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Abstract. In this note, we establish the existence and uniqueness of mild and classical solutions of
a class of some nonlinear nonlocal delay evolution equations of fractional orders in Banach spaces.
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1 Introduction

The aim of this paper is to study the nonlinear nonlocal delay fractional evolution system of the
form

CDα
t u(t) +A(t, u(σ0(t)))u(t) = F

(
t, u(σ1(t)), ..., u(σn(t)),

∫ t

0
G(t, s, u(σn+1(s))) ds

)
,

(1.1)

A(0, u)[u(0)− u0] = H(u), (1.2)

in a Banach space X , where Dα is the Caputo fractional derivative of order 0 < α ≤ 1, t ∈ J, u is
anX-valued function on J and u0 ∈ X . We assume that−A(t, .) is a closed linear operator defined
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on a dense domain D(A) in X into X such that D(A) is independent of t. It is also assumed
that −A(t, .) generates an evolution operator in the Banach space X . The nonlinear operators
F : J × Xn+1 → X,G : Λ × X → X and H : C(J,X) → X are given abstract functions,
σi, i=0,n+1 : J → J ′ are delay arguments. Here J = [0, a], J ′ = [0, t] and Λ = {(t, s) : 0 ≤ s ≤
t ≤ a}.

The theory of evolution equations is an important branch in abstract differential equations, see
Zaidman [24, 25]. In this case, since the terms of such equation are probabilistic, it can be taken
many modeling senses of applications.

The existence result to evolution equations with nonlocal conditions in Banach space was stud-
ied first by Byszewski [3, 4]. Deng [9] indicated that, using the nonlocal condition u(0)+h(u) = u0
to describe for instance, the diffusion phenomenon of a small amount of gas in a transparent tube
can give better result than using the usual local Cauchy problem u(0) = u0. According to Deng’s
papers, the function h is considered of the form

h(u) =

p∑
k=1

cku(tk), (1.3)

where ck, k = 1, 2, ..., p are given constants and 0 ≤ t1 < ... < tp ≤ a, see also Benchohra et
al. [2], Dong et al. [10] and N’Guérékata [19].

In the last few decades, fractional differential equations have attracted the attention of many
scientists in several topics, see for example, Kilbas et al. [15, 22] and Podlubny [21]. Recently, the
junction between the mentioned fields, well known by (nonlocal) fractional evolution equations, has
been considered by many authors, see for instance [12, 16, 18, 23, 26].

In this paper, motivated by our work [6], Araya et al. [1] and Mophou et al. [17], our concern is:
What evolution operator should be used when the closed operator depends on the delay argument?
For this reason, we will introduce a new concept in the theory of semigroups called delay resolvent
family as possible answering. A new form of nonlocal condition has been presented with the help
of Hille-Phillips principles [14].

2 Preliminary results

Let X and Y be two Banach spaces such that Y is densely and continuously embedded in X . For
any Banach space Z, the norm of Z is denoted by ‖.‖Z . The space of all bounded linear operators
endowed with the topology defined by the operator norm from X to Y is denoted by B(X,Y ) and
B(X,X) is written as B(X).

2.1 Fractional integrals and derivatives

We recall some basic definitions in fractional calculus from [15, 21, 22].

Definition 2.1 The fractional integral of order α with the lower limit zero for a function f ∈
C([0,∞)) is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, 0 < α < 1,
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provided the right side is point-wise defined on [0,∞), where Γ is the gamma function.

Definition 2.2 Riemann-Liouville derivative of order α with the lower limit zero for a function
f ∈ C([0,∞)) can be written as

LDαf(t) =
1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds, t > 0, 0 < α < 1.

Definition 2.3 The Caputo derivative of order α for a function f ∈ C([0,∞)) can be written as

CDαf(t) = LDα(f(t)− f(0)), t > 0, 0 < α < 1.

Remark 2.4 (1) If f ∈ C1([0,∞)), then

CDαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds = I1−αf ′(t), t > 0, 0 < α < 1.

(2) The Caputo derivative of a constant is equal to zero.
(3) If f is an abstract function with values in E, then integrals which appear in Definitions 2.5–2.6
are taken in Bochner’s sense.

2.2 Delay resolvent family

Definition 2.5 A two parameter family of bounded linear operators Q(t, s), 0 ≤ s ≤ t ≤ a, on X
is called an evolution system if the following two conditions are satisfied

(i) Q(t, t) = I, Q(t, r)Q(r, s) = Q(t, s) for 0 ≤ s ≤ r ≤ t ≤ a,
(ii) (t, s) 7→ Q(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ a.

More details about evolution systems can be found in Pazy [20, Chapter 5 and Section 6.4 respec-
tively].

Let E be the Banach space formed from D(A) with the graph norm. Since −A(t) is a closed
operator, it follows that −A(t) is in the set of bounded operators from E to X .

Definition 2.6 Let A(t, u(σ(t))), σ(t) ≤ t, be a closed linear delay operator with domain D(A)
defined on a Banach spaceX and α > 0. Let ρ[A(t, .)] be the resolvent set ofA(t, .). We callA(t, .)
the generator of an (α, u)-delay resolvent family if there exists ω ≥ 0 and a strongly continuous
function R(α,u◦σ) : R2

+ → L(X) such that {λα : <e(λ) > ω} ⊂ ρ[A(t, .)] and for 0 ≤ s ≤ t <∞,

(λαI −A(s, u ◦ σ(s))−1v =

∫ ∞
0

e−λ(t−s)R(α,u◦σ)(t, s) v dt, <e(λ) > ω, (u, v) ∈ X2. (2.1)

In this case, R(α,u◦σ)(t, s) is called the (α, u)-delay resolvent family generated by A(t, u(σ(t))),
compare with [1, 6, 17].

Remark 2.7 1. If σ(t) = t, then (2.1) will be reduced to the introduced concept in [6].

2. We can deduce that (1.1)–(1.2) is well posed if and only if, −A(t, u(σ0(t))) is the generator
of an (α, u)-delay resolvent family.
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2.3 Sufficient conditions

Let Ω be a subset of X . We assume the following conditions:
(H1) The operator [A(t, .) + λαI]−1 exists in B(X) for any λ with <eλ ≤ 0 and

‖[A(t, .) + λαI]−1‖ ≤ Cα
|λ|+ 1

, t ∈ J

where Cα is a positive constant independent of both t and λ, see [14].
(H2) H : C(J : Ω) → Y is Lipschitz continuous in X and bounded in Y , that is, there exist
constants k1 > 0 and k2 > 0 such that

‖H(u)‖Y ≤ k1,

‖H(u)−H(v)‖Y ≤ k2 max
t∈J
‖u− v‖PC , u, v ∈ C(J : X).

For the conditions (H3) and (H4) let Z be taken as both X and Y .
(H3) G : Λ× Z → Z is continuous and there exist constants k3 > 0 and k4 > 0 such that∫ t

0
‖G(t, s, u)−G(t, s, v)‖Z ds ≤ k3‖u− v‖Z , u, v ∈ X,

k4 = max{
∫ t

0
‖G(t, s, 0)‖Z ds : (t, s) ∈ Λ}.

(H4) F : J × Zn+1 → Z is continuous and there exist constants k5 > 0 and k6 > 0 such that

‖F (t, u1, ..., un+1)− F (t, v1, ..., vn+1)‖Z ≤ k5
n+1∑
i=1

‖ui − vi‖Z , ui, vi ∈ X,

k6 = max
t∈J
‖F (t, 0, ..., 0)‖Z .

(H5) The delay arguments σi : J → J ′ are absolutely continuous and there exist constants ci > 0
such that σ′i(t) ≥ ci, for t ∈ J and i = 1, ..., n+ 1.
Let us take M0 = max ‖R(α,uσ)(t, s)‖B(Z), 0 ≤ s ≤ t ≤ a, u ∈ Ω.

(H6) There exist positive constants r > 0 and λ1, λ2, λ3 ∈ (0,
1

3
) such that

M0{‖u0‖+ Cαk1 + a{k5[r(1/c1 + ...+ 1/cn + k3/cn+1) + k4] + k6}} ≤ r,

λ1 = Ka‖u0‖Y + k1Ka+ CαM0k2,

λ2 = a2K{k5[r(1/c1 + ...+ 1/cn + k3/cn+1) + k4] + k6},

λ3 = aM0k5[1/c1 + ...+ 1/cn + k3/cn+1].

Definition 2.8 By a mild solution of (1.1)–(1.2) we mean a function u ∈ C(J : X) with values in
Ω and u0 ∈ X satisfying the integral equation

u(t) = R(α,u◦σ0)(t, 0)u0 +A−1(0, u)R(α,u◦σ0)(t, 0)H(u)

+

∫ t

0
R(α,u◦σ0)(t, s)F

(
s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη

)
ds.
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Definition 2.9 By a classical solution of (1.1)–(1.2) on J , we mean a function u with values in X
such that:
1) u is a continuous function on J and u(t) ∈ D(A),

2)
dαu

dtα
exists and is continuous on (0, a], 0 < α < 1,

3) u satisfies (1.1) on (0, a] and the nonlocal condition (1.2), see [8, 11, 13].
(H7) Further there exists a constant K > 0 such that for every u, v ∈ C(J : X) with values in Ω
and every ω ∈ Y we have

‖A−1(t, u)R(α,u◦σ0)(t, s)ω −A
−1(t, v)R(α,v◦σ0)(t, s)ω‖ ≤ K‖ω‖Y

∫ t

s
‖u(τ)− v(τ)‖ dτ.

Clearly, the last inequality is still verified when A−1(t, u) is the identity.

3 Main results

Now we are in position to state and prove our main results of this work.

Theorem 3.1 Let u0 ∈ Y and Ω = {u ∈ X : ‖u‖Y ≤ r}, r > 0. If −A(t, u(σ0(t))) is the
generator of an (α, u)-delay resolvent family and the assumptions (H1)–(H7) are satisfied, then
(1.1)–(1.2) has a unique mild solution on J .

Proof. Let S be a nonempty closed subset of PC(J : X) defined by

S = {u : u ∈ PC(J : X), ‖u‖Y ≤ r}, t ∈ J.

Consider a mapping P on S defined by

(Pu)(t) = R(α,u◦σ0)(t, 0)u0 +A−1(0, u)R(α,u◦σ0)(t, 0)H(u)

+

∫ t

0
R(α,u◦σ0)(t, s)F

(
s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη

)
ds.

For u ∈ S, we have

‖Pu(t)‖Y ≤ ‖R(α,u◦σ0)(t, 0)u0‖+ ‖A−1(0, u)R(α,u◦σ0)(t, 0)H(u)‖

+

∫ t

0
‖R(α,u◦σ0)(t, s)‖{‖F (s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη)

− F (s, 0, ..., 0)‖+ ‖F (s, 0, ..., 0)‖}ds.

Using assumptions (H1)–(H5), we get

‖Pu(t)‖Y ≤M0‖u0‖+ CαM0k1 +M0

∫ t

0

{
k5[‖u(σ1(s))‖+ · · ·+ ‖u(σn(s))‖

+

∫ s

0
‖G(s, η, u(σn+1(η)))−G(s, η, 0)‖dη +

∫ s

0
‖G(s, η, 0)‖dη] + k6

}
ds

≤M0‖u0‖+ CαM0k1 +M0

∫ t

0

{
k5[‖u(σ1(s))‖(σ′1(s)/c1) + · · ·+

+ ‖u(σn(s))‖(σ′n(s)/cn) + k3‖u(σn+1(s))‖(σ′n+1(s)/cn+1) + k4] + k6

}
ds



96 Amar Debbouche, J. Nonl. Evol. Equ. Appl. 2011 (2011) 91–100

≤M0‖u0‖+ CαM0k1 +M0k5

{ 1

c1

∫ σ1(t)

σ1(0)
‖u(τ1)‖dτ1 + · · ·

+
1

cn

∫ σn(t)

σn(0)
‖u(τn)‖dτn +

k3
cn+1

∫ σn+1(s)

σn+1(0)
‖u(τn+1)‖dτn+1

}
+ aM0(k4k5 + k6)

≤M0‖u0‖+ CαM0k1 + aM0{k5[r(1/c1 + · · ·+ 1/cn + k3/cn+1) + k4] + k6}.

From assumption (H6), one gets ‖Pu(t)‖Y ≤ r. Thus P maps S into itself. Now we shall show
that P is a strict contraction on S which will ensure the existence of a unique continuous function
satisfying (2.2) on J .
If u, v ∈ S, then

‖Pu(t)− Pv(t)‖ ≤ ‖R(α,u◦σ0)(t, 0)u0 −R(α,v◦σ0)(t, 0)u0‖
+ ‖A−1(0, u)R(α,u◦σ0)(t, 0)H(u)−A−1(0, v)R(α,v◦σ0)(t, 0)H(v)‖

+

∫ t

0

∥∥∥R(α,u◦σ0)(t, s)[F (s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη)]

−R(α,v◦σ0)(t, s)[F (s, v(σ1(s)), ..., v(σn(s)),

∫ s

0
G(s, η, v(σn+1(η))) dη)]

∥∥∥ds

≤ ‖R(α,u◦σ0)(t, 0)u0 −R(α,v◦σ0)(t, 0)u0‖
+ ‖A−1(0, u)R(α,u◦σ0)(t, 0)H(u)−A−1(0, v)R(α,v◦σ0)(t, 0)H(u)‖
+ ‖A−1(0, v)R(α,v◦σ0)(t, 0)H(u)−A−1(0, v)R(α,v◦σ0)(t, 0)H(v)‖

+

∫ t

0

{∥∥R(α,u◦σ0)(t, s)F
(
s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη

)
−R(α,v◦σ0)(t, s)F

(
s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη

)∥∥
+
∥∥R(α,v◦σ0)(t, s)F

(
s, u(σ1(s)), ..., u(σn(s)),

∫ s

0
G(s, η, u(σn+1(η))) dη

)
−R(α,v◦σ0)(t, s)F

(
s, v(σ1(s)), ..., v(σn(s)),

∫ s

0
G(s, η, v(σn+1(η))) dη

)∥∥}ds.

Using assumptions (H1)–(H7), we get

‖Pu(t)− Pv(t)‖ ≤ Ka‖u0‖Y max
τ∈J
‖u(τ)− v(τ)‖

+ k1Kamax
τ∈J
‖u(τ)− v(τ)‖+ CαM0k2 max

τ∈J
‖u(τ)− v(τ)‖

+ aK

∫ t

0

∥∥∥F (s, u(σ1(s)), ..., u(σn(s)),∫ s

0
G(s, η, u(σn+1(η))) dη)

∥∥∥
Y

ds×max
τ∈J
‖u(τ)− v(τ)‖

+M0k5

∫ t

0

[
‖u(σ1(s))− v(σ1(s))‖+ · · ·+ ‖u(σn(s))− v(σn(s))‖

+

∫ s

0
‖G(s, η, u(σn+1(η)))−G(s, η, v(σn+1(η)))‖dη

]
ds
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≤
(
Ka‖u0‖Y + k1Ka+ CαM0k2 + a2K{k5[r(1/c1 + · · ·

+ 1/cn + k3/cn+1) + k4] + k6}
)

max
τ∈J
‖u(τ)− v(τ)‖

+M0k5

∫ t

0

[
‖u(σ1(s))− v(σ1(s))‖(σ′1(s)/c1) + · · ·

+ ‖u(σn(s))− v(σn(s))‖(σ′n(s)/cn)

+ k3‖u(σn+1(s))− v(σn+1(s))‖(σ′n+1(s)/cn+1)
]
ds

≤
(
Ka‖u0‖Y + k1Ka+ CαM0k2 + a2K{k5[r(1/c1 + · · ·+

+ 1/cn + k3/cn+1) + k4] + k6}
)

max
τ∈J
‖u(τ)− v(τ)‖

+ aM0k5[1/c1 + · · ·+ 1/cn + k3/cn+1] max
τ∈J
‖u(τ)− v(τ)‖

≤ (λ1 + λ2 + λ3) max
τ∈J
‖u(τ)− v(τ)‖

Thus
‖Pu(t)− Pv(t)‖ ≤ λmax

τ∈J
‖u(τ)− v(τ)‖,

where 0 < λ < 1, which means that P is a strict contraction map from S into S and therefore by
the Banach contraction principle there exists a unique fixed point u ∈ S such that Pu = u. Hence
u is a unique mild solution of (1.1)–(1.2) on J . �

Theorem 3.2 Assume that

(i) Conditions (H1)–(H7) hold,

(ii) Y is a reflexive Banach space with norm ‖.‖,

(iii) The functions f and g are uniformly Hölder continuous in t ∈ J .

Then the problem (1.1)–(1.2) has a unique classical solution on J .

Proof. From (i), applying Theorem 3.1, the problem (1.1)–(1.2) has a unique mild solution u ∈ S.
Set

ω(t) = F (t, u(σ1(t)), ..., u(σn(t)),

∫ t

0
G(t, s, u(σn+1(s))) ds).

In order to prove the regularity of the mild solution, we use the further assumptions, it is easy to
conclude that the function ω(t) is also uniformly Hölder continuous in t ∈ J .

Consider the following nonlocal delay fractional problem

dαv(t)

dtα
+A(t, u(σ0(t)))u(t) = ω(t), (3.1)

A(0, u)[u(0)− u0] = H(u). (3.2)

According to Pazy [20], (3.1), (3.2) has a unique solution v on J into X given by

v(t) = R(α,u◦σ0)(t, 0)u0 +A−1(0, u)R(α,u◦σ0)(t, 0)H(u) +

∫ t

0
R(α,u◦σ0)(t, s)ω(s) ds. (3.3)
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Noting that, each term on the right hand side of (3.3) belongs toD(A), using the uniqueness of v(t),
we have that u(t) ∈ D(A). It follows that u is a unique classical solution of (1.1)–(1.2) on J , see
[5, 7]. �

4 Application

Consider the fractional nonlocal delay integro-partial differential system of the form

∂αu(x, t)

∂tα
+ a(x, t, u(x, sin t))

∂2u(x, t)

∂x2
= sinu(x, t) + a1(t)u(x, sin t)

+

∫ t

0
a2(t, s)u(x, sin s) ds, (4.1)

a(x, 0, u(x, 0))[u(x, 0)− u0(x)]′′ =

m∑
k=1

cku(x, tk), x ∈ [0, π], (4.2)

u(0, t) = u(π, t) = 0, t ∈ J, (4.3)

where 0 < α ≤ 1, 0 < t1 < ... < tm < a and ck are positive constants, k = 1, ...,m.
We define A(t, .) : X → X by (A(t, .)w)(x) = a(x, t, .)w′′ with domain

D(A) = {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X,w(0) = w(π) = 0},

the functions a(x, t, .), a1(t) and a2(t, s) are continuous on Λ.

Let us take

X = L2[0, π], C = C(J, Sr), Sr = {y ∈ L2[0, π] : ‖y‖ ≤ r}.

Put F (t, u(.), ..., u(.),

∫ t

0
G(t, s, u(.)) ds) = sinu(x, t) + a1(t)u(x, .) +

∫ t

0
a2(t, s)u(x, .) ds,

G(s, t, u(σn+1(t))) = a2(t, s)u(x, sin t), σi(t) = sin t, i = 0, 1, ..., n+ 1

and H(u(., t)) =
m∑
k=1

cku(., tk).

Assume that, there exist constants η ∈ (0, 1] and Cα such that

‖[A(t1, .)−A(t2, .)]A
−1(s, .)‖ ≤ Cα|t1 − t2|η, t1, t2, s ∈ J.

Under these conditions each operator −A(s, .), s ∈ J generates an evolution operator
exp(−tαA(s, .)), t > 0 (which is compact, analytic and self-adjoint) and there exists a constant
Cα such that

‖An(s, .) exp(−tαA(s, .))‖ ≤ Cα
tn
,

where n = 0, 1, t > 0, s ∈ J , compare with [14]. It is clear that −A(t, u(.)) depends on
sin t, (sin t ≤ t), which means that this evolution operator is a delay resolvent family. Thus
we can deduce that the system (4.1)–(4.3) is an abstract formulation of (1.1)–(1.2). Further, all
assumptions (H1)–(H7) are satisfied and it is possible to choose our constants in (H6). Hence by
Theorem 3.1, the system (4.1)–(4.3) has a unique mild solution on J . In addition, if the function
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sinu(x, t)+a1(t)u(x, .)+

∫ t

0
a2(t, s)u(x, .) ds is uniformly Hölder continuous in t ∈ J , then from

Theorem 3.2, this mild solution in fact is a classical solution.

Acknowledgements. The author is very grateful to the editors and to the anonymous referees
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