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Abstract. This paper investigates the existence of triple non-negative solutions for a kind of higher-
order nonlinear fractional differential equations by using Leggett-Williams fixed point theorem, and
presents a new existence criterion. The fractional derivative here is the standard Riemann-Liouville
one. A new approximation of the Green’s function is derived to facilitate the proof of the main
results. The study of an illustrative example shows that the new existence criterion obtained in this
paper improves the existing results to some extent.
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1 Introduction

Fractional differential equations (FDEs) arise in the area of physics [1], chemistry [2], aerody-
namics [3], etc. Due to the great importance in both theoretical development and practical ap-
plications [32–34], the study of fractional differential equations has drawn a great deal of at-
tention, and a large number of results have been obtained on the existence of positive solutions,
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see [4,8,10–22,24,28–30] and the references therein. In [22], Zhao et al. considered a kind of two-
point nonlinear fractional boundary value problem, and obtained some results on the existence of
positive solutions by virtue of lower and upper solution method. Xu et al. [19] studied the existence
of positive solutions for a kind of boundary value problems with Riemann-Liouville’s fractional
derivative, and established some useful sufficient conditions via the Krasnoselskii-Zabreiko fixed
point theorem.

As an important branch of fractional differential equations, higher-order FDEs have been
studied recently [1, 11, 28–30]. In [1], higher-order fractional heat-type equations were investi-
gated and some interesting properties on the solution to this type of equations were presented.
C. Goodrich [29] considered the following higher-order fractional differential equation:{

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(i)(0) = 0, 0 ≤ i ≤ n− 2, i ∈ N; [Dβ
0+u(t)]t=1 = 0, 1 ≤ β ≤ n− 2,

(1.1)

where n − 1 < α ≤ n, n > 3, n ∈ N+, and Dα
0+ is the standard Riemann-Liouville fractional

derivative of order α. The author derived the Green’s function for this problem and presented
some results on the existence of one positive solution to FDE (1.1). Later, Wang et al [30] studied
FDE (1.1) with f(t, u(t)) = a(t)g(u(θ(t))). They established some sufficient conditions for the
existence of multiple positive solutions to this problem by applying fixed point index theory and
Leggett-Williams fixed point theorem.

It should be pointed out that the conditions obtained in [30] for the existence of triple positive
solutions are strong, and many FDEs which have triple positive solutions do not meet these con-
ditions, see Example 3.6 below. Motivated by this fact, in this paper, we investigate the existence
of triple non-negative solutions to FDE (1.1) with general nonlinearity f(t, u(t)) by using Leggett-
Williams fixed point theorem, and present a new existence criterion. The main contributions of this
work are as follows. On one hand, a new approximation of the Green’s function is derived, which is
crucial to relaxing the conditions. On the other hand, a new criterion is presented for the existence
of triple positive solutions to FDE (1.1), which is weaker and improves the existing results to some
extent (see Example 3.6).

Throughout this paper, we assume that the nonlinearity f : [0, 1] × [0,+∞) → [0,+∞) is
continuous. Moreover, let E = C[0, 1] with the norm ‖x‖ = maxt∈[0,1] |x(t)| and P = {x ∈ E :
x(t) ≥ 0, ∀ t ∈ [0, 1]}. Then, E is a Banach space and P is a normal cone of E. We will consider
the existence of non-negative solutions to FDE (1.1) in P .

The rest of this paper is organized as follows. Section 2 contains some necessary prelimi-
naries on the Riemann-Liouville derivative. In Section 3, we investigate the existence of triple
non-negative solutions to FDE (1.1), and present a new existence criterion.

2 Preliminaries

In this section, we give some necessary preliminaries on the Riemann-Liouville derivative, which
will be used in the sequel.

We first recall some well known results about Riemann-Liouville derivative. For details, please
refer to [2–4] and the references therein.
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Definition 2.1 ([3]) The Riemann-Liouville fractional integral of order α > 0 of a function y :
(0,∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s) ds, (2.1)

provided that the right side is pointwise defined on (0,∞), where Γ denotes the Gamma function

Γ(α) =

∫ +∞

0
e−ttα−1 dt.

Definition 2.2 ([3]) The Riemann-Liouville fractional derivative of order α > 0 of a continuous
function y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

y(s)

(t− s)α−n+1
ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of α, provided that the right side is pointwise
defined on (0,∞).

One can easily obtain the following properties from the definition of Riemann-Liouville deriv-
ative.

Proposition 2.3 ([3]) Let α > 0. If we assume u ∈ C(0, 1)∩L(0, 1), then the fractional differential
equation Dα

0+u(t) = 0 has

u(t) = C1t
α−1 + C2t

α−2 + · · ·+ CN t
α−N , Ci ∈ R, i = 1, 2, · · · , N

as unique solutions, where N is the smallest integer greater than or equal to α.

Proposition 2.4 ([3]) Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then,

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ CN t

α−N (2.3)

for some Ci ∈ R, i = 1, 2, · · · , N , where N is the smallest integer greater than or equal to α.

Finally, we recall the well-known Leggett-Williams fixed point theorem as follows.

Let E = (E, ‖ · ‖) be a Banach space and P ⊂ E be a cone on E. A continuous mapping
ω : P → [0,+∞) is said to be a concave non-negative continuous functional on P , if ω satisfies
ω(λx+ (1− λ)y) ≥ λω(x) + (1− λ)ω(y) for all x, y ∈ P and λ ∈ [0, 1].

Let a, b, d > 0 be constants. Define Pd = {x ∈ P : ‖x‖ < d}, Pd = {x ∈ P : ‖x‖ ≤ d} and
P (ω, a, b) = {x ∈ P : ω(x) ≥ a, ‖x‖ ≤ b}.

Lemma 2.5 ([31]) Let E = (E, ‖ · ‖) be a Banach space, P ⊂ E be a cone of E and c > 0
be a constant. Suppose there exists a concave non-negative continuous functional ω on P with
ω(x) ≤ ‖x‖ for all x ∈ Pc. Let T : Pc → Pc be a completely continuous operator. Assume that
there are numbers a, b and d with 0 < d < a < b ≤ c, such that
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(i) {x ∈ P (ω, a, b) : ω(x) > a} 6= ∅ and ω(Tx) > a for all x ∈ P (ω, a, b);

(ii) ‖Tx‖ < d for all x ∈ Pd;

(iii) ω(Tx) > a for all x ∈ P (ω, a, c) with ‖Tx‖ > b.

Then, T has at least three fixed points x1, x2 and x3 in Pc. Furthermore, x1 ∈ Pa; x2 ∈ {x ∈
P (ω, a, c) : ω(x) > a}; x3 ∈ Pc \ (P (ω, b, c) ∪ Pa).

3 Main results

In this section, we investigate the existence of triple non-negative solutions to FDE (1.1), and present
a new existence criterion. To this end, we need the following results about the Green’s function for
FDE (1.1).

Lemma 3.1 ([29]) x(t) ∈ C[0, 1] is a solution to FDE (1.1), if and only if x(t) = Tx(t), where

Tx(t) =

∫ 1

0
G(t, s)f(s, x(s)) ds, (3.1)

and

G(t, s) =


tα−1(1−s)α−β−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−1(1−s)α−β−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(3.2)

Lemma 3.2 ([29]) The Green’s function G(t, s) given in (3.2) has the following property:

1) G(t, s) is a continuous function on the unit square [0, 1]× [0, 1];

2) G(t, s) ≥ 0 for each (t, s) ∈ [0, 1]× [0, 1];

3) maxt∈[0,1]G(t, s) = G(1, s), for each s ∈ [0, 1].

It is well worth pointing out that Wang et al. [30] studied FDE (1.1) with a special nonlinearity
f(t, x(t)) = a(t)g(x(θ(t))) and obtained an existence criterion for triple positive solutions based
on Lemma 3.2. Next, to improve the results in [30], we give a new approximation of the Green’s
function.

Theorem 3.3 The Green’s function G(t, s) has the following property:

tα−1G(1, s) ≤ G(t, s) ≤ G(1, s), ∀ t, s ∈ [0, 1]. (3.3)

Proof. On one hand, when s ≤ t, we have



ON TRIPLE NON-NEGATIVE SOLUTIONS OF FRACTIONAL EQUATIONS 105

G(t, s) =
tα−1(1− s)α−β−1 − tα−1(1− s

t )
α−1

Γ(α)

≥ tα−1(1− s)α−β−1 − tα−1(1− s)α−1

Γ(α)

=
tα−1(1− s)α−β−1(1− (1− s)β)

Γ(α)

= tα−1G(1, s).

On the other hand, when s ≥ t, it is easy to see that

G(t, s) =
tα−1(1− s)α−β−1

Γ(α)

≥ tα−1(1− s)α−β−1 − tα−1(1− s)α−1

Γ(α)

= tα−1G(1, s).

Thus, tα−1G(1, s) ≤ G(t, s), ∀ t, s ∈ [0, 1]. From Lemma 3.2, it is easy to see that G(t, s) ≤
G(1, s). Hence, (3.3) is true. �

Denote by

Ψ =
(α− β)Γ(α+ 1)

ξα−1(1− ξ)α−β(α− (α− β)(1− ξ)β)
,

f0 = lim
x→0+

sup
t∈[0,1]

f(t, x)

x
, f∞ = lim

x→+∞
sup
t∈[0,1]

f(t, x)

x
.

To use Lemma 2.5, we choose a constant ξ ∈ (0, 1) and define a functional ω : P → [0,+∞)
by

ω(x) = min
t∈[ξ,1]

x(t), (3.4)

then, one can easily see that ω is a concave non-negative continuous functional on P , and satisfies
ω(x) ≤ ‖x‖ for all x ∈ P .

We have the following result.

Theorem 3.4 Consider FDE (1.1). Assume that there exist two constants a and b with 0 < a <
ξα−1b such that the following conditions hold:

(H1) there exists a constant ζ with 0 ≤ ζ < (α−β)Γ(α+1)
β , such that f∞ = ζ;

(H2) there exists a constant η with 0 ≤ η < (α−β)Γ(α+1)
β , such that f0 = η;

(H3) f(t, x) > Ψa, ∀ (t, x) ∈ [ξ, 1]× [a, b].

Then, FDE (1.1) has at least three non-negative solutions.
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Proof. Let us divide the proof into 4 steps.

Step 1. By (H1), for any ε ∈ (0, (α−β)Γ(α+1)
β − ζ), there exists τ > 0 such that 0 ≤ f(t, x) ≤

(ζ + ε)x for all t ∈ [0, 1] and x > τ . Denote N = max(t,x)∈[0,1]×[0,τ ] f(t, x). Then

0 ≤ f(t, x) ≤ (ζ + ε)x+N, ∀ t ∈ [0, 1], x ≥ 0.

Take c ≥ max{b, βN
(α−β)Γ(α+1)−β(ζ+ε)}. Then, for ‖x‖ ≤ c, from Theorem 3.3, we have

‖Tx‖ = max
t∈[0,1]

∫ 1

0
G(t, s)f(s, x(s)) ds

≤ [N + (ζ + ε)‖x‖] max
t∈[0,1]

∫ 1

0
G(t, s) ds

≤ [N + (ζ + ε)‖x‖]
∫ 1

0
G(1, s) ds

=
β

(α− β)Γ(α+ 1)
[N + (ζ + ε)‖x‖] ≤ c.

Thus, T : Pc → Pc.

Next, let us show that T : Pc → Pc is completely continuous.

Let xn, x0 ∈ Pc with ‖xn − x0‖ → 0 as n→ +∞. Then,

‖Txn − Tx0‖ = max
t∈[0,1]

|
∫ 1

0
G(t, s)f(s, xn(s)) ds−

∫ 1

0
G(t, s)f(s, x0(s)) ds|

≤ max
t∈[0,1]

∫ 1

0
G(t, s)|f(s, xn(s))− f(s, x0(s))|ds

≤
∫ 1

0
G(1, s)|f(s, xn(s))− f(s, x0(s))|ds→ 0, n→ +∞.

Hence, T : Pc → Pc is continuous.

In addition, for any t1, t2 ∈ [0, 1] and x ∈ Pc, we have

|(Tx)(t1)− (Tx)(t2)| ≤ [N + (ζ + ε)c]

∫ 1

0
|G(t1, s)−G(t2, s)|ds. (3.5)

From Lemma 3.2, G(t, s) is uniformly continuous on (t, s) ∈ [0, 1] × [0, 1], which implies that
|(Tx)(t1)− (Tx)(t2)| → 0 as |t1− t2| → 0. Moreover, T (Pc) is bounded. Thus, the Arzela-Ascoli
theorem guarantees that T : Pc → Pc is compact.

Therefore, T : Pc → Pc is completely continuous.

Step 2. Let x0(t) = a+b
2 , ∀ t ∈ [0, 1]. Then, ω(x0) = a+b

2 > a and ‖x0‖ = a+b
2 < b. Thus,

x0 ∈ {x ∈ P (ω, a, b) : ω(x) > a} 6= ∅.

Now, let us prove that ω(Tx) > a holds for all x ∈ P (ω, a, b). In fact, x ∈ P (ω, a, b) implies
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that a ≤ x(t) ≤ b, ∀ t ∈ [ξ, 1]. One can obtain from (H3) and Theorem 3.3 that

ω(Tx) = min
t∈[ξ,1]

(Tx)(t) = min
t∈[ξ,1]

∫ 1

0
G(t, s)f(s, x(s)) ds

> Ψa min
t∈[ξ,1]

∫ 1

ξ
G(t, s) ds

≥ Ψa min
t∈[ξ,1]

∫ 1

ξ

tα−1((1− s)α−β−1 − (1− s)α−1)

Γ(α)
ds

≥ Ψa
ξα−1

Γ(α)

∫ 1

ξ
((1− s)α−β−1 − (1− s)α−1) ds = a.

Hence, condition (i) of Lemma 2.5 is true.

Step 3. It is easy to see from (H2) that for all t ∈ [0, 1], ∀ 0 < ε ≤ (α−β)Γ(α+1)
β − η, ∃ δ > 0,

such that for 0 ≤ x < δ, we have
f(t, x) < (η + ε)x. (3.6)

Let 0 < d < min{δ, a}. Now, we prove that ‖Tx‖ < d for all x ∈ Pd = {x ∈ P : ‖x‖ ≤ d}.

As a matter of fact, ∀ x ∈ Pd, one can see that

‖Tx‖ = max
t∈[0,1]

∫ 1

0
G(t, s)f(s, x(s)) ds

< (η + ε)‖x‖ max
t∈[0,1]

∫ 1

0
G(t, s) ds

≤ (η + ε)‖x‖
∫ 1

0
G(1, s) ds ≤ ‖x‖ ≤ d

Thus, ‖Tx‖ < d, for all x ∈ Pd.

Step 4. Let us prove that ω(Tx) > a holds for all x ∈ P (ω, a, c) with ‖Tx‖ > b.
In fact, for x ∈ P (ω, a, c) with ‖Tx‖ > b, we have

b < ‖Tx‖ = max
t∈[0,1]

∫ 1

0
G(t, s)f(s, x(s)) ds

≤
∫ 1

0
G(1, s)f(s, x(s)) ds,

that is, ∫ 1

0
G(1, s)f(s, x(s)) ds > b.

Therefore,

ω(Tx) = min
t∈[ξ,1]

(Tx)(t) = min
t∈[ξ,1]

∫ 1

0
G(t, s)f(s, x(s)) ds

≥ min
t∈[ξ,1]

∫ 1

0
tα−1G(1, s)f(s, x(s)) ds

≥ ξα−1

∫ 1

0
G(1, s)f(s, x(s)) ds

> ξα−1b > a.
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To sum up, all conditions of Lemma 2.5 hold. By Lemma 2.5, FDE (1.1) has at least three
non-negative solutions. �

Remark 3.5 From the proof of Theorem 3.4, one can see that at least two of the three non-negative
solutions are positive solutions.

Finally, we give an illustrative example to support our new results.

Example 3.6 Consider the following higher-order fractional differential equation:{
D

7
2
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0, [D
3
2
0+u(t)]t=1 = 0,

(3.7)

where f(t, x) = a(t)g(x), a(t) ≡ 1 and

g(x) =


10x, 0 ≤ x ≤ 0.5,
390x− 190, 0.5 < x < 1,
200, 1 ≤ x ≤ 20,
10x, x > 20.

(3.8)

Choose ξ = 2
3 . A simple calculation shows that Ψ ≈ 185.2136 and (α−β)Γ(α+1)

β ≈ 15.5090.

Set a = 1 and b = 10, then one can see that f∞ = f0 = 10 < (α−β)Γ(α+1)
β and

f(t, x) = 200 > Ψa, ∀ (t, x) ∈ [
2

3
, 1]× [1, 10].

Thus, (H1)–(H3) hold true. By Theorem 3.4, FDE (3.7) has at least three non-negative solutions.

Remark 3.7 It is noted that Wang et al. [30] studied FDE (1.1) with f(t, x(t)) = a(t)g(x(θ(t)))
and obtained an existence criterion for triple positive solutions. By a simple calculation, it is easy
to see that the conditions in [30] are not satisfied for FDE (3.7). Thus, the new existence criterion
obtained in this paper improves the existing results in [30] to some extent.
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