us now consider the following regularized problem:

uε ∈ Lp(0, T ;W 1,p
0 (Ω)), (4.7)∫ T

0

〈∂vε
∂t

, ϕ
〉

dt+

∫
Q
a(x, t,∇uε)∇ϕdx dt =

∫
Q
f εϕdx dt+

∫
Q
Gε∇ϕdx dt

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q),

(4.8)

b(x, uε)(t = 0) = b(x, uε0) in Ω, (4.9)

where vε := bε(x, u
ε) and 〈., .〉 denotes the duality pairing between L1(Ω) + W−1,p′(Ω) and

L∞(Ω) ∩W 1,p
0 (Ω). In view of (4.1), bε satisfies (3.1), and due to (3.2) for ε > 0 we have

λ ≤ ∂bε(x, s)

∂s
≤ Λ + 1 and |∇xbε(x, s)| ≤ B(x) a.e. in Ω, for all s ∈ R. (4.10)

As a consequence, proving the existence of a weak solution uε ∈ Lp(0, T ;W 1,p
0 (Ω)) of (4.7)–(4.9)

is an easy task (see e.g. [15]).
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Step 2. We use Tk(vε) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) as a test function in (4.7). Employing the

integration by parts formula for the evolution term (see [12]), we get∫
Ω
Tk(v

ε) dx+

∫ t

0

∫
Ω
a(x, s,∇uε)∇Tk(vε) dx ds

=

∫ t

0

∫
Ω
f εTk(v

ε) dx ds+

∫ t

0

∫
Ω
Gε∇Tk(vε) dx ds+

∫
Ω
Tk(bε(x, u

ε
0)) dx

(4.11)

for almost every t ∈ (0, T ); here Tk(r) =
∫ r

0 Tk(s) ds.

Using the assumptions (3.5)–(3.6) and the definition of Tk in (4.11), we obtain∫
Ω
Tk(bε(x, u

ε)− gε) dx+ α

∫
Ek

∂bε(x, u
ε)

∂s
|∇uε|p dx ds

≤ k‖f ε‖L1(Q) +

∫
Ek

Gε∇Tk(vε) dx ds

+ β

∫
Ek

L(x, s)|∇gε|dx ds+ β

∫
Ek

|∇uε|p−1|∇gε|dx ds

+

∫
Ek

|a(x, t,∇uε)∇xbε(x, uε)|dx ds+ k‖bε(x, uε0)‖L1(Q),

(4.12)

where Ek = {(x, s) : |vε| ≤ K}. Using (4.10), by means of the Young inequality, we obtain

β

∫
Ek

|∇uε|p−1|∇gε| dx ds

≤ β

λ

∫
Ek

∂bε(x, u
ε)

∂s
|∇uε|p−1|∇gε|p dx ds

≤ α

4p′

∫
Ek

∂bε(x, u
ε)

∂s
|∇uε|p dx ds+

1

p

(
Λ + 1

)( 4β

αλ

)p−1
∫
Ek

|∇gε|p dx ds

and ∫
Ek

|a(x, t,∇uε)∇xbε(x, uε)| dx ds

≤ α

4p′

∫
Ek

∂bε(x, u
ε)

∂s
|∇uε|p dx ds+

T

p

(
Λ + 1

)( 4β

αλ

)p−1
‖B‖pLp(Ω);

we also obtain∫
Ek

∣∣∣Gε∇Tk(vε)∣∣∣ dx ds

≤ α

2p

∫
Ek

∂bε(x, u
ε)

∂s
|∇uε|p dx ds+ C

(
‖B‖pLp(Ω) + ‖Gε‖p

′

Lp′ (Q)
+ ‖∇gε‖pLp(Q)

)
,

where C is a constant independent of ε.

Hence∫
Ω
Tk(v

ε) dx+
α

2

∫
Ek

∂bε(x, s)

∂s
|∇uε|p dx ds

≤ C
(
‖f ε‖L1(Q) + ‖L‖p

′

Lp′ (Q)
+ ‖∇gε‖pLp(Q) + ‖bε(x, uε0)‖L1(Ω)+

+ ‖B‖pLp(Ω) + ‖Gε‖p
′

Lp′ (Q)

)
.

(4.13)
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In view of the properties of Tk (Tk ≥ 0, Tk(s) ≥ |s| − 1 for all s ∈ R), bε, gε, Gε, f ε, and since
‖bε(x, uε0)‖L1(Ω) is bounded, from (4.13) we deduce that

vε is bounded in L∞(0, T ;L1(Ω)). (4.14)

By using (4.10) and (4.13) we deduce that

Tk(v
ε) is bounded in Lp(0, T ;W 1,p

0 (Ω)), (4.15)

independently of ε and for any k ≥ 0.

Proceeding as in [2, 3, 7], for any S ∈W 1,∞(R) such that S′ has a compact support (supp(S′) ⊂
[−k, k]), we have

S(vε) is bounded in Lp(0, T ;W 1,p
0 (Ω)), (4.16)

∂S(vε)

∂t
is bounded in L1(Q) + Lp

′
(0, T ;W−1,p′(Ω)), (4.17)

independently of ε.

In fact, as a consequence of (4.15), by Stampacchia’s theorem, we obtain (4.16). To show
that (4.17) holds true, we multiply the equation (4.7) by S′(vε) and obtain

∂S(vε)

∂t
− div

(
S′(vε)a(x, t,∇uε)

)
+ S′′(vε)a(x, t,∇uε)∇vε

= f εS′(vε)− div
(
GεS′(vε)

)
+GεS′′(vε)∇vε in D′(Q).

(4.18)

We have∣∣∣S′(vε)a(x, t,∇uε)
∣∣∣ ≤ β‖S′‖L∞(R)

[
L(x, t)+

1

λp−1

∣∣∣∇Tk(vε)+∇gε−∇xbε(x, uε)
∣∣∣p−1]

. (4.19)

As a consequence, each terms on the right-hand side of (4.18) is bounded either in
Lp
′
(0, T ;W−1,p′(Ω)) or in L1(Q), and we then obtain (4.17).

Now we look of an energy estimate of the approximating solutions. For any integer n ≥ 1,
consider the Lipschitz continuous function θn defined by θn(r) = Tn+1(r) − Tn(r). Note that
‖θn‖L∞(R) ≤ 1 for any n ≥ 1 and that θn(r) → 0 as n → ∞ for every r ∈ R. Using θn(vε) as a
test function in (4.7), we get∫

Ω
θn(vε) dx+

∫
Q
a(x, t,∇uε)∇θn(vε) dx dt

=

∫
Q
f εθn(vε) dx dt+

∫
Q
Gε∇θn(vε) dx dt+

∫
Ω
θn(bε(x, u

ε
0)) dx,

(4.20)

where θn(r) =
∫ r

0 θn(s) ds ≥ 0. Hence∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

≤
∫
{n≤|vε|≤n+1}

a(x, t,∇uε)∇gε dx dt

−
∫
{n≤|vε|≤n+1}

a(x, t,∇uε)∇xbε(x, uε) dx dt

+

∫
Q
f εθn(vε) dx dt+

∫
Q
Gε∇θn(vε) dx dt+

∫
Ω
θn(bε(x, u

ε
0)) dx.

(4.21)
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By (3.6), (4.10) and the Young inequality, we obtain∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

≤ C
∫
{|vε)|≥n}

(
|L(x, t)|p′ + |∇gε|p + |Gε|p′ + |B|p

)
dx dt

+

∫
{|vε|≥n}

|f ε|dx dt+

∫
{|bε(uε0)|≥n}

|bε(x, uε0)| dx.

(4.22)

Step 3. Again, we argue as in [2, 3, 4, 5, 7, 17]. Estimates (4.16) and (4.17) imply that for a
subsequence still indexed by ε we have

vε → v := b(x, u)− g a.e. in Q, (4.23)

uε → u a.e. in Q, (4.24)

Tk(v
ε) ⇀ Tk(v) weakly in Lp(0, T ;W 1,p

0 (Ω)), (4.25)

a(x, t,∇uε)χ{|vε|≤k} ⇀ σk weakly in (Lp
′
(Q))N . (4.26)

By (3.1), (4.10), (4.24) and the Lebesgue convergence theorem we obtain

∇xbε(x, uε)→ ∇xb(x, u) strongly in (Lp(Q))N , (4.27)

as ε tends to zero for any k > 0 and where for any k > 0, σk belongs to (Lp
′
(Q))N .

Now, we establish that b(x, u) − g belongs to L∞(0, T ;L1(Ω)). Indeed, using (4.13) and the
fact that Tk(s) ≥ |s| − 1, we obtain∫

Ω
|vε(t)| dx ≤ C

(
‖f ε‖L1(Q) + ‖L‖p

′

Lp
′
(Q)

+ ‖∇gε‖pLp(Q) + ‖bε(x, uε0)‖L1(Ω)

+ ‖B‖pLp(Ω) + ‖Gε‖p
′

Lp′ (Q)
+ meas(Ω)

)
a.e. in (0, T ),

(4.28)

whereC is a constant independent of ε. Using (4.1)–(4.6) and (4.23), we deduce that v := b(x, u)−g
belongs to L∞(0, T ;L1(Ω)).

We are now in a position to exploit (4.22). Since vε is bounded in L∞(0, T ;L1(Ω)), we have

lim
n→∞

(
sup
ε

meas{|vε| ≥ n}
)

= 0. (4.29)

Using the equi-integrability of the sequences |f ε|, |bε(x, uε0)|, |∇gε|p and |Gε|p′ in L1(Q) we deduce
that

lim
n→∞

(
sup
ε

∫
{n≤|vε|≤n+1}

∂bε(x, u)

∂s
a(x, s,∇uε)∇uε dx dt

)
= 0. (4.30)

Step 4. In this step (in order to perform the monotonicity method which will be developed in Step 5
and Step 6) for a fixed k ≥ 0 we introduce a time regularization of the function Tk(u). This kind
of a regularization was first introduced by R. Landes (see Lemma 6 and Proposition 3, p. 230 and
Proposition 4, p. 231 in [14]). More recently, it has been exploited in [9, 13] to solve a few nonlinear
evolution problems with L1 or measure data. This specific time regularization of Tk(u) (for fixed
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k ≥ 0) is defined as follows. Let (vζ0)µ in L∞(Ω) ∩W 1,p
0 (Ω) be such that ‖vζ0‖L∞(Ω) ≤ k for all

ζ > 0, and vζ0 → Tk(u0) a.e. in Ω with 1
ζ ‖v

ζ
0‖Lp(Ω) → 0 as ζ → +∞. For fixed k ≥ 0 and ζ > 0 let

us consider the unique solution Tk(u)ζ ∈ L∞(Q) ∩ Lp(0, T,W 1,p
0 (Ω)) of the monotone problem:

∂Tk(u)ζ
∂t

+ ζ(Tk(u)ζ − Tk(u)) = 0 in D′(Q), (4.31)

Tk(u)ζ(t = 0) = vζ0 in Ω. (4.32)

The behaviour of Tk(u)ζ as ζ → +∞ was investigated in [14] (see also [13]) and we just recall
here that (4.31) and (4.32) imply that:

Tk(u)ζ → Tk(u) strongly in Lp(0, T,W 1,p
0 (Ω)) a.e. in Q as ζ → +∞ (4.33)

with ‖Tk(u)ζ‖L∞(Ω) ≤ k for any ζ, and ∂Tk(u)ζ
∂t ∈ Lp(0, T,W 1,p

0 (Ω)).

Let h ∈W 1,∞(R) be a non-negative function with a compact support. The main estimate is the
following

Lemma 2 Let vε = bε(x, u
ε)− gε. Then we have

lim
µ→∞

lim
ε→0

∫ T

0

〈∂vε
∂t

, h(vε)
(
Tk(v

ε)− Tk(v)ζ
)〉

dt ≥ 0.

Proof. See Lemma 1 in [4]. �

Step 5. In this step we identify the weak limit σk and we prove the weak L1 convergence of the
truncated energy a(x, t,∇uε)∇Tk(vε) as ε tends to zero.

Lemma 3 The subsequence of uε in Step 3 for any k ≥ 0 satisfies:

lim
ε→0

∫
Q
a(x, t,∇uε)∇Tk(vε) dx dt ≤

∫
Q

∫
Ω
σk∇Tk(v) dx dt, (4.34)

lim
ε→0

∫
Q

∂bε(x, u
ε)

∂s

[
a(x, t,∇uεχ{|vε|≤k})− a(x, t,∇uχ{|v|≤k})

]
×

×
[
∇uεχ{|vε|≤k} −∇uχ{|v|≤k}

]
dx dt = 0.

(4.35)

Moreover, for a fixed k ≥ 0, we have

σk = a(x, t,∇u)χ{|v|≤k} a.e. in Q, (4.36)

a(x, t,∇uε)∇Tk(vε) ⇀ a(x, t,∇u)∇Tk(v) weakly in L1(Q) (4.37)

as ε tends to 0.

Proof. First, we prove that (4.34) holds true. For a fixed k ≥ 0 let W ε
ζ = (Tk(v

ε)− Tk(v)ζ). Let
us introduce a sequence of increasing C∞(R)-functions Sn such that

Sn(r) = r for |r| ≤ n, supp(S′n) ⊂ [−(n+ 1), n+ 1], ‖S′′n‖L∞(R) ≤ 1, for any n ≥ 1.
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We choose S′n(vε)W ε
ζ as test function in (4.7) and obtain∫ T

0

〈∂vε
∂t

, S′n(vε)W ε
ζ

〉
dt+

∫
Q
S′n(vε)a(x, t,∇uε)∇W ε

ζ dx dt

+

∫
Q
S′′n(vε)W ε

ζ a(x, t,∇uε)∇vε dx dt =

∫
Q
f εS′n(vε)W ε

ζ dx dt

+

∫
Q
GεS′n(vε)∇W ε

ζ dx dt+

∫
Q
S′′n(vε)W ε

ζG
ε∇vε dx dt.

(4.38)

In the following we pass to the limit in (4.38) as ε tends to 0, then ζ tends to∞ and then n tends
to∞, the real number k ≥ 0 being kept fixed. In order to perform this task we prove bellow the
following results for fixed k ≥ 0:

lim
ζ→∞

lim
ε→0

∫ T

0

〈∂vε
∂t

, S′n(vε)W ε
ζ

〉
dt ≥ 0, (4.39)

for any n ≥ k

lim
n→∞

lim
ζ→∞

lim
ε→0

∫
Q
S′′n(vε)a(x, t,∇uε)W ε

ζ∇vε dx dt = 0, (4.40)

lim
ζ→∞

lim
ε→0

∫
Q
f εS′n(vε)W ε

ζ dx dt = 0, (4.41)

lim
ζ→∞

lim
ε→0

∫
Q
GεS′n(vε)∇W ε

ζ dx dt = 0, (4.42)

lim
ζ→∞

lim
ε→0

∫
Q
S′′n(vε)W ε

ζG
ε∇vε dx dt = 0. (4.43)

Let us prove (4.39). In view of the definition of W ε
ζ , Lemma 3 applies with h = S′n for fixed n ≥ k.

As a consequence, (4.39) holds true.

Now, we pass to the proof of (4.40). For any n ≥ 1 and any ζ > 0, we have supp(S′′n) ⊂
[−(n+ 1),−n] ∪ [n, n+ 1], ‖W ε

ζ ‖L∞(Q) ≤ 2k and ‖S′′n‖L∞(R) ≤ 1. As a consequence,∣∣∣∣∫
Q
S′′n(vε)a(x, t,∇uε)W ε

ζ∇vε dx dt

∣∣∣∣
≤ 2k

∫
{n≤|vε|≤n+1}

|a(x, t,∇uε)∇xbε(x, uε)| dx dt

+ 2k

∫
{n≤|vε|≤n+1}

|a(x, t,∇uε)∇gε| dx dt

+ 2k

∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt.

By the assumptions (3.5), (3.6), (4.10) and Young’s inequality we obtain∫
{n≤|vε|≤n+1}

|a(x, t,∇uε)∇xbε(x, uε)|dx dt

≤ β
∫
{n≤|vε|≤n+1}

(
|∇uε|p−1|∇xbε(x, uε)|+ L(x, t)|∇xbε(x, uε)|

)
dx dt
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≤ β

λαp′

∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

+ C

∫
{|vε|≥n}

(
|B|p + |L|p′

)
dx dt,

and ∫
{n≤|vε|≤n+1}

|a(x, t,∇uε)∇gε|dx dt

≤ C
∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

+ C

∫
{|vε|≥n}

(
|∇gε|p + |L|p′

)
dx dt.

Hence ∣∣∣∣∫
Q
S′′n(vε)a(x, t,∇uε)W ε

ζ∇vε dx dt

∣∣∣∣
≤ C

∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

+ C

∫
{|vε|≥n}

(
|B|p + |L|p′ + |∇gε|p

)
dx dt

(4.44)

for any n ≥ 1, where C is a constant independent of n. Using the assumptions (4.29)–(4.30) and the
equi-integrability of the sequence |∇gε|p in L1(Q), we are able to pass to the limits in (4.44) as n
tends to∞ and to establish (4.40).

Now, we prove (4.41). For a fixed n ≥ 1, in view (4.4) and (4.23), the Lebesgue convergence
theorem implies that for any ζ > 0 and n ≥ 1 we have

lim
ε→0

∫
Q
f εS′n(vε)W ε

ζ dx dt =

∫
Q
fS′n(v)Wζ dx dt.

Using (4.33) we are able to pass to the limit in the above equality as ζ tends to∞ to obtain (4.41).

Let us now prove (4.42). Using (4.5) and (4.23) we see that to S′n(vε)Gε tends to S′n(v)G
strongly in (Lp

′
(Q))N as ε tends to 0. For a fixed ζ > 0, we have that W ε

ζ tends to Tk(v)− Tk(v)ζ

weakly in Lp(0, T ;W 1,p
0 (Ω)), and a.e. in Q as ε tends to 0. So we deduce that

lim
ε→0

∫
Q
GεS′n(vε)∇W ε

ζ dx dt =

∫
Q
GS′n(v)∇(Tk(v)− Tk(v)ζ) dx dt (4.45)

for any ζ > 0. Appealing now to (4.33) and passing to the limit in (4.45) as ζ → ∞ allows to
conclude that (4.42) holds true.

Finally, we prove (4.43). From (4.5) and (4.25) it follows that

lim
ζ→∞

lim
ε→0

∫
Q
∇S′n(vε)W ε

ζG
ε dx dt = lim

ζ→∞

∫
Q
∇S′n(v)WζGdx dt = 0

for any n ≥ 1.
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Now, we turn back to the proof of Lemma 3. Due to (4.39)–(4.43), we are in a position to pass in
(4.38) to the limit superior when ε tends to zero, then to the limit superior when ζ tends to∞ and
then to the limit as n tends to∞. Thus, for any k ≥ 0, we obtain

lim
n→∞

lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x, t,∇uε)∇(Tk(v

ε)− Tk(v)ζ) dx dt ≤ 0.

Since S′n(vε)a(x, t,∇uε)∇Tk(vε) = a(x, t,∇uε)∇Tk(vε) for k ≤ n, the above inequality implies
that for k ≤ n we get

lim
ε→0

∫
Q
a(x, t,∇uε)∇Tk(vε) dx dt

≤ lim
n→∞

lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x, t,∇uε)∇Tk(v)ζ dx dt.

(4.46)

Due to (4.23) and (4.26), we see that S′n(vε)a(x, t,∇uε) converges to S′n(v)σn+1 weakly in
(Lp

′
(Q))N as ε tends to zero. The strong convergence of Tk(v)ζ to Tk(v) in Lp(0, T ;W 1,p

0 (Ω)) as ζ
tends to∞ allows then to conclude that for all k ≤ n we have

lim
ζ→∞

lim
ε→0

∫
Q
S′n(vε)a(x, t,∇uε)∇Tk(v)ζ dx dt

=

∫
Q
S′n(v)σn+1∇Tk(v) dx dt =

∫
Q
σn+1∇Tk(v) dx dt.

(4.47)

Now for k ≤ n, we have

S′n(vε)a(x, t,∇uε)χ{|vε|≤k} = a(x, t,∇uε)χ{|vε|≤k} a.e. in Q.

Letting ε tend to 0, we obtain σn+1χ{|v|≤k} = σkχ{|v|≤k} a.e. in Q\{|v| = k} for k ≤ n. Then for
k ≤ n we have σn+1∇Tk(v) = σk∇Tk(v) a.e. in Q. Recalling (4.46) and (4.47) allows to conclude
that (4.34) holds true.

Now, we are going to prove (4.35). Let k ≥ 0 be fixed. We use (4.11) and the monotone character
(3.7) of a(x, t, ξ) with respect to ξ to obtain

Aε =

∫
Q

∂bε(x, u
ε)

∂s

(
a(x, t,∇uεχ{|vε|≤k})− a(x, t,∇uχ{|v|≤k})

)
×

×
(
∇uεχ{|vε|≤k} −∇uχ{|v|≤k}

)
dx dt ≥ 0.

(4.48)

The left-hand side of the inequality (4.48) can be split as follows: Aε = Aε1 +Aε2 +Aε3, where:

Aε1 =

∫
Q

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uεχ{|vε|≤k} dx dt,

Aε2 = −
∫
Q

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uχ{|vε|≤k}χ{|v|≤k} dx dt,

Aε3 = −
∫
Q

∂bε(x, u
ε)

∂s
a(x, t,∇u)(∇uεχ{|vε|≤k})−∇uχ{|v|≤k})) dx dt.

We pass in Aε1, Aε2 and Aε3 to the limit superior as ε tends to 0. Let us remark that we have
vε = bε(x, u

ε) − gε and ∂bε(x,uε)
∂s ∇uεχ{|vε|≤k} = ∇Tk(vε) − (∇xbε(x, uε) + ∇gε)χ{|vε|≤k} a.e.
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in Q, and we also have that χ{|vε|≤k} almost everywhere converges to χ{|v|≤k} for almost every k
(see [9]). Using (4.34), we obtain

lim
ε→0

Aε1 = lim
ε→0

∫
Q
a(x, t,∇uε)∇Tk(vε) dx dt

+ lim
ε→0

∫
Q
a(x, t,∇uε)χ{|vε|≤k}∇gε dx dt

− lim
ε→0

∫
Q
a(x, t,∇uε)∇xbε(x, uε) dx dt

≤
∫
Q
σk∇Tk(v) dx dt−

∫
Q
σk∇xb(x, u) dx dt+

∫
Q
σk∇g dx dt.

(4.49)

As a consequence of (4.6) and (4.25)–(4.27) we obtain

lim
ε→0

Aε2 = −
∫
Q
σk(∇Tk(v)−∇xb(x, u) +∇g) dx dt. (4.50)

In view of (4.6), (4.25) and (4.27) we have

lim
ε→0

Aε3 = − lim
ε→0

∫
Q
a(x, t,∇u)

(
∇Tk(vε)− (∇xbε(x, uε) +∇gε)χ{|vε|≤k}

− ∂bε(x, u
ε)

∂s

(∂b(x, u)

∂s

)−1(
∇Tk(v)− (∇xb(x, u) +∇g)χ{|v|≤k}

))
dx dt = 0.

(4.51)

Taking the limit superior in (4.48) as ε tends to 0 and using (4.49), (4.50) and (4.51), we conclude
that (4.35) holds true.

Finally, we sketch the idea of the proof of (4.36)–(4.37). Using (4.35) and the usual Minty
argument we see that (4.36)–(4.37) holds true. �

Step 6. In this step we prove that u satisfies (3.10) and (3.11). To this end, for any fixed n ≥ 1, we
have

∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

=

∫
Q
a(x, t,∇uε)∇Tn+1(vε) dx dt−

∫
Q
a(x, t,∇uε)∇Tn(vε) dx dt

+

∫
Q
a(x, t,∇uε)χ{|vε|≤n+1}∇gε dx dt−

∫
Q
a(x, t,∇uε)χ{|vε|≤n}∇gε dx dt

−
∫
Q
a(x, t,∇uε)χ{|vε|≤n+1}∇xbε(x, uε) dx dt+

∫
Q
a(x, t,∇uε)χ{|vε|≤n}∇xbε(x, uε) dx dt.

According to (4.26), (4.27), (4.36) and (4.37) for a fixed n ≥ 0 we can pass to the limit in the above
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equality as ε tends to 0 and obtain

lim
ε→0

∫
{n≤|vε|≤n+1}

∂bε(x, u
ε)

∂s
a(x, t,∇uε)∇uε dx dt

=

∫
Q
a(x, t,∇u)∇Tn+1(v) dx dt−

∫
Q
a(x, t,∇u)∇Tn(v) dx dt

+

∫
Q
a(x, t,∇u)χ{|v|≤n+1}∇g dx dt−

∫
Q
a(x, t,∇u)χ{|v|≤n}∇g dx dt

−
∫
Q
a(x, t,∇u)χ{|v|≤n+1}∇xb(x, u) dx dt+

∫
Q
a(x, t,∇u)χ{|v|≤n}∇xb(x, u) dx dt

=

∫
{n≤|v|≤n+1}

∂b(x, u)

∂s
a(x, t,∇u)∇udx dt.

(4.52)

Taking the limit in (4.52) as n tends to∞ and using the estimate (4.30), in view of (3.2), we deduce
that u satisfies (3.11).

Let S ∈ W 2,∞(R) be such that S′ has a compact support and let k be a positive real number
such that supp(S′) ⊂ [−k, k]. By multiplying the approximate equation (4.7) by S′(vε), we easily
see that

∂S(vε)

∂t
− div

(
S′(vε)a(x, t,∇uε)

)
+ S′′(vε)a(x, t,∇u)∇vε

= f εS′(vε)− div
(
GεS′(vε)

)
+GεS′′(vε)∇vε in D′(Q).

(4.53)

In what follows, we pass with ε tending to 0 in each term of (4.53). Since S is bounded and S(vε)

converges to S(v) a.e. in Q and in L∞(Q) *-weak, ∂S(vε)
∂t converges to ∂S(v)

∂t in D′(Q) as ε tends
to 0. Since supp(S′) ⊂ [−k, k], we have S′(vε)a(x, t,∇uε) = S′(vε)a(x, t,∇uε)χ{|vε|≤k} a.e. in
Q. The pointwise convergence of uε to u as ε tends to 0, the bounded character of S and (4.36) of
Lemma 3 imply that S′(vε)a(x, t,∇uε) converges to S′(v)a(x, t,∇u) weakly in (Lp

′
(Q))N as ε

tends to 0. The pointwise convergence of vε to v, the bounded character of S′′ and (4.37) of Lemma 3
allow us to conclude that S′′(vε)a(x, t,∇uε)∇Tk(vε) converges to S′′(v)a(x, t,∇u)∇Tk(v) weakly
in L1(Q) as ε tends to 0. We use (4.4), (4.5), (4.6), (4.23) and (4.25) to deduce that f εS′(vε) con-
verges to fS′(v) strongly in L1(Q), the term GεS′(vε) converges to GS′(v) strongly in (Lp

′
(Q))N

and GεS′′(vε)∇vε converges to GS′′(v)∇v weakly in L1(Q).

As a consequence of the above convergence result, we are in a position to pass to the limit in the
equation (4.53) as ε tends to 0 and to conclude that u satisfies (3.12).

It remains to show that S(v) satisfies the initial condition (3.13). To this end, firstly note that S(vε)
is bounded in L∞(Q). Secondly, (4.53) and the above considerations on the behaviour of the terms
of this equation show that ∂S(vε)

∂t is bounded in L1(Q) + Lp
′
(0, T ;W−1,p′(Ω)). As a consequence,

an Aubin’s type lemma (see e.g. Corollary 4 in [25]) implies that S(vε) lies in a compact set of
C([0, T ];W−1,s(Ω)) for any s < inf(p′, N

N−1). It follows that, on one hand, S(vε)(t = 0) converges
to S(v)(t = 0) strongly in W−1,s(Ω), and on the other hand, the smoothness of S implies that
S(vε)(t = 0) converges to S(b(x, u))(t = 0) strongly in Lq(Ω) for all q < ∞. Due to (4.2), we
conclude that S(vε)(t = 0) = S(bε(x, u

ε
0)) converges to S(b(x, u)(t = 0) strongly in Lq(Ω). Then

we conclude that S(v)(t = 0) = S(b(x, u0)) in Ω.

As a conclusion of Step 3 and Step 6, the proof of Theorem 2 is complete. �
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5 Appendix

We prove Proposition 2.

Proof. (Sketch) Assume that u satisfies Definition 1 for (f, div(G), g) and let (f,div(G), g) be
a decomposition of µ. Note that by Lemma 1, since g − g ∈ C([0, T ];L1(Ω)), we infer that
v := b(x, u) − g ∈ L∞(0, T ;L1(Ω)) and v is also almost everywhere finite. We prove that
TK(v) ∈ Lp(0, T ;W 1,p

0 (Ω)) for every K > 0. We can reason as in the proof of Proposition 3.10
in [23]. We use the definition of S′n (see the proof of Lemma 3) and we choose as a test function
TK(Sn(v) + g − g) in (3.11). Using Lemma 1 we obtain

I1 + I2 = I3 + I4 + I5 + I6, (5.1)

where

I1 =

∫ T

0

〈
∂(Sn(v) + g − g)

∂t
, TK(Sn(v) + g − g)

〉
dt,

I2 =

∫
Q
S′n(v)a(x, t,∇u)∇TK(Sn(v) + g − g) dx dt,

I3 = −
∫
Q
S′′n(v)a(x, t,∇u)∇vTK(Sn(v) + g − g) dx dt,

I4 =

∫
Q

((S′n(v)− 1)f + f)TK(Sn(v) + g − g) dx dt,

I5 =

∫
Q

((S′n(v)− 1)G+G)∇TK(Sn(v) + g − g) dx dt,

I6 =

∫
Q

(S′′n(v)G∇(v)TK(Sn(v) + g − g) dx dt.

We use the integration by parts formula (see for example [12]), the initial condition (3.12) and
Lemma 1 to obtain

I1 =

∫
Ω
TK(Sn(v) + g − g)(T ) dx−

∫
Ω
TK(Sn(b(x, u0))) dx, (5.2)

where TK(r) =
∫ r

0 TK(s) ds is a positive Lipschitz continuous function. Using (5.2) and the
definition of Sn, we obtain

I1 ≥ −K
∫

Ω
|b(x, u0)|dx for all n ≥ 1. (5.3)

Let EK =
{

(x, t) : |Sn(v) + g − g| ≤ K
}

. Then we have

I2 =

∫
EK

|S′n(v)|2a(x, t,∇u)

[
∇xb(x, u) +

∂b(x, u)

∂s
∇u
]

dx dt

−
∫
EK

|S′n(v)|2a(x, t,∇u)∇g dx dt+

∫
EK

S′n(v)a(x, t,∇u)∇(g − g) dx dt

≡ I21 + I22 + I23.

(5.4)
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Using (3.1) and the properties of Sn: (S′n(s))p ≤ S′n(s), (S′n(s))p
′ ≤ S′n(s), S′n(s) ≤ S′n(s)2 +

χ{n≤|s|≤n+1}, we obtain

I21 ≥
α

λp−1

∫
EK

|S′n(v)|p|∇u|p dx dt

−
∫
{n≤|v|≤n+1}

∂b(x, u)

∂s
a(x, t,∇u)∇udx dt.

(5.5)

Using (3.1), (3.4), (3.5) and Young’s inequality, we deduce that

|I22|+ |I23| ≤ C
(
‖L‖p

′

Lp′
+ ‖∇g‖pLp + ‖∇(g − g)‖pLp

)
+ C

∫
{n≤|v|≤n+1}

b′(u)a(x, t,∇u)∇udx dt

+
α

4 λp−1

∫
EK

|S′n(v)|p|∇u|p dx dt

(5.6)

and

|I3|+ |I6| ≤ C
(
‖L‖p

′

Lp′
+ ‖∇g‖pLp + ‖G‖p

′

Lp′

)
+ C

∫
{n≤|v|≤n+1}

a(x, t,∇u)∇udx dt.
(5.7)

Using (3.4) and Young’s inequality, we obtain

|I4|+ |I5| ≤ C
(
‖f‖L1 + ‖f‖L1 + ‖G‖p

′

Lp′
+ ‖G‖p

′

Lp′
+ ‖∇g‖pLp + ‖∇g‖pLp

)
+ C

∫
{n≤|v|≤n+1}

a(x, t,∇u)∇udx dt

+
α

4 λp−1

∫
EK

|S′n(v)|p|∇u|p dx dt

(5.8)

Using (5.1) to (5.8), we deduce that

α

4 λp−1

∫
EK

|S′n(v)|p|∇b(x, u)|p dx dt

≤ Cα

4λp−1

∫
EK

|S′n(v)|p|∇u|p dx dt+
Cα

4λp−1

∫
EK

|S′n(v)|p|B|p dx dt

≤ C
∫
{n≤|v|≤n+1}

a(x, t,∇u)∇udx dt

+ C
(
‖f‖L1(Q) + ‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω) + ‖G‖p

′

Lp′
+ ‖G‖p

′

Lp′
+ ‖∇g‖pLp + ‖∇g‖pLp

)
.

(5.9)

Using the properties of Sn and the fact that g belongs to Lp(0, T ;W 1,p
0 (Ω)), we deduce that∫

Q χEn |∇Sn(v)|p dx dt ≤ C for all n ≥ 1. And then, since g, g in Lp(0, T ;W 1,p
0 (Ω)), we have∫

Q |∇TK(Sn(v) + g − g|p dx dt ≤ C for all n ≥ 1. It follows that TK(Sn(v) + g − g) is bounded

in Lp(0, T ;W 1,p
0 (Ω)) and converges to TK(v) a.e. in Q and weakly in Lp(0, T ;W 1,p

0 (Ω)). Then
TK(v) ∈ Lp(0, T ;W 1,p

0 (Ω)).
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Now, we prove that (3.11) holds true for g. Using the admissible test function θh(Sn(v) + g− g)
in (3.12) with S = Sn, θh(s) = Th+1(s)− Th(s), the coercive character (3.5), the properties (3.2)
of b and the Young inequality, we are able to deduce that

λ

∫
Fn

|S′n(v)|2a(x, u,∇u)∇u dx dt

≤ C
∫
Q

(|f |+ |f |)|θh(Sn(v) + g − g)| dx dt+

∫
Ω
θh(Sn(b(x, u0))) dx

+ C

∫
Fn

(|G|p′ + |G|p′ + |∇g|p + |∇g|p + |L(x, t)|p′) dx dt

+ CΛ

∫
{n≤|v|≤n+1}

a(x, t,∇u)∇u dx dt+ w(n),

(5.10)

where Fn =
{
h ≤ |Sn(v) + g − g| ≤ h+ 1

}
. Taking the limit in (5.10) as n tends to +∞, using

(3.11) and the convergence of χFn to χ{h≤|v|≤h+1}, we can show that for any h > 0.∫
{h≤|v|≤h+1}

a(x, t,∇u)∇u dx dt

≤ C
∫
{|v|>h}

(|f |+ |f |) dt dx+ C

∫
{|b(x,u0)|>h}

|b(x, u0)| dx

+ C

∫
{h≤|v|≤h+1}

[
|f |+ |f |+ |G|p′ + |G|p′ + |∇g|p + |∇g|p + |L|p′

]
dx dt.

(5.11)

Note that v is almost everywhere finite, and so passing to the limit in (5.11) as h tends to +∞ yields

lim
h→+∞

∫
{h≤|v|≤h+1}

a(x, t,∇u)∇udx dt = 0. (5.12)

In the following we prove that the renormalized equation (3.12) and the initial condition (3.13) hold
with g as well.

Let S be a function in W 2,∞(R) such that S′ has a compact support. Let ϕ be a function in
C∞c (Q). We choose S′(Sn(v) + g + g)ϕ as a test function in (3.12) and we have∫ T

0

〈
∂(Sn(v) + g − g)

∂t
, S′(Sn(v) + g + g)ϕ

〉
dt

+

∫
Q
S′n(v)a(x, t,∇u)∇S′(Sn(v) + g + g)ϕdx dt

+

∫
Q
S′n(v)a(x, t,∇u)∇ϕS′(Sn(v) + g + g) dx dt

+

∫
Q
S′′n(v)a(x, t,∇u)∇(v)S′(Sn(v) + g + g)ϕdx dt

=

∫
Q

((S′n(v)− 1)f + f)S′(Sn(v) + g + g)ϕdx dt

+

∫
Q

((S′n(v)− 1)G+G)∇ϕS′(Sn(v) + g + g) dx dt

+

∫
Q

((S′n(v)− 1)G+G)∇S′(Sn(v) + g + g)ϕdx dt

+

∫
Q
S′′n(v)G∇(v)S′(Sn(v) + g + g)ϕdx dt.

(5.13)
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In what follows we pass to the limit in each term of (5.13) as n tends to 0. For the parabolic
contribution in (5.13), we write∫ T

0

〈
∂(Sn(v) + g − g)

∂t
, S′(Sn(v) + g + g)ϕ

〉
dt

=

∫ T

0

〈
∂S((Sn(v) + g − g))

∂t
, ϕ

〉
dt = −

∫
Q
S((Sn(v) + g − g))ϕt

=

∫ T

0

〈
∂S(v)

∂t
, ϕ

〉
dt+ w(n).

(5.14)

Recall that, since supp(S′) ⊂ [−K,K] and

supp
(
S′n(v)S′(Sn(v) + g − g)

)
⊂
{
|v| ≤ n+ 1 : |v| ≤ K + 1

}
,

∇u may be replaced by w ≡
(
∂b(x,s)
∂s

)−1[
∇(TK+1(v) + g −∇xb(x, u)

]
in all the terms of (5.13).

Using the definition of Sn, we obtain

lim
n→+∞

∫
Q
S′n(v)a(x, t,∇u)∇S′(Sn(v) + g − g)ϕdx dt

= lim
n→+∞

∫
Q
S′n(v)a(x, t, w)∇S′(Sn(v) + g − g)ϕdx dt

=

∫
Q
a(x, t, w)∇S′(v)ϕdx dt =

∫
Q
a(x, t,∇u)∇S′(v)ϕdx dt

(5.15)

and

lim
n→+∞

∫
Q
S′n(v)a(x, t,∇u)∇ϕS′(Sn(v) + g − g) dx dt

= lim
n→+∞

∫
Q
S′n(v)a(x, t, w)∇ϕS′(Sn(v) + g − g) dx dt

=

∫
Q
a(x, t, w)∇ϕS′(v) dx dt =

∫
Q
a(x, t,∇u)∇ϕS′(v) dx dt.

(5.16)

The definition of S′n, (S′′n → 0) allows us to deduce that

lim
n→+∞

∫
Q
S′′n(v)a(x, t,∇u)∇vS′(Sn(v) + g − g)ϕdx dt

= lim
n→+∞

∫
Q
S′′n(v)a(x, t, w)∇(TK+1(v) + g − g)S′(Sn(v) + g − g)ϕdx dt = 0.

(5.17)

Repeating the arguments that lead to (5.15), (5.16) and (5.17), we obtain

lim
n→+∞

∫
Q

((S′n(v)− 1)f + f)S′(Sn(v) + g + g)ϕdx dt =

∫
Q
fS′(v)ϕdx dt, (5.18)

lim
n→+∞

∫
Q

((S′n(v)− 1)G+G)∇ϕS′(Sn(v) + g + g) dx dt =

∫
Q
G∇ϕS′(v) dx dt, (5.19)

lim
n→+∞

∫
Q

((S′n(v)− 1)G+G)∇S′(Sn(v) + g + g)ϕdx dt =

∫
Q
G∇S′(v)ϕdx dt, (5.20)
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lim
n→+∞

∫
Q
S′′n(v)G∇vS′(Sn(v) + g + g)ϕdx dt = 0. (5.21)

As a consequence of the above convergence results, we are in a position to pass to the limit in (5.13)
as n tends to +∞ and to conclude that u satisfies (3.12) (with g instead of g).

It remains to show that S(v) satisfies the initial condition (3.13). To this end, for ψ ∈ C∞0 (Ω)
we take ϕ = (T − t)ψ in (5.13); it possible to obtain

lim
n→+∞

∫ T

0

〈
∂(Sn(v) + g − g)

∂t
, S′(Sn(v) + g + g)ϕ

〉
dt

+

∫
Q
S′(v)a(x, t,∇u)∇ϕdx dt+

∫
Q
a(x, t,∇u)∇S′(v)ϕdx dt

=

∫
Q
fS′(v)ϕdx dt+

∫
Q
G∇ϕS′(v) dx dt+

∫
Q
G∇S′(v)ϕdx dt.

(5.22)

Employing the integration-by-parts formula for the evolution term, using Sn(v)(t = 0) =
Sn(b(x, u0)) and (g − g)(0) = 0, we get∫ T

0

〈
∂(Sn(v) + g − g)

∂t
, S′(Sn(v) + g + g)ϕ

〉
dt

=

∫ T

0

〈
∂S(Sn(v) + g − g)

∂t
, ϕ

〉
dt

= −
∫

Ω
S(Sn(b(u0)))ϕ(0) dx−

∫
Q
S(Sn(v) + g − g)ϕt dx

= −
∫

Ω
S(b(x, u0))ϕ(0) dx−

∫
Q
S(v)ϕt dx+ w(n).

(5.23)

Secondly, we use ϕ as a test function in (3.12) (with g). This leads to

−
∫

Ω
S(v)(0) dx−

∫
Q
S(v)ϕt dx dt

+

∫
Q
S′(v)a(x, t,∇u)∇ϕdx dt+

∫
Q
a(x, t,∇u)∇S′(v)ϕdx dt

=

∫
Q
fS′(v)ϕdx dt+

∫
Q
G∇ϕS′(v) dx dt+

∫
Q
G∇S′(v)ϕdx dt.

(5.24)

From (5.22), (5.23) and (5.24) we conclude that
∫

Ω S(v)(0)ψ dx =
∫

Ω S(b(x, u0))ψ dx for all
ψ ∈ C∞0 (Ω), and so S(v)(t = 0) = S(b(x, u0)) in Ω. The proof of Proposition 2 is complete. �

Remark 2 Let us mention that the question of the uniqueness of a renormalized solution for (1.1)–
(1.3) still remains open. Note that some recent results in this directions which may be useful to show
the uniqueness of a renormalized solution for (1.1)–(1.3) are contained in [8] and [24].

Acknowledgements

The authors would like to thank the anonymous referees for their interesting remarks.



NONLINEAR PARABOLIC EQUATIONS WITH DIFFUSE MEASURE DATA 47

References

[1] D. Blanchard, Truncation and monotonicity methods for parabolic equations equations, Non-
linear Analysis. Theory, Methods & Applications 21 (1993), no. 10, 725–743.

[2] D. Blanchard, F. Murat, Renormalized solutions of nonlinear parabolic problems with L1

data: existence and uniqueness, Proceedings of the Royal Society of Edinburgh. Section A.
Mathematics 127 (1997), no. 6, 1137–1152.

[3] D. Blanchard, F. Murat, H. Redwane, Existence et unicité de la solution reormalisée d’un
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